
Vol.:(0123456789)

Computational Optimization and Applications (2022) 81:423–478
https://doi.org/10.1007/s10589-021-00335-x

1 3

Linearization and parallelization schemes for convex
mixed‑integer nonlinear optimization

Meenarli Sharma1 · Prashant Palkar1 · Ashutosh Mahajan1

Received: 14 May 2020 / Accepted: 14 November 2021 / Published online: 20 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
We develop and test linearization and parallelization schemes for convex mixed-
integer nonlinear programming. Several linearization approaches are proposed for
LP/NLP based branch-and-bound. Some of these approaches strengthen the lin-
ear approximation to nonlinear constraints at the root node and some at the other
branch-and-bound nodes. Two of the techniques are specifically applicable to com-
monly found univariate nonlinear functions and are more effective than other gen-
eral approaches. These techniques have been implemented in the Minotaur toolkit.
Tests on benchmark instances show up to 12% improvement in the average time to
solve the instances. Shared-memory parallel versions of NLP based branch-and-
bound and LP/NLP based branch-and-bound algorithms have also been developed in
the toolkit. These implementations solve different nodes of branch-and-bound con-
currently. About 44% improvement in the speed and an increase in the number of
instances solved within the time limit are observed when the two schemes are used
together on a computer with 16 cores. These parallelization methods are compared
to alternate approaches that exploit parallelism in existing commercial MILP solv-
ers. The latter approaches are seen to perform better thus highlighting the impor-
tance of MILP techniques.

Keywords Convex MINLP · Linearization techniques · Branch-and-bound · Outer
approximation · Shared-memory parallel

 * Meenarli Sharma
 meenarli@iitb.ac.in

 Prashant Palkar
 prashant.palkar@iitb.ac.in

 Ashutosh Mahajan
 amahajan@iitb.ac.in

1 Indian Institute of Technology Bombay, Mumbai, MH 400076, India

http://orcid.org/0000-0002-5677-2822
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00335-x&domain=pdf

424 M. Sharma et al.

1 3

1 Introduction

Mixed-Integer Nonlinear Programs (MINLPs) are optimization problems with
nonlinear objective or constraint functions and some integer constrained vari-
ables. While MINLP applications arise in several domains, they are difficult to
solve. Special cases of MINLP, like Mixed-Integer Linear Programs (MILPs) and
nonconvex global optimization are themselves NP-hard in general. We refer the
interested readers to recent surveys [9, 15, 31, 48]) for an overview of applica-
tions, solution methods and computational complexity of MINLPs. We consider
the special case of convex MINLPs only, which is still hard, but is more tractable
than the general case. In particular, we consider the following problem:

where the given functions f ∶ ℝ
n
→ ℝ and g ∶ ℝ

n
→ ℝ

m are convex, twice continu-
ously differentiable on the polyhedral set X ∶= {x ∶ Cx ≤ c,Dx = d} where C, D, c
and d are matrices and vectors of appropriate dimensions, and I is the index set of
integer constrained decision variables.

Deterministic methods for convex MINLPs are based on branch-and-bound
type of algorithms, just like those for MILPs. A branch-and-bound method starts
by solving a relaxation of (P), that has a larger feasible region enclosing (P),
but is easier to solve to global optimality. A solution of this relaxation provides
a valid lower bound on the optimal value (say z∗) of (P). Then one divides the
search-space by branching to create smaller subproblems. A relaxation of each
subproblem is then solved. Each subproblem, a smaller relaxation than its parent,
has a lower bound no less than its parent. If a solution to any of the subproblems
is feasible for (P), its objective value provides an upper bound on z∗ . The algo-
rithm stops when the lower bound and the upper bound on z∗ converge. This setup
is easily viewed and analyzed as a tree-search where the tree-nodes denote the
subproblems and the edges denote the branches that further divide a subproblem.

We focus on two approaches for enhancing the performance of algorithms for
convex MINLPs: (a) creating better relaxations through effective linearization
inequalities, and (b) using shared-memory parallel search to explore the branch-
and-bound tree using multiple processors of a computer. Creating good relaxa-
tions, that provide a lower bound closer to z∗ , in a reasonable amount of time
is important for fast convergence of the branch-and-bound based algorithms.
Rather than starting with a tight relaxation which may be difficult to solve, one
can first solve a weaker relaxation and then tighten it iteratively by adding valid
inequalities. Combining this scheme with branch-and-bound leads to what is
called a branch-and-cut method which most solvers deploy for solving MILPs and
MINLPs. A commonly used technique for creating linear relaxations of convex
nonlinear constraints is through a gradient based linearization. Given a convex

(P)

min
x

f (x)

s.t. g(x) ≤ b,

x ∈ X,

xj ∈ ℤ, ∀j ∈ I,

425

1 3

Lin. and par. schemes for convex MINLP

differentiable nonlinear function ĝ ∶ ℝ
n
→ ℝ and a point x� ∈ ℝ

n , the following
well known gradient inequality [46]

holds for all x ∈ ℝ
n . One can thus create a relaxation of (P) by replacing its nonlin-

ear constraints by

This relaxation can be tightened by adding linearization inequalities obtained from
multiple points. We propose schemes that try to identify more effective linearization
inequalities by finding suitable points of linearization.

Another way of speeding up algorithms for solving MINLPs is to exploit the avail-
ability of multiple processors that is common on modern computing architectures. We
describe in the later half of this paper, a shared-memory parallel implementation of
three algorithms for convex MINLPs: (i) NLP based branch-and-bound, (ii) two vari-
ants of LP/NLP based branch-and-bound and (iii) MILP based outer-approximation.
We study the effects of different algorithmic components: sharing of information like
branching scores amongst different threads, and scalability with the number of threads.

The above mentioned advancements have been implemented within the open-
source Minotaur framework [39] and tested on benchmark instances from MIN-
LPLib [16]. We next describe in Sect. 2 the algorithms and solvers for convex
MINLPs. Section 3 describes the linearization schemes, and Sect. 4 presents the
parallelization schemes. Computational results from combining the two approaches
are presented in Sect. 5. Section 6 presents results of methods that deploy an MILP
solver capable of using multiple CPUs for solving MILP relaxations. Section 8 con-
tains our conclusions and scope for future work.

2 Algorithms and solvers for convex MINLPs

Methods for solving convex MINLPs primarily differ in the way they create a relax-
ation of the MINLP. We first describe the main algorithms and then briefly survey
the solvers available.

2.1 Algorithms

Given a MINLP (P), the most natural option is to relax the integer restrictions on
variables and obtain a convex nonlinear program (convex NLP):

If relaxation (R) of (P) is infeasible, then so is (P). If the solution, say x0 , of the
NLP relaxation satisfies integer restrictions of (P), then it is an optimal solution to

∇ĝ(x�)T (x − x�) + ĝ(x�) ≤ ĝ(x)

(grad-I)∇g(x�)T (x − x�) + g(x�) ≤ b.

(R)

min
x

f (x)

s.t. g(x) ≤ b,

x ∈ X.

426 M. Sharma et al.

1 3

(P) as well. If, on the other hand, x0 does not satisfy the integrality restrictions, we
get a lower bound on the optimal value of (P). The nonlinear branch-and-bound [27]
(NLP-BB) method proceeds by dividing the search-space into two or more subprob-
lems in a way that every solution of (P) lies in at least one of the subproblems while
x0 does not lie in any of them. Each subproblem thus created is a smaller MINLP,
and this process is continued recursively.

The outer-approximation (OA) algorithm [22] solves an alternating sequence of
MILPs and NLPs. It is initialized by solving (R). If the solution x0 is not integer
feasible, the nonlinear functions are replaced by linearization inequalities (grad-I)
obtained at x0 , and the integer restrictions are re-introduced to obtain the following
MILP relaxation. If the objective function is also nonlinear, the problem is reformu-
lated by replacing the objective with an auxiliary variable, � , and adding the con-
straint f (x) ≤ � . This new constraint is also replaced by its linearization inequality at
x0 in the MILP relaxation:

The MILP relaxation (RM) is solved using an MILP solver. If the MILP is infeasi-
ble, then so is (P). If the MILP solution (say, x̂) satisfies all nonlinear constraints,
then it is optimal to (P). Otherwise, the MILP optimal value (say, ẑ) provides a lower
bound on z∗ . Next, a ‘fixed’ NLP of the following form is solved.

We denote this NLP as F-NLP(x̂) to indicate that the integer variables are fixed to
the values in x̂ . An optimal solution to F-NLP(x̂) provides an upper bound on z∗ .
The optimal solution is then used to generate more linearization constraints (grad-
I) that are added to the MILP relaxation. The updated MILP is solved again and
the process is repeated. The new inequalities ensure that all solutions of MILP with
xj = x̂j, j ∈ I have objective value no less than ẑ . If the ‘fixed’ NLP is infeasible, the
point returned by the NLP solvers can still be used to generate valid underestimators
and linear constraints [23]. These linearization inequalities forbid the integer com-
bination x̂j, j ∈ I in the future MILP solutions. Another related algorithm, General-
ized Benders Decomposition (GBD) algorithm [25], generates a single inequality
at the NLP solution which is then added to the MILP. Both OA and GBD do not
require any implementation of tree-search unlike the NLP based branch-and-bound.
They naturally exploit the advances that have been made in the MILP technology

(RM)

min
x,�

�

s.t.∇f (x0)T (x − x0) + f (x0) ≤ �,

∇g(x0)T (x − x0) + g(x0) ≤ b,

x ∈ X,

xj ∈ ℤ, ∀j ∈ I.

(F-NLP)

min
x

f (x)

s.t. g(x) ≤ b,

x ∈ X,

xj = x̂j, ∀j ∈ I.

427

1 3

Lin. and par. schemes for convex MINLP

over the decades, including presolving [5, 38], cutting planes [12, 34], heuristic
search [10, 14], conflict analysis [3, 58] and parallel search [11, 52, 53] etc.

The LP/NLP based branch-and-cut algorithm of Quesada and Grossmann [43],
which we also refer to as QG tries to overcome the difficulty of solving similar
MILPs repeatedly. It creates and maintains a single branch-and-cut tree. Like OA,
it starts by solving the NLP relaxation (R), and creates a linear relaxation of (P) by
relaxing integrality from (RM). It then initiates the single-tree by solving this root
LP relaxation of (P), and proceeds like LP based branch-and-cut method. When a
node in the search-tree yields an integer optimal solution (̂x), F-NLP(x̂) is solved.
If the NLP is feasible, its optimal solution provides an upper bound on z∗ . Lineari-
zation inequalities obtained at the point returned by solving F-NLP(x̂) , say x̌ , are
added to all the open-nodes of the tree to tighten the relaxations, and branch-and-cut
is resumed. While the algorithm is known to take a finite number of steps, careful
implementation and control are required for it to be practically useful. Convex MIN-
LPs are known to be NP-hard, and this algorithm, like others, can take a long time to
run. In the later sections, we demonstrate effectiveness of some practical ideas that
enhance the performance of this algorithm.

2.2 Solvers

The above mentioned algorithms and their variants have been implemented in sev-
eral convex MINLP solvers including AIMMS [30], BONMIN [13], FilMINT [2],
Muriqui [40], and SHOT [37]. Global solvers like Antigone [41], BARON [47],
Couenne [8], LINDO [35] and SCIP [4] can also be used to solve convex MINLPs.
Global solvers implement heuristics to detect convexity automatically and resort to
slower methods for nonconvex problems if they fail to detect it. All the stated solvers
except SCIP rely on a separate MILP solver for implementing branch-and-cut and
related routines. The open-source Minotaur toolkit [39] is used to implement the
methods proposed in this paper. Minotaur includes two solvers for convex MINLPs:
NLP-BB and QG against which we compare the effects of the proposed schemes.
While, it implements its own branch-and-cut, it also has the ability to interface with
MILP solvers to use their implementation of branch-and-cut. The latter is used to
implement OA and a variant of QG.

Use of shared-memory parallel computing for MILPs has received attention
recently, see for example [18, 45, 54]. Most open-source [24, 44] and proprietary
MILP solvers [60–64] exploit multiple processors for branch-and-bound/cut frame-
work. Some of the frameworks that exploit shared-memory parallelization are Ubiq-
uity Generator (UG) [49, 50], ChiPPS [59] and PEBBL [28]. The UG framework
has been used as a parallelization wrapper over many MILP base solvers [11, 42,
51–53]. It explicitly controls the base solver as a callable library by parallelizing the
tree-search from outside. FiberSCIP (FSCIP) is the shared-memory parallel algo-
rithm that uses SCIP underneath UG. The frameworks ChiPPS and PEBBL use a
master-hub-worker and a hub-worker hierarchy, respectively. The MILP solver,
CBC [24] implements a multithreaded scheme to parallelize its sequential solver.
Nodes are assigned by a master thread to workers sequentially as some of the global

428 M. Sharma et al.

1 3

data is stored centrally. It also has a deterministic parallelization mode which dis-
tributes subtrees to workers instead of nodes. Proprietary software like CPLEX and
GUROBI provide LP solvers that can be used as subroutines for solving MINLPs.
They also provide MILP solvers that can run in a parallel mode. CPLEX LP and
MILP solvers are extensively used in our experiments.

2.3 Experimental setup

All the computational experiments have been carried out on a system with two
64-bit Intel(R) Xeon(R) E5-2670 v2, 2.50GHz CPUs having 10 cores each and shar-
ing 128GB RAM. Hyperthreading is disabled. Our schemes are available in the
development version of Minotaur.1 All codes are complied with GCC-4.9.2 com-
piler. OpenMP-4.0 support provided by GCC is used for compiling parallel algo-
rithms. IPOPT-3.12 with MA27 linear-systems solver is used as the NLP solver.
CPLEX-12.8 has been used as the LP solver. CPLEX-12.8 MILP solver is used in
algorithms that require solving an MILP. There are 374 instances in MINLPLib [16]
that are known to be convex. We excluded 40 instances that did not have any nonlin-
earity (in constraints and objective) or any integer variables after the presolving step
in Minotaur. We used the remaining 334 instances and refer to them as the TS test
set in our experiments. Description of these instances is presented in Appendix A.
We have set a limit of one hour on the wall clock time in all our experiments and
reported all the solution times in seconds.

3 Linearization schemes

Recall that the QG algorithm creates an MILP relaxation of the nonlinear feasible
region which is solved by branch-and-cut. Adding linearizations only when we reach
integer feasible points in branch-and-bound tree may lead to a weak relaxation, and
adding many of these early on can slow down the speed. We propose two sets of
schemes - one for tightening the initial LP relaxation at the root node and the other
for adding new linearizations later in the branch-and-bound tree. Strategies for gen-
erating linearizations based on the change in the lower bound, depth of the nodes in
the search-tree, etc., and using NLP techniques for selecting points for linearizations
have previously been proposed in [1, 32] for use in the FilMINT solver.

We analyzed performance of default QG in Minotaur on 267 instances in test set
TS which have at least one nonlinear constraint and observed that a large fraction of
the nodes processed yield fractional optimal solutions (Fig. 1 (left)), many of which
also violate a large fraction of nonlinear constraints (Fig. 1 (right)). These observa-
tions motivated us to add more linearizations at selected nodes.

1 Available at http:// github. com/ minot aur- solver/ minot aur.

http://github.com/minotaur-solver/minotaur

429

1 3

Lin. and par. schemes for convex MINLP

3.1 Linearization techniques at the root node

Given a problem (P) and the solution x0 of its continuous relaxation (R), let P̄k be a
polyhedron corresponding to the kth nonlinear constraint (gk(x) ≤ bk) defined as,

The feasible region of the root LP relaxation can be interpreted as an intersection of
polyhedra P̄k, k ∈ 1,… ,m , corresponding to the nonlinear constraints, and X. In this
section, we propose five schemes that aim to tighten the LP relaxation at the root
node by tightening P̄k, k = 1,… ,m.

The first two schemes are designed for problems in which a constraint gk(x) ≤ bk
has a univariate nonlinear structure, i.e., gk is the sum of a univariate nonlinear func-
tion and a linear function, and the variable in the linear part of gk do not appear in its
nonlinear part. Mathematically, the constraint is of the form,

where, aj ≠ 0 and j ≠ i . A nonlinear constraint with more than one term in its linear
part can be transformed into this structure by replacing the entire linear part using
an auxiliary variable. This univariate structure appears in 126 out of 334 instances
in test set TS. Problem classes with this structure are listed in Table 1. In 123 of
these instances, all the nonlinear constraints have this structure. Three instances,
ex1223a and two of synthes*, have a few other constraints without this struc-
ture. We refer to the set of these 126 instances as TS1 and the set of remaining 208
instances in TS as TS2 . The structure (S) is also exploited in [29] for building initial
relaxation in outer approximation algorithms. They select points at regular intervals
along xi.

The feasible region of (S) can be visualized in the two-dimensional space of xi
and xj variables. It is easy to see that a linearization generated at any point (xi, xj) in

(1)P̄k ∶= {x ∶ ∇gk(x
0)T (x − x0) + gk(x

0) ≤ bk}.

(S)ajxj + hk(xi) ≤ bk,

Fig. 1 (Left) Total number of nodes processed (+) and the number of nodes with integer LP optimal
solution (o). (Right) Distribution of the violated nonlinear constraints at the nodes with fractional LP
solution

430 M. Sharma et al.

1 3

the plane touches the constraint boundary at some point. We utilize this simple fact
in the first two schemes.

3.1.1 Root linearization scheme 1 (RS1)

Given a nonlinear constraint with the univariate structure (S), this iterative scheme
selects a point in each iteration for generating a linearization until the violation of
the nonlinear constraint at all points in the updated P̄k is less than a desired value T̃k.

The scheme starts by generating linearizations at points xL = (li, (bk − hk(li))∕aj)
and xU = (ui, (bk − hk(ui))∕aj) , where li and ui are the lower and upper bounds,
respectively, on xi . Both xL and xU lie on the boundary of the feasible region of (S).
Let us add to P̄k two linearizations L(xL) and L(xU) at these points. Amongst all
points in the updated P̄k , the violation of the constraint (S) is maximum at the point
of intersection, xI , of L(xL) and L(xU) . Let Ek be the set of extreme points of P̄k . At
any point xl ∈ Ek , let v(xl) be the violation of the nonlinear constraint defined as
v(xl) = max{ajx

l
j
+ hk(x

l
i
) − bk, 0} , where xl

i
 and xl

j
 are the values of variables xi and

xj in xl . In each iteration, candidate points for generating a new linearization are
those points xl ∈ Ek for which v(xl) ≥ T̃k , amongst whom the most violated point is
selected. Figure 2 shows a pictorial depiction of this scheme and Algorithm 1 pre-
sents the pseudocode for this scheme.

Table 1 Name of classes and
number of instances (#) with
the univariate structure (S) in
a class. * following a name
denotes a collection of instances
in a class

Name # Name # Name #

cvxnonsep_normcon*r 3 fo8* 6 procurement2mot 1
cvxnonsep_nsig*r 3 fo9* 6 rsyn*m 24
cvxnonsep_pcon*r 3 m* 8 sssd* 13
ex1223a 1 no7* 5 syn*m 24
flay* 10 nvs03 1 synthes* 2
fo7* 7 o7* 9 Total 126

Fig. 2 Pictorial depiction of linearization scheme RS1 (left) and RS2 (right)

431

1 3

Lin. and par. schemes for convex MINLP

We compare the default implementation of QG in Minotaur, which we refer to as
qg to that of qg with RS1 (denoted as qgrs1). Threshold T̃k is set to be a fraction K
of bk , if bk ≠ 0 , otherwise of v(xI) . We tried four different values of K : 0.02, 0.05,
0.10, 0.20. In case any of the bounds, li or ui , on variable xi is not known, we take
li = x0

i
− 50 and ui = x0

i
+ 50 , respectively. Table 2 shows the impact of this scheme

on the overall solution time, size of the tree in terms of the number of nodes pro-
cessed, and the Euclidean distance of the optimal solution (x) of the root LP from
the feasible region of (R). The following nonlinear program is solved for computing
this distance.

Problem (NLP-D) differs from (R) only in the objective function.
Each row of the top table in Table 2 corresponds to a parameter setting (K in this

case). The column ‘# Solved by’ lists the number of instances solved to optimality
within the time limit by the proposed method and by both the reference solver (qg in
this case) as well as the proposed method (under the column ‘Both’). The first column
under the headings ‘Time’ and ‘Nodes’ shows the shifted geometric mean (SGM) of
these measures reported by the reference solver for the instances in the column ‘Both’.
The second column under these headings show the relative SGM (‘Rel.’) of the pro-
posed method for the same instances using the setting corresponding to the row. Simi-
lar statistics for the distance measure are computed, but over all instances, not just for
those solved within the time limit. The relative SGM of a measure is computed as the
ratio of the SGM value of the proposed scheme to the SGM value of the reference
solver (qg in this section). If this ratio, say r, is less than one, it implies that the pro-
posed solver has performed better than the reference solver. More specifically, the pro-
posed solver has shown (1 − r) × 100% improvement over the reference solver on the
considered performance measure. For example, qgrs1 with K = 0.20 is on an average
11% faster and showed an improvement of about 15% and 81% in the number of nodes
processed and distance, respectively, over default qg on the set of 111 instances that
were solved by both qg and qgrs1. We used a shift of 10 for calculating SGM of time
and distance, and 100 for the number of nodes processed.

(NLP-D)

min
x

||x − x||2

s.t. g(x) ≤ b,

x ∈ X.

432 M. Sharma et al.

1 3

Our computational results report modest improvements in all the considered meas-
ures under all the settings. We choose K = 0.20 as the default setting for this scheme
as it solved 2 instances more than qg and resulted in about 11% improvement in solu-
tion times. The break-up of performance over instances of varying difficulty using the
best setting is also included in Table 2 (bottom). Each row corresponds to the instances
solved by both qg and qgrs1, but for which at least one of them took more than the
specified time. For example, 31 instances were solved to optimality by both qg and
qgrs1, and for each of these instances, at least one of the two solvers took more than
100 seconds. We observed that qgrs1 is more effective for ‘difficult’ problems, espe-
cially those corresponding to row 3 in the table on the bottom. Similar tables have been
used in the rest of the paper as well. We use performance profiles [21] that graphically
demonstrate the relative performance of different solvers for a particular performance
measure over a given set of instances. Let S be a set of solvers to be compared, I be a

Fig. 3 Performance profiles comparing solution times of qg and qgrs1 with K = 0.20 (on left) and of qg
and qgrs2 with � = 5 (on right) on instances in TS

1

Table 2 (Top) Comparison of qg and qgrs1 for different values of K on test set TS
1
 . qg could solve 113

instances in the time limit. (Bottom) Performance break-up of qgrs1 with K = 0.20 over instances of
varying difficulty in TS

1

K # Solved by Time Nodes Distance

qgrs1 Both qg Rel. qg Rel. qg Rel.

0.02 113 111 31.66 0.93 6.9e3 0.79 1.35 0.02
0.05 113 111 31.38 0.86 6.9e3 0.77 1.36 0.05
0.10 113 111 31.54 0.91 6.9e3 0.86 1.37 0.08
0.20 115 111 31.54 0.89 6.9e3 0.85 1.37 0.19

Time #
Solved by

Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 111 31.54 0.89 6.9e3 0.85 1.37 0.19
> 10 53 164.82 0.86 1.5e5 0.88 1.19 0.12
> 100 31 453.82 0.79 4.7e5 0.79 0.89 0.09
> 500 14 1133.83 0.87 1.2e6 0.86 0.68 0.06

433

1 3

Lin. and par. schemes for convex MINLP

given set of instances, and ti,s be the solution time of instance i ∈ I by solver s. The per-
formance ratio ri,s of solver s on instance i compared to the best solver for this instance
is given by

and �s(�) ∶ ℝ → [0, 1] , a cumulative distribution function for the performance ratio
of solver s, is defined as

�s(�) is a nondecreasing function indicating that solver s is at most � times slower
than the best solver on an instance. In particular, the value �s(1) gives the fraction
of the instances on which a solver s performs the best. Figure 3 (left) shows the
performance profiles of qg and qgrs1 with K = 0.20 (proposed best setting of RS1)
using the solution times of the instances in test set TS1 . A close look at Fig. 3 (left)
shows that �qgrs1(1) = 0.45 , which means that qgrs1 has performed better on about
45% of the total instances in TS1 . Next, we see from the profile of qg that qg could
solve about 90% of the total instances. Moreover, the value of �qg(2) is about 0.8,
which means that for about 80% of the instances, qg is at most two times slower than
qgrs1. This also means that on the remaining 10% of the instances qg is at least two
times slower (or qgrs1 is at least two times faster). We use similar profiles for report-
ing the results of the other schemes in this section.

3.1.2 Root linearization scheme 2 (RS2)

Given a nonlinear constraint with univariate structure (S), this scheme iteratively
selects points in a way that the successively generated linearization constraints dif-
fer in slope by at least a specific threshold value. Like RS1, the feasible region of
(S) can be seen as a two-dimensional region in the space of xi and xj variables. We
start at x0 , an optimal solution of (R). First, x0

i
 is gradually increased using step size

� and variable xj is determined. If the slope of the linearization at this point differs
from the slope of the previously accepted linearization by � , it is added to the linear
relaxation. Otherwise the step size � is doubled. This process is repeated until x0

i

exceeds min{ui, x
0

i
+ �} for a scalar parameter 𝛥 > 0 . A similar search is carried out

in the opposite direction until x0
i
 falls below max{li, x

0

i
− �} . Figure 2 gives a picto-

rial description of the scheme and Algorithm 2 presents pseudocode of RS2 along
the direction −ei .

ri,s =
ti,s

min
j∈S

ti,j
,

�s(�) =
|i ∈ I ∶ ri,s ≤ �|

|I|
.

434 M. Sharma et al.

1 3

Computational performance of qg with linearization scheme RS2 (qgrs2) on TS1
is presented in Table 3. We used four values of � = 2, 5, 10, 20 with � = 10 , and
� = 0.5 . In our experiments, we observed improvements in solution time and tree-
size for the first two settings. Quality of the relaxation improved for all the con-
sidered � values - more for smaller values because more linearizations were added,
implying a tighter, but larger LP. Although more instances than qg and other settings
were solved with � = 10 , it resulted in poor solution times. qgrs2 with � = 5 solved
two instances less than qg but resulted in better performance on 109 instances that
were solved by both qg and qgrs2. Table 3 shows the break-up of its performance
over instances of varying difficulty. As we increase the value of � the number of
linearizations added to the root relaxation decreases. As we increase the value of � ,
the number of linearizations added to the root relaxation decreases. When very few
linearizations are added, the root relaxations obtained in qgrs2 and qg are almost
identical. Therefore, their performance does not vary much, as indicated in the third
column of Table 3 by the relative time measure close to 1 for � = 10, 20 . The per-
formance profiles in Fig. 3 (right) compare the solution times of instances in TS1
when solved using qg and qgrs2 with � = 5 . We observe that on about 45% of the
instances, qgrs2 is faster than qg and at least two times faster on about 5% of the
instances.

Time taken within the schemes qgrs1 and qgrs2 is negligible (less than 0.5s) in
comparison to the total solution time for all the considered instances. The next three
schemes are applicable to a general problem of the form (P).

3.1.3 Root linearization scheme 3 (RS3)

This scheme finds linearization points near an optimal solution of an LP relaxa-
tion of (R). First the LP relaxation (problem (RM) with integrality relaxed) is
solved and an optimal solution, x̄ , is obtained. If the solution violates any non-
linear constraint, a line-search is performed between x̄ and xC to find a point at
the boundary of the feasible region of (R). xC is chosen to be a point inside the

435

1 3

Lin. and par. schemes for convex MINLP

feasible region of (R). The boundary point is used to generate new lineariza-
tions. The updated LP is solved again and the process is continued. The point xC
remains the same at every iteration. We stop when the LP solution is feasible to
(R) or a preset number (kmax) of LPs have been solved.

To obtain interior point xC , we solve the following nonlinear problem (NLP-I).
All the nonlinear inequalities in (R) are modified using an auxiliary variable � ,
which also forms the objective of this new NLP. All the other (linear) constraints
remain unchanged.

Let the optimal solution of (NLP-I) be (�̃�, x̃) . If �̃� < 0 , then we set xC = x̃ . If �̃� = 0 ,
then there does not exist any point in the feasible region of (R) at which all the
nonlinear constraints are inactive. In this case, we simply generate linearizations to
nonlinear constraints that are active at x̃ , and terminate the scheme. If (NLP-I) is
unbounded, then we add � to the linear inequalities in the same way as the nonlinear
constraints and re-solve.

Algorithm 3 presents the pseudocode for this scheme. This scheme is similar
to root LP generation in the ESH algorithm in [33], but differs in the formula-
tion of initial root LP and the nonlinear problem (NLP-I). Unlike [33], our ini-
tial root LP is obtained by linearizing nonlinear constraints at x0 , and we also
consider linear equalities to find the required interior point, thus ensuring xC lies
in the feasible region of (R). Out of the total 334 instances in test set TS, 67

(NLP-I)

min
x,�

�

s.t. g(x) ≤ b + �,

x ∈ X,

� ≤ 0, x ∈ ℝ
n.

Table 3 (Top) Comparison of qg and qgrs2 for different values of � on test set TS
1
 . qg could solve 113

instances. (Bottom) Break-up of performance over instances of varying difficulty for qgrs2 with � = 5

� # Solved by Time Nodes Distance

qgrs2 Both qg Rel. qg Rel. qg Rel.

2 112 110 30.44 0.95 6.6e3 0.88 1.37 0.11
5 111 109 28.64 0.87 6.2e3 0.86 1.38 0.17
10 115 112 33.01 1.00 7.3e3 1.00 1.35 0.50
20 113 112 33.01 1.01 7.3e3 1.03 1.35 0.73

Time # Solved by Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 109 28.64 0.87 6.2e3 0.86 1.38 0.17
> 10 51 147.57 0.81 1.3e5 0.82 1.20 0.10
> 100 28 432.08 0.74 4.4e5 0.72 0.92 0.07
> 500 13 964.24 0.85 1.0e6 0.83 0.65 0.05

436 M. Sharma et al.

1 3

have nonlinearity only in the objective. The remaining 267 resulted in an optimal
solution with �̃� < 0 . Our computational investigations indicate that the choice of
interior point plays an important role in determining the quality of linearizations
generated. We experimented first with xC as obtained from solving (NLP-I). Next,
we used the center of the line segment between xC and x0 as the required interior
point, which also lies in the interior of the feasible region of (R). Interior point
obtained using the latter way resulted in a better performance.

For 67 instances with nonlinearity only in the objective function (all these
instances lie in TS2), root LP solution is also feasible to the problem (R). We add
objective linearization directly at the LP solution obtained in every iteration. The
algorithm, in this case, terminates when the current LP solution is the same as the
previous solution or when we exhaust a prefixed number of iterations, kmax .

We compare qg and qg with scheme RS3 (qgrs3) using kmax = 5, 10, 20, 40 .
Tables 4 and 5 report values for different performance metrics on TS1 and TS2
respectively. The number of LPs to be solved and the number of linearizations added
at the root node of the search tree increase or remain the same as kmax is increased.

Table 4 (Top) Comparison of qg and qgrs3 for different values of k
max

 on test set TS
1
 . qg could solve

113 instances. (Bottom) Break-up of results over instances of varying difficulty with the best setting
k
max

= 10

k
max

Solved by Time Nodes Distance

qgrs3 Both qg Rel. qg Rel. qg Rel.

5 113 110 29.94 0.99 6.5e3 1.03 1.38 0.26
10 113 111 31.54 0.95 6.9e3 0.98 1.37 0.12
20 113 111 31.54 1.01 6.9e3 1.01 1.37 0.05
40 112 111 31.66 1.06 6.9e3 1.06 1.35 0.01

Time #
Solved by

Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 111 31.54 0.95 6.9e3 0.98 1.37 0.12
> 10 54 156.81 0.92 1.4e5 0.98 1.17 0.05
> 100 31 451.61 0.84 4.7e5 0.88 0.89 0.02
> 500 17 933.18 0.81 1.0e6 0.83 0.64 0.02

437

1 3

Lin. and par. schemes for convex MINLP

If this is the case, the size of root relaxation also increases with kmax , and it may take
longer to solve. If the scheme RS3 terminates due to other criteria before reaching
its limit of kmax , then the root relaxation and hence the solution time will be the
same for all the values greater than or equal to kmax . The time taken in this scheme
is a very small fraction of the total solution time in all the considered instances. The
maximum time taken was close to 2s for instances with a large number of variables.

We observed only small improvements in the performance metrics over the set
TS1 and reasonable improvements for TS2 . We obtained an improvement of about 5%
on TS1 and of 8% on TS2 in solution times. Tables 4 and 5 (bottom ones) provide a
break-up of performance for instances in TS1 and TS2 , respectively, from the best set-
tings on these sets. Larger improvements in solution times are seen for more difficult
and structured instances (Table 4, last row in the bottom table). However, we can not
predict whether an instance is ‘easy’ or ‘difficult’ before solving it. A comparison of
solution times of qg and qgrs3 on TS1 and TS2 are presented in Fig. 4 (on the left and
the right, respectively). On both the test sets, qgrs3 is seen faster on about 35% of the
instances. Overall, qgrs3 is slower than qgrs1 and qgrs2 on TS1.

3.1.4 Root linearization scheme 4 (RS4)

In this scheme we search for linearization points by exploring several ‘well spread’
directions. Starting from an interior point of the feasible region of (R), we move
along each chosen direction until the boundary of the feasible region of (R) is
reached. We add linearizations to all the nonlinear constraints that are active at the
obtained boundary point. The interior point is computed in the same way as in RS3.
For search directions, we use positive and negative standard basis which consists of
directions of the form {ej,−ej}, ∀j ∈ D , where D is the set of indices of variables

Table 5 (Top) Comparison of qg and qgrs3 for different values of k
max

 on test set TS
2
 . qg could solve

179 instances. (Bottom) Break-up of results over instances of varying difficulty with the best setting
k
max

= 40

k
max

Solved by Time Nodes Distance

qgrs3 Both qg Rel. qg Rel. qg Rel.

5 180 177 11.86 0.99 1.0e3 1.00 5.73 0.48
10 179 176 11.33 0.95 1.0e3 0.96 5.78 0.28
20 179 177 11.86 0.96 1.0e3 0.93 5.73 0.19
40 179 177 11.86 0.92 1.0e3 0.88 5.73 0.07

Time #
Solved by

Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 177 11.86 0.92 1.0e3 0.88 5.73 0.07
> 10 64 56.41 0.88 1.0e4 0.82 17.5 0.06
> 100 18 336.23 0.93 1.4e4 0.89 4.61 0.08
> 500 7 1548.07 0.90 3.8e4 0.95 0.56 0.19

438 M. Sharma et al.

1 3

that appear in the nonlinear part of some constraint or objective and ej is the jth unit
vector. This means that there are at most 2|D| directions and points for linearizations.

For problems with nonlinearity only in the objective function, this scheme is
changed slightly. In the problem (NLP-I) for finding an interior point, linear ine-
qualities are modified in the same way as nonlinear inequalities. If �̃� < 0 , then the
scheme is same as for the problems with nonlinear constraints with the only dif-
ference that in the place of nonlinear constraints, linear constraints are used. In the
rare case of �̃� = 0 or if there exists a linear equality constraint, the point x̃ lies on the
boundary of the feasible region of (R). In this case, we consider the four equidistant
points on the line segment between x̃ and x0 . We generate linearizations at these
four points that also lie on the boundary of the feasible region of (R). A similar step
is performed along the opposite direction d = x̃ − x0 . Starting from x̃ , we consider
four equidistant points on the line segment between x̃ and 2x̃ − x0. Out of these four
points, the ones which are feasible to (R) are selected for generating linearizations.

We observed that in set TS2 , many instances in the class of problems such as ibs2,
squfl0*, unitcommit_200_100 *, watercontamination*, etc., have a large number
of variables in their nonlinear part resulting in a large number of elements in the set
D. For such problems, we restrict the size of set D, thus limiting the amount of time
spent in this scheme by searching along fewer directions.

In our runs, we limit the size of D to a maximum of 300 selecting only the first
300 directions. First, we chose xC as defined in RS3 scheme (Sect. 3.1.3) as the inte-
rior point and referred to this setting as FC. Then, we used the mid-point of the line
segment joining xC and x0 as the interior point; this setting is termed as MC. Results
from qg with RS4 (qgrs4) on TS1 and TS2 using these two settings are shown in
Tables 6 and 7 respectively. The time taken within this scheme is again a very small
fraction of the total solution time, most of which is spent in solving the nonlinear
problem (NLP-I) for finding the interior point.

On both the test sets, setting MC has performed better. On TS1 , qgrs4 solved
same number of instances as qg, but resulted in an improvement of about 12% in
the solution times. Overall, this scheme is inferior to qgrs1, but better than both
qgrs2 and qgrs3 on this test set. On TS2 , qgrs4 solved two instances fewer than qg,

Fig. 4 Performance profiles comparing solution times of qg and qgrs3 with k
max

= 10 on instances in TS
1

(on left) and with k
max

= 40 on instances in TS
2
 (on right)

439

1 3

Lin. and par. schemes for convex MINLP

but on 177 instances that were solved by both, it showed an improvement of about
6% . Although, qgrs4 has solved two instances fewer than qgrs3, it seems to have
performed better on ‘difficult’ instances (rows corresponding to time > 500 in the
respective tables). The performance profiles in Fig. 5 (left) indicate that qgrs4 is
faster than qg on about 40% of the total instances in TS1 and Fig. 5 (right) shows that
qgrs4 is faster than qg on about 40% of the total instances in TS2.

3.1.5 Root linearization scheme 5 (RS5)

This scheme selects points for linearization in a neighborhood of x0 , the optimal
solution obtained by solving (R). Starting from x0 , we move in different directions
to find suitable points. We consider two sets of directions. For the first set, we select

Table 6 (Top) Comparison of qg and qgrs4 on test set TS
1
 . qg could solve 113 instances. (Bottom)

Break-up of performance over instances of varying difficulty with best setting MC

Setting # Solved by Time Nodes Distance

qgrs4 Both qg Rel. qg Rel. qg Rel.

MC 113 111 31.54 0.88 6.9e3 0.89 1.37 0.61
FC 113 110 29.94 0.92 6.5e3 0.92 1.38 0.76

Time # Solved by Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 111 31.54 0.88 6.9e3 0.89 1.37 0.61
> 10 54 156.81 0.82 1.4e5 0.88 1.17 0.47
> 100 33 414.91 0.75 4.3e5 0.79 0.86 0.46
> 500 14 1133.83 0.73 1.2e6 0.77 0.68 0.21

Table 7 (Top) Comparison of qg and qgrs4 on test set TS
2
 . qg could solve 179 instances. (Bottom)

Break-up of performance over instances of varying difficulty with best setting MC

Setting # Solved by Time Nodes Distance

qgrs4 Both qg Rel. qg Rel. qg Rel.

MC 177 177 11.86 0.94 1.0e3 0.93 5.73 0.59
FC 178 177 11.86 1.00 1.0e3 0.96 5.73 0.59

Time #
Solved by

Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 177 11.86 0.94 1.0e3 0.93 5.73 0.59
> 10 63 57.50 0.93 1.1e4 0.94 7.62 0.50
> 100 16 416.56 0.86 2.3e4 0.88 7.56 0.71
> 500 7 1548.07 0.80 3.8e4 0.86 0.56 1.00

440 M. Sharma et al.

1 3

affinely independent points on the hyperplane passing through x0 and whose normal
is (xC − x0) , where xC is an interior point like in RS3 (Sect. 3.1.3). Let this hyper-
plane be denoted by aTx = r , where a = xC − x0, j = 1,… , n and r = (xC − x0)Tx0 .
Let j be any index such that aj ≠ 0 , and define a set of n affinely independent points
xi on this hyperplane as

Let DS1 be the set of (n − 1) linearly independent directions, xi − x1, i = 2,… , n .
Each of these directions has at most two nonzero components.

For each direction d from the set DS1 , we search iteratively along d starting
from x0 . At iteration l, we obtain a point x̄l = x̄l−1 + 𝛿d , where � is a positive step
size and x̄0 = x0 . Then, starting from xC , we perform a line search along direction
(̄xl − xC) for finding a point xB on the boundary of the feasible region of (R). For
every nonlinear constraint active at xB , we compute the angle between the normals
of the linearization drawn at xB and the previous linearization added to this nonlin-
ear constraint. If this angle is more than a specified threshold � (in degrees), then
we add the linearization generated at xB to the relaxation. If the objective is also
nonlinear, we add an objective linearization at xB using the same criterion of slope
difference. If no linearizations are added at the current point xB , then we double the
step size � and repeat the search. The search terminates when any component of the
point x̄l violates its bound (lower or upper). This process is repeated for every direc-
tion d ∈ DS1 and also its negative. The whole procedure was tried on another set of
directions, DS2 , as a variant of the above method. For each d ∈ DS1 , we replace its
negative components by −1 and positive components by 1 to get a new direction. All
these n − 1 directions constitute DS2 . Rest of the procedure remains identical.

In order to choose an initial step size � along a direction d, we consider the Hes-
sian of the Lagrangian, H, at x0 . If the absolute value of dTHd is below a threshold,
we take a step size �l , otherwise a smaller step size �s is chosen. For problems with
nonlinearity only in the objective function, this scheme is modified in the same way
as in RS4. However, unlike scheme RS4, if �̃� = 0 or if there exists a linear equality

(2)xi =

{
(r∕ai)ei, if ai ≠ 0,

(r∕aj)ej + ei, otherwise.

Fig. 5 Performance profiles comparing solution times of qg and qgrs4 with MC on instances in TS
1
 (left)

and TS
2
 (right)

441

1 3

Lin. and par. schemes for convex MINLP

constraint, then we consider points at an interval of �s on the line segment between
the points xC and x0.

In our numerical experiments using qg with RS5 (qgrs5), we first used xC
(referred to as FC) and then modified it as in qgrs4 (denoted as MC). Along with
the two proposed set of directions, DS1 and DS2 , we obtained four settings: FC-1,
MC-1, FC-2, MC-2; for example, FC-1 corresponds to the setting in which inte-
rior point is chosen as FC and search directions are from DS1 . For each setting, we
used four values for parameter � = 2, 5, 10, 20 , �s = 0.25 , and �l = 1 . Out of the four
settings, FC-2 with � = 2 exhibited the best results on both the test sets and are
presented in Tables 8 and 9. On TS1 , qgrs5 with this setting solved 2 instances more
than qg and exhibited an improvement of about 7% in solution times. Overall, on
TS1 , qgrs5 is inferior to all the previous schemes except qgrs3 in terms of solution
times, but is better than all except qgrs1 in terms of number of instances solved. On
TS2 , it solved one instance more than qg and provided an improvement of about 12%
in solution times. It also provided better solution times than qgrs3 and qgrs4. Like
qgrs3 and qgrs4, most of the time taken by qgrs5 is spent in solving the nonlinear
problem (NLP-I) for finding the interior point. Profiles in Fig. 6 compare solution
times of qg and qgrs5 on TS1 and TS2 . These results show that qgrs5 is faster than qg
on about 45% of the total instances in TS1 , and on about 40% of the total instances in
TS2.

3.2 Adding linearization constraints at other nodes

We now consider schemes for nodes (other than the root) that yield a fractional
optimal solution in the branch-and-bound tree. Two main decisions in the design
of these schemes are: (a) whether additional linearization constraints should be

Table 8 (Top) Comparison of qg and qgrs5 with FC-2 for different values of � on test set TS
1
 . qg could

solve 113 instances. (Bottom) Break-up of performance over instances of varying difficulty with the best
setting � = 2

� # Solved by Time Nodes Distance

qgrs5 Both qg Rel. qg Rel. qg Rel.

2 115 113 34.71 0.93 7.8e3 0.94 1.34 0.69
5 113 112 33.05 0.92 7.4e3 0.96 1.35 0.82
10 112 112 33.05 0.94 7.4e3 0.99 1.35 0.84
20 113 113 34.71 0.95 7.8e3 0.98 1.34 0.93

Time #
Solved by

Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 113 34.71 0.93 7.8e3 0.94 1.34 0.69
> 10 55 183.02 0.88 1.7e5 0.91 1.14 0.64
> 100 33 505.64 0.84 5.5e5 0.86 0.84 0.67
> 500 16 1261.25 0.88 1.4e6 0.89 0.60 0.32

442 M. Sharma et al.

1 3

added at a given node, and (b) how to determine points for generating linearization
constraints.

3.2.1 Node linearization scheme 1 (NS1)

Let x′ and z′ be the optimal solution and corresponding optimal value obtained
by solving the LP relaxation at a node. For a nonlinear constraint, gk(x) ≤ bk , we
assign a violation based score Vk = vk∕|bk| , if bk ≠ 0 , and Vk = vk otherwise, with
vk = max{0, gk(x

�) − bk} . For a nonlinear objective, f(x), score Vo is defined as
Vo = vo∕|z

�| , if z′ ≠ 0 , and Vo = vo otherwise, with vo = max{0, f (x�) − z�} . If the
score of a nonlinear constraint is more than a preset threshold value � , then we

Table 9 (Top) Comparison of qg and qgrs5 with FC-2 for different values of � on test set TS
2
 . qg could

solve 179 instances. (Bottom) Break-up of performance over instances of varying difficulty with the best
setting � = 2

� # Solved by Time Nodes Distance

qgrs5 Both qg Rel. qg Rel. qg Rel.

2 180 177 11.86 0.88 1.0e3 0.88 5.73 0.27
5 180 177 11.86 0.95 1.0e3 0.92 5.73 0.56
10 179 177 11.86 0.97 1.0e3 0.94 5.73 0.88
20 178 176 11.33 0.98 1.0e3 0.98 5.78 0.90

Time #
Solved by

Time Nodes Distance

Both qg Rel. qg Rel. qg Rel.

> 0 177 11.86 0.88 1.0e3 0.88 5.73 0.27
> 10 62 59.15 0.83 1.1e4 0.82 18.08 0.15
> 100 15 451.28 0.81 2.0e4 0.88 4.55 0.34
> 500 7 1548.07 0.87 3.8e4 0.93 0.56 1.11

Fig. 6 Performance profiles comparing solution times of qg and qgrs5 with FC-2 and � = 2 on instances
in TS

1
 (left) and TS

2
 (right)

443

1 3

Lin. and par. schemes for convex MINLP

generate linearizations at the node. To avoid adding too many cuts, this scheme is
applied only up to a certain depth D in the branch-and-bound tree.

We employ the following two methods for finding points for generating lineariza-
tions for problems that have at least one nonlinear constraint. The first method is
based on the extended cutting plane technique [57], hence we refer to it as the ECP
method. Here, we generate linearizations at x′ to all nonlinear constraints whose
score Vk ≥ � . If the objective is nonlinear, then we add a linearization to the objec-
tive at x′ if Vo ≥ K̃ . Here, K̃ is initialized with vr∕|z| , if z ≠ 0 , and vr otherwise,
where vr = max{0, f (x) − z} , and x and z denote an optimal solution and correspond-
ing optimal value to the root LP relaxation. If K̃ < 0.5 , then we double the value of
K̃.

The second method is based on line-search and we refer to it as the LS method.
Starting from an interior point x̃ in the feasible region of (R), we search along the
direction x� − x̃ for a point on the boundary of the feasible region of (R). Then we
generate linearizations at this boundary point to all the active nonlinear constraints.
This method ensures that all the linearizations are tight. The chosen interior point
x̃ is the mid-point of the line segment joining xC (an interior point obtained as in
Sect. 3.1.3) and x0 . For problems with a nonlinear objective also, we add a lineariza-
tion at the obtained boundary point if the criteria mentioned in ECP are met.

For problems that have nonlinearity only in the objective function, a node is
selected for adding linearization if Vo ≥ K̃ , where K̃ is initialized in the same way as
above. If K̃ > 1000 , then we reduce depth D by half, and if K̃ < 0.5 , we double the
value of K̃ and D. For these problems we employ only ECP method. This treatment
to the problems with nonlinearity only in the objective remains the same in the fol-
lowing two schemes, NS2 and NS3, as well.

Using qg with scheme NS1 (qgns1), we experimented with four values of
� ∶ {0.75, 1, 1.5, 2} , D = 10 for problems with nonlinear constraints, and D = 5 for
problems with nonlinearity only in the objective. This scheme with both the meth-
ods have shown improvements in solution time and the number of nodes processed.
We obtained better results with LS method than ECP on both the test sets. Results
for TS1 and TS2 are reported in Tables 10 and 11 respectively. On TS2 , although
qgns1 solved one instance less than qg, fair improvements are seen in solution times.
Best results are obtained using � = 2 , with an improvement of about 7% and 11% in
solution times on TS1 and TS2 , respectively. The solution times of qg and qgns1 on
TS1 and TS2 are compared in Fig. 7. In these performance profiles, qgns1 is reported
to be faster on about 60% of the total instances in TS1 , and on about 45% of the total
instances in TS2 . On TS1 , this scheme is inferior to all the root schemes in terms
of solution times, but comparable to qgrs1 and qgrs5 in terms of the number of
instances solved. On TS2 , this scheme has performed better than root schemes qgrs3
and qgrs4, but inferior to qgrs5.

3.2.2 Node linearization scheme 2 (NS2)

This scheme is similar to NS1 but differs in the nonlinear constraints that are ana-
lyzed at a given node. Here, we analyze violation of important nonlinear constraints

444 M. Sharma et al.

1 3

only. A nonlinear constraint with index k is said to be important based on a sur-
rogate value for its dual multiplier. Let I be the index set of important constraints
and is constructed as follows. Given a feasible solution xl to (R), let dk be the dual
multiplier of the nonlinear constraint with index k at xl , dmax = maxk=1,…,m dk be the
maximum dual value among all the nonlinear constraints, and d̃(≤ 1) be a positive
parameter. We include indices of those nonlinear constraints in set I whose associ-
ated dual values are at least d̃ times of the maximum dual value dmax . Initially, set I

Table 10 (Top) Comparing qg and qgns1 using LS method for different values of � on TS
1
 . qg could

solve 113 instances. (Bottom) Break-up of results over instances of varying difficulty for the best setting
� = 2

� # Solved by Time Nodes

 qgns1 Both qg Rel. qg Rel.

0.75 115 113 34.71 0.98 7.8e3 1.00
1 114 113 34.71 0.99 7.8e3 1.01
1.5 114 113 34.71 0.95 7.8e3 0.98
2 113 113 34.71 0.93 7.8e3 0.98

Time #
Solved by

Time Nodes

Both qg Rel. qg Rel.

> 0 113 34.71 0.93 7.8e3 0.98
> 10 54 191.54 0.90 1.8e5 0.98
> 100 32 535.64 0.88 5.8e5 0.97
> 500 16 1261.25 0.90 1.4e6 0.98

Table 11 (Top) Comparing qg and qgns1 using LS method for different values of � on TS
2
 . qg could

solve 179 instances. (Bottom) Break-up of performance over instances of varying difficulty for the best
setting � = 2

� # Solved by Time Nodes

 qgns1 Both qg Rel. qg Rel.

0.75 178 177 11.86 0.91 1.0e3 0.89
1 178 177 11.86 0.90 1.0e3 0.90
1.5 178 177 11.86 0.91 1.0e3 0.92
2 178 177 11.86 0.89 1.0e3 0.92

Time # Solved by Time Nodes

Both qg Rel. qg Rel.

> 0 177 11.86 0.89 1.0e3 0.92
> 10 63 57.76 0.83 1.1e4 0.81
> 100 16 406.47 0.84 1.8e4 0.87
> 500 7 1548.07 0.85 3.8e4 1.03

445

1 3

Lin. and par. schemes for convex MINLP

is populated using x0 , an optimal solution of (R), and is recomputed every time the
upper bound is updated using the corresponding solution. Since, the same dual mul-
tiplier values are used until a better solution is obtained, we call these values sur-
rogate. For determining points for generating linearizations, the same two methods,
ECP and LS, as in qgns1 are used. The ECP method is slightly modified to con-
sider only important constraints (in set I) for generating linearizations. Also, prob-
lems with nonlinearity only in the objective function are treated as in qgns1.

In experiments using qg with NS2 (qgns2), we used the same values for param-
eter � , D, and K̃ . We used d̃ = 0.5 for constructing set I. Again, on both the test
sets, LS method for selecting points for linearizations has performed better than
ECP. Tables 12 and 13 illustrate results from qgns2 with LS method on TS1 and TS2
respectively. On TS1 , we obtained an improvement of about 7% and of about 13% on
TS2 in solution times. qgns2 has performed better than qgns1 on both TS1 and TS2 .

Fig. 7 Performance profiles comparing solution times of qg and qgns1 using LS and � = 2 on instances
in TS

1
 (left) and in TS

2
 (right)

Table 12 (Top) Comparing qg and qgns2 with LS method and various values of � on TS
1
 . qg could solve

113 instances. (Bottom) Break-up of results over instances of varying difficulty for best setting � = 0.75

� # Solved by Time Nodes

 qgns2 Both qg Rel. qg Rel.

0.75 114 113 34.71 0.93 7.8e3 0.98
1 113 113 34.71 0.93 7.8e3 0.98
1.5 113 113 34.71 0.93 7.8e3 0.98
2 113 113 34.71 0.92 7.8e3 0.98

 Time # Solved by Time Nodes

Both qg Rel. qg Rel.

> 0 113 34.71 0.93 7.8e3 0.98
> 10 54 191.54 0.89 1.8e5 0.98
> 100 32 535.64 0.86 5.8e5 0.97
> 500 16 1261.25 0.92 1.4e6 1.02

446 M. Sharma et al.

1 3

Profiles in Fig. 8 compare the solution times of qg and qgns2 on TS1 and TS2 . We
observe that qgns2 is faster on about 60% of the total instances in TS1 , and on about
50% of the total instances in TS2.

3.2.3 Node linearization scheme 3 (NS3)

In this scheme, we use both nonlinear constraints violation and their dual multipli-
ers for deciding whether to select the given node for generating linearizations. First,
we compute a score ŝ for the node as ŝ =

∑
k∶vk>0

(Vk + vk × dk)∕N where Vk and dk
are as defined in schemes NS1 and NS2 and N is the number of violated nonlinear
constraints (vk > 0) at x′ , an optimal solution to the LP relaxation of the node. If
the score of the node is more than its parent’s score (̂p) by at least � times, then we
consider the node for generating linearizations. First, parameter � is initialized by a
preset value. As the tree grows, parameter � is updated at every selected node (for
adding linearizations) by taking its average with 𝜏 = ŝ∕(p̂ + 𝜖) , where � is a small
tolerance value which in our experiments is 0.001. This scheme is also implemented
up to a depth D in the search-tree. Methods for finding linearization points and treat-
ment to problems with nonlinearity only in the objective remain same as in NS1.

In qg with NS3 (qgns3), we used � = 0.5, 0.75, 1, 1.5 and the same D as in qgns1
and qgns2. We observed that the ECP method performed better on test set TS1 and
LS performed better on TS2 . In the former case, best performance is obtained using
� = 1.5 where qgns3 with ECP solved one instance more than qg with an improve-
ment of about 11% in the solution time and of about 10% in the number of nodes pro-
cessed. On TS2 , using � = 0.5 and LS method, qgns3 solved two more instances than
qg with an improvement of about 10% in solution times. These results are presented
in Tables 14 and 15. Performance profiles in Fig. 9 present a comparison of the
solution times of qg and qgns3 on TS1 and TS2 . We see that qgns3 is faster on about

Table 13 (Top) Comparing qg and qgns2 with LS method and various values of � on TS
2
 . qg could solve

179 instances. (Bottom) Break-up of results over instances of varying difficulty for best setting � = 0.75

� # Solved by Time Nodes

 qgns2 Both qg Rel. qg Rel.

0.75 178 177 11.86 0.87 1.0e3 0.89
1 178 177 11.86 0.87 1.0e3 0.90
1.5 178 177 11.86 0.89 1.0e3 0.91
2 178 177 11.86 0.88 1.0e3 0.91

Time # Solved by Time Nodes

Both qg Rel. qg Rel.

> 0 177 11.86 0.87 1.0e3 0.89
> 10 63 57.76 0.81 1.6e4 0.81
> 100 15 463.33 0.82 2.2e4 0.93
> 500 7 1548.07 0.81 3.8e4 1.03

447

1 3

Lin. and par. schemes for convex MINLP

45% of the total instances in both the test sets. This scheme has performed better
than qgns1 and qgns2 on both TS1 and TS2.

3.2.4 Combination of linearization schemes at root and other nodes

We studied the effects of schemes obtained by combining linearization schemes at
the root node with those for fractional nodes. We present a hybrid scheme (Hyb)
that automatically identifies structure (S) in a problem and applies linearization
schemes RS1 and NS3. For problems (in TS2) without this structure, Hyb scheme
employs RS5 and NS3. Results from qg using the hybrid scheme Hyb (qgHyb) on
TS1 and TS2 are detailed in Tables 16 and 17 respectively. These results show that on
TS1 , qgHyb (with K = 0.05 and � = 1.5) has solved 2 instances more than qg with an
improvement of about 11% in solution times and about 22% in the number of nodes

Fig. 8 Performance profiles comparing solution times of qg and qgns2 using LS and � = 0.75 on
instances in TS

1
 (left) and in TS

2
 (right)

Table 14 (Top) Comparing qg and qgns3 with ECP method and different values of � on TS
1
 . qg could

solve 113 instances. (Bottom) Break-up of results over instances of varying difficulty for best setting
� = 1.5

� # Solved by Time Nodes

 qgns3 Both qg Rel. qg Rel.

0.5 113 111 31.54 0.94 6.9e3 0.89
0.75 113 110 30.21 0.93 6.9e3 0.89
1 114 111 31.54 0.93 6.9e3 0.90
1.5 114 111 31.54 0.89 6.9e3 0.90

 Time # Solved by Time Nodes

Both qg Rel. qg Rel.

> 0 111 31.54 0.89 6.9e3 0.90
> 10 53 163.83 0.86 1.5e5 0.88
> 100 32 430.23 0.82 4.5e5 0.83
> 500 16 1000.65 0.85 1.1e6 0.84

448 M. Sharma et al.

1 3

Table 15 (Top) Comparing qg and qgns3 with LS method and different values of � on TS
2
 . qg could

solve 179 instances. (Bottom) Break-up of results over instances of varying difficulty for best setting
� = 0.5

� # Solved by Time Nodes

 qgns3 Both qg Rel. qg Rel.

0.5 181 179 11.72 0.90 1.0e3 0.96
0.75 180 179 11.72 0.90 1.0e3 0.95
1 180 179 11.72 0.92 1.0e3 0.96
1.5 180 179 11.72 0.93 1.0e3 0.95

Time # Solved by Time Nodes

Both qg Rel. qg Rel.

> 0 179 11.72 0.90 1.0e3 0.96
> 10 63 58.02 0.87 1.1e4 0.94
> 100 15 463.33 0.77 2.2e4 0.91
> 500 7 1548.07 0.81 3.8e4 1.02

Fig. 9 Performance profiles comparing solution times of qg and qgns3 using ECP and � = 1.5 on
instances in TS

1
 (left) and using LS and � = 0.5 on instances in TS

2
 (right)

Table 16 (Top) Comparison of qg and qgHyb on TS
1
 . qg could solve 113 instances. (Bottom) Break-up

of performance of qgHyb over instances of varying difficulty

Solved by Time Nodes

 qgHyb Both qg Rel. qg Rel.

115 112 33.01 0.89 7.3e3 0.78

 Time # Solved by Time Nodes

Both qg Rel. qg Rel.

> 0 112 33.01 0.89 7.3e3 0.78

> 10 54 172.97 0.86 1.6e5 0.82

> 100 34 430.69 0.81 4.7e5 0.75

> 500 16 1115.30 0.89 1.2e6 0.80

449

1 3

Lin. and par. schemes for convex MINLP

processed. On TS2 , qgHyb (with � = 2 and � = 1.5) has solved one instance more
than qg with about 13% reduction in both solution times and nodes processed. Over-
all, on test set TS, we solved 3 more instances and obtained an improvement of about
12% in the solution times over qg. A comparison of solution times of qg and qgHyb
on test sets TS1 and TS2 is reported in Fig. 10. qgHyb is faster on about 40% of the
total instances in both the test sets. Furthermore, qgHyb is two times faster on about
15% of the total instances in TS1.

Profiles in Fig. 11 show a consolidated comparison of the solution times of the
above schemes and the default qg algorithm for test sets TS1 and TS2 . We observe
that qgHyb performs better than the others on both the test sets. On about 80% of the
total instances (in each test set), the solution times of qgHyb are within 1.5 times the
fastest solver.

4 Shared‑memory parallel search

We deploy a parallel tree-search algorithm for solving different nodes of the branch-
and-bound tree concurrently using different processors that share a common mem-
ory. All open subproblems (associated with nodes) of the branch-and-bound tree are
stored in a collection called the node-pool. Different nodes are solved in parallel
using the fork-join model, a commonly used multiprocessing model in shared-mem-
ory architectures. The main program is run as a single process which creates multi-
ple ‘threads’ [17, 26] depending on the number of CPUs available and user settings.
Threads are capable of doing mutually independent computations like processing
different nodes concurrently.

The fork-join model can be thought of as an alternating sequence of forks where
various tasks are performed concurrently by multiple threads, and joins, where a
single thread performs some serial tasks and synchronization for sharing informa-
tion between the threads. In our implementation, the main process first reads the
MINLP instance, performs some preprocessing and sets up the environment and

Table 17 (Top) Comparison of qg and qgHyb on TS
2
 . qg could solve 179 instances. (Bottom) Break-up

of performance of qgHyb over instances of varying difficulty

Solved by Time Nodes

 qgHyb Both qg Rel. qg Rel.

180 177 11.86 0.87 1.0e3 0.86

Time # Solved by Time Nodes

Both qg Rel. qg Rel.

> 0 177 11.86 0.87 1.0e3 0.86

> 10 64 56.37 0.81 1.1e4 0.84

> 100 16 408.04 0.82 2.1e4 0.85

> 500 7 1548.07 0.69 3.8e4 0.85

450 M. Sharma et al.

1 3

other required data structures. The main process also creates the threads and starts
branch-and-bound. Branch-and-bound then proceeds in rounds. Every thread selects
an open-node and removes it from the node-pool. Only one thread is allowed to
access the node-pool at a time and other threads wait for their turn. If there are no
nodes available for a thread, it waits until the next round. Once this selection process
is completed, all threads concurrently start solving their respective nodes. When all
the threads finish solving their respective nodes, a new round of assignment of open-
nodes and solving is executed. This process continues until all the open-nodes are
either processed or pruned and the node-pool becomes empty. We use this fork-join
node-level parallelism for two algorithms: NLP-BB and QG.

We have implemented our fork-join model using the OpenMP directives [19].
OpenMP directives provide a simple way of specifying concurrency, synchroniza-
tion and data handling - without the need to explicitly create threads, allocate mem-
ory, delete memory etc. While this approach provides fewer features and lesser flex-
ibility than POSES threads (popularly called Pthreads) or standard threads provided
by C++11, it simplifies multithreaded programming to a great extent.

While a more detailed description of Minotaur design and its C++ classes is
available in [39], we briefly describe the important C++ classes that we use for

Fig. 10 Performance profiles comparing solution times of qg and qgHyb on instances in TS
1
 (left) and in

TS
2
 (right)

Fig. 11 Performance profiles comparing solution times of solvers on instances in TS
1
 (left) and in TS

2

(right)

451

1 3

Lin. and par. schemes for convex MINLP

our parallel implementation. The program starts by reading the problem, and then
presolves it using the Presolver class. The presolved problem is then passed to
the NodeRelaxer class which creates a relaxation. A node is processed using
the NodeProcessor class, that deploys an appropriate LP or NLP solver called
through the LPEngine or NLPEngine class. If an optimal solution of the relaxa-
tion is found, and if this solution is not feasible to the MINLP, the NodeProces-
sor calls a Brancher class to find a suitable branching candidate. The class
TreeManager handles all the tree-related information: nodes, upper and lower
bounds, etc. Using the branches found by the Brancher, two new child nodes are
created by the TreeManager.

We preserve the basic design of the sequential branch-and-bound in Minotaur
and utilize the existing classes, which makes our implementation light-weight. As
in the serial version, we maintain a single, central TreeManager which stores
and maintains all node descriptions. Each thread individually maintains a private
copy of all the necessary class objects, like NodeRelaxer, NodeProcessor,
Brancher etc., and acts as an independent unit, that synchronizes with other
threads at the end of each round. The first thread starts solving the root relaxa-
tion while the other threads wait. If branching is required, the thread creates two
child nodes. In the next round of node selection, one of the other idle threads
obtains a node. Each thread that has a node now processes its respective node
in the next round and the process continues. When sufficient number of open-
nodes are available, all threads become busy. If T number of threads are used,
the ramp-up time before all threads are busy is at least ⌈log2(T)⌉ times the average
node solving time. When the node-selection strategy is based on diving [20], each
thread retains one of the children of the node it solves for quick warm-starting
of LPs or NLPs. Each thread maintains a private copy of the original MINLP to
create relaxations of the nodes that it receives and to check whether a relaxation
yields a feasible solution to the MINLP. After each round of solving, stopping
conditions are checked by any one of the threads. The search terminates when all
open-nodes are exhausted (solved, pruned by bound or pruned by infeasibility) or
some other stopping condition (time limit, node limit etc.) is met. The schematics
of the parallel tree-search and the Process block are shown in Fig. 12.

4.1 Parallel extension of NLP-BB

The scheme shown in Fig. 12 can be viewed as the parallel NLP-BB algorithm,
where the nodes in the tree are NLP relaxations and an NLPEngine (NLP subrou-
tine) is used to solve them. We denote this parallel solver in Minotaur as mcbnb and
study its performance when using different number of threads. The hardware and
software setup mentioned in Sect. 3 has been used in these experiments as well. The
NLP solver IPOPT [56] (version 3.12) with MA97 linear-systems solver is thread-
safe, hence suitable for our parallel algorithm.

The scalability of our implementation with the number of threads is depicted by
what we call a ‘Scalability Graph’. While SGM gives the mean improvement over
all instances, this graph shows the distribution of performance over the test set. It is

452 M. Sharma et al.

1 3

a line plot with each line corresponding to a fixed thread-count. Each line plots the
fraction of instances that can be solved within a w-factor of time taken by the single-
thread run. Given a set of instances, TS, the graph is plotted as a non-decreasing line
graph. For each value w, it plots

where ti,T is the time taken by the solver when running T threads on instance i. If
the solver does not finish solving within the time limit, ti,T is set to infinity. The
ratios we use are different from the ones used in performance profiles [21], where
the ratios are calculated with respect to the time taken by the fastest solver for each
instance.

Figure 13 (left) shows the scalability graphs for mcbnb. The plot for mcbnb1
(mcbnb with one thread), the reference solver, is a step function by definition. Its
height (about 0.7 in this case) is the fraction of instances that could be solved within
the time limit by the single-thread run. The plot for mcbnb2 shows that it could
solve about 5% (value at 2−1) of the instances faster by a factor of two or more as

|
|{i ∈ TS ∶ ti,T ≤ wti,1}

|
|

|TS|
,

Fig. 12 Schematics of the parallel tree-search (left) in Minotaur and the Process block (right). Gray-
colored blocks involving the TreeManager (denoted TM) are critical. The block where stopping con-
dition is checked is executed by any one of the threads

453

1 3

Lin. and par. schemes for convex MINLP

compared to mcbnb1. Similarly, mcbnb4 and mcbnb16 could solve about 20% and
30% respectively for the same. The rightmost value on the plot shows the fraction of
instances that could be solved within the time limit.

SGM values for wall clock time and nodes processed are reported in Table 18
along the lines of tables in Sect. 3. The first column (‘# Threads (T)’) in the top table
in Table 18 indicates the number of threads used. A ‘T’ at the end of the solver name
indicates the number of threads used by it. Also, ‘Wall time’ denotes the wall clock
time (not the CPU time) taken by the multithreaded code. Using 16 threads, mcbnb
could solve 17 additional instances compared to mcbnb1, and achieved a speed-up
of about two on average. The growth in tree-size with increasing number of threads
is well below linear, which ultimately leads to gains in parallelism. The bottom table
in Table 18 shows the statistics for mcbnb16 when instances are categorized based
on difficulty level. The improvements due to parallelism are more prominent for dif-
ficult instances (row corresponding to time > 100).

4.2 Sharing pseudocosts in branching

The implementation of NLP-BB and QG algorithms in Minotaur use the well-
known reliability branching scheme [6]. Reliability branching uses strong
branching [7, 36] initially to find the score of branching candidates. As strong
branching is expensive, the scheme uses previously computed scores after a cer-
tain number of strong-branching trials. In a parallel setting, the scores obtained
at a node by a thread may be useful at nodes processed by other threads. How-
ever, sharing this information comes at the cost of querying additional informa-
tion (from other threads), which means that each thread has to spend additional
time in gathering and processing this information.

We implemented reliability branching for a parallel setting in two different
ways. In the first way which we call privateRel, each thread does reliability
branching independent of other threads using information from only the nodes
that it processed earlier. In the second way which is referred to as sharedRel,
each thread uses information from the nodes solved by other threads also. This

Fig. 13 Scalability graphs of wall clock times taken by multithreaded variants of mcbnb (left) and mcbn-
bSRel (right) on test set TS

454 M. Sharma et al.

1 3

aspect is illustrated in Fig. 14. Suppose, for instance, we have two threads, then
the first thread, thread0, solves the root node indexed 0 in the first round and
then one gray-colored node in each subsequent round. Simultaneously, the other
thread, thread1, starts solving the hatched nodes, starting from the the node
indexed 2. In privateRel, both thread0 and thread1 use the information
generated only at the nodes they solve. The other brancher, sharedRel, queries
the node-solve information from the other threads at the end of each round and
uses the cumulative information (from both gray-colored and hatched nodes) to
decide the branching variable at a node. The accumulation of information like
pseudocosts [6] etc. from other threads to calculate scores requires additional
memory-reads and some computations at each thread.

Figure 13 (right) shows the effect of sharing pseudocosts in mcbnb (mcbn-
bSRel) when using multiple threads. We see that sharing pseudocosts after
each round is beneficial, and the benefits grow with the number of threads. As
shown in Table 19, sharing pseudocosts enabled mcbnbSRel16 to solve 4 more
instances than mcbnb16 (21 more compared to mcbnb1). Also, the mean wall
clock time is reduced to a fourth for difficult instances (row corresponding to
time > 500) using mcbnbSRel16.

4.3 Parallel extension of the QG algorithm

The implementation of parallel QG algorithm in Minotaur differs from mcbnb in two
ways. First, an LP solver is used to solve the (LP) relaxations at each node. Second is
the generation and sharing of globally valid linearization cuts that are generated at cer-
tain nodes either after solving an NLP or by linearization methods like those described
in Sect. 3.

Table 18 (Top) Comparison of mcbnb1 with mcbnb using multiple threads on test set TS. mcbnb1 could
solve 239 instances. (Bottom) Break-up of performance of mcbnb16 over instances of varying difficulty

Threads # Solved by Wall time Nodes

 (T) mcbnbT Both mcbnb1 Rel. mcbnb1 Rel.

2 242 238 32.73 0.80 3.1e2 1.05
4 247 239 33.53 0.69 3.2e2 1.16
8 254 239 33.53 0.60 3.2e2 1.28
16 256 239 33.53 0.56 3.2e2 1.54

 Time # Solved by Wall time Nodes

 Both mcbnb1 Rel. mcbnb1 Rel.

> 0 239 33.53 0.56 3.2e2 1.54
> 10 132 113.58 0.41 9.6e2 1.57
> 100 63 428.05 0.28 2.6e3 1.40
> 500 25 1153.12 0.30 5.3e3 1.60

455

1 3

Lin. and par. schemes for convex MINLP

In order to store and share these cuts, first we add them to a local CutPool of the
respective thread. A CutManager class is used by each individual thread to store all
the linearizations generated while processing the nodes assigned to it. A thread queries
the CutManager of all other threads while creating the relaxation of the respective
node, and all cuts that are new for this thread are added to this relaxation. The cuts from
CutManagers of different threads that have been added to the relaxation at a given

Fig. 14 Illustration of using pseudocosts by two threads for branching. The root node indexed 0 and
then the gray-colored nodes are solved by thread0 and the hatched nodes (except 0) are solved by
thread1. In privateRel, thread0 uses pseudocosts only from the gray-colored nodes while
thread1 uses pseudocosts from only the hatched nodes (indices shown on the left of each node). In
sharedRel, information from all the processed nodes is used by both the threads (indices shown on the
right of each node)

Table 19 (Top) Comparison of mcbnbSRel1 with mcbnbSRel using multiple threads on test set TS. mcbn-
bSRel1 could solve 237 instances. (Bottom) Break-up of performance of mcbnbSRel16 over instances of
varying difficulty

Threads # Solved by Wall time Nodes

 (T) mcbnb-
SRelT

 Both mcbnb-
SRel1

 Rel. mcbnb-
SRel1

 Rel.

2 241 236 30.71 0.86 3.0e2 1.11
4 247 236 30.73 0.69 3.0e2 1.24
8 255 237 30.23 0.56 3.1e2 1.40
16 260 237 30.23 0.50 3.1e2 1.59

 Time # Solved by Wall time Nodes

 Both mcbnbSRel1 Rel. mcbnbSRel1 Rel.

> 0 237 31.23 0.50 3.1e2 1.59
> 10 130 104.24 0.37 9.0e2 1.64
> 100 63 364.46 0.27 2.1e3 1.61
> 500 23 1008.44 0.25 4.8e3 1.65

456 M. Sharma et al.

1 3

thread are maintained and updated using a unique cut id. We denote this parallel QG
algorithm as mcqg. Algorithm 4 demonstrates the mcqg algorithm implemented within
Minotaur, and Algorithm 5 describes the function GetNode() used in Algorithm 4.

Table 20 summarizes the performance of multithreaded variants of mcqg rela-
tive to mcqg1. All threads share linearizations (at integer solutions) and pseudocosts
according to sharedRel scheme. We observed improvements with all the variants
of mcqg over mcqg1. About 44% improvement in wall clock time is obtained when
using 16 threads and 9 more instances were solved. The scalability graphs for mcqg
are shown in Fig. 15.

457

1 3

Lin. and par. schemes for convex MINLP

5 Combined effect of linearization and parallelization schemes

Our numerical experiments show that deploying linearization schemes within par-
allel tree-search further enhances the performance of qg and mcqg algorithms.
We show the performance of mcqg with the hybrid linearization scheme Hyb pre-
sented in Sect. 3.2.3. We refer to the combination of mcqg with Hyb as mcqgHyb
and compare it to qg and mcqg16. Tables 21 and 22 show the performance of
mcqgHyb16 (mcqgHyb with 16 threads) on TS1 and TS2 , respectively. Note that the
wall clock time taken by the sequential algorithm qg is the same as the CPU time.
Using mcqgHyb16 on TS1 , we observed a significant improvement of about 52% in

Fig. 15 Scalability graphs of wall clock times for mcqg variants on test set TS

Table 20 (Top) Comparison of mcqg1 to mcqg using multiple threads on test set TS. mcqg1 could solve
285 instances. (Bottom) Break-up of performance of mcqg16 over instances of varying difficulty

Threads # Solved by Wall time Nodes

 (T) mcqgT Both mcqg1 Rel. mcqg1 Rel.

2 283 279 19.44 0.86 2.1e3 1.08
4 291 282 19.50 0.75 2.1e3 1.17
8 291 280 19.62 0.64 2.1e3 1.20
16 294 284 20.08 0.56 2.2e3 1.29

 Time # Solved by Wall time Nodes

 Both mcqg1 Rel. mcqg1 Rel.

> 0 284 20.08 0.56 2.2e3 1.29
> 10 120 100.52 0.39 3.3e4 1.32
> 100 56 331.22 0.27 1.2e5 1.30
> 500 19 1199.84 0.24 4.1e5 1.19

458 M. Sharma et al.

1 3

the solution times and solved 6 instances more than qg. On TS2 , we solved 2 more
instances and obtained an improvement of about 38% in the solution times.

6 Outer‑approximation with parallelism in MILP solving

As briefly explained in Sect. 1, the underlying strategy in outer-approximation based
algorithms is to solve an alternating sequence of MILP relaxations (RM) and fixed-
NLPs (F-NLPs). In this section, we describe two versions of OA implemented in
Minotaur where we exploit parallelism of the MILP solver.

Table 21 (Top) Comparison of mcqg16 and mcqgHyb16 to qg on test set TS
1
 . qg could solve 113

instances. (Bottom) Break-up of results of mcqgHyb16 over instances of varying difficulty

Method # Solved by Wall time Nodes

(M) M Both qg Rel. qg Rel.

mcqg16 115 111 31.54 0.54 6.9e3 1.35
mcqgHyb16 119 112 33.01 0.48 7.3e3 1.07

Time # Solved by Wall time Nodes

Both qg Rel. qg Rel.

> 0 112 33.01 0.48 7.3e3 1.07
> 10 53 181.01 0.32 1.7e5 1.09
> 100 31 504.06 0.27 5.3e5 0.94
> 500 16 1021.32 0.31 1.1e6 1.19

Table 22 (Top) Comparison of qg and mcqgHyb16 on test set TS
2
 . qg could solve 179 instances. (Bot-

tom) Break-up of results of mcqgHyb over instances of varying difficulty

Method # Solved by Wall time Nodes

(M) M Both qg Rel. qg Rel.

mcqg16 179 177 11.86 0.88 1.0e3 1.45
mcqgHyb16 181 176 11.42 0.62 1.0e3 1.19

Time # Solved by Wall time Nodes

Both qg Rel. qg Rel.

> 0 176 11.42 0.62 1.0e3 1.19
> 10 64 52.15 0.47 1.1e4 1.08
> 100 14 445.50 0.35 2.4e4 0.86
> 500 6 1727.45 0.28 5.2e4 0.81

459

1 3

Lin. and par. schemes for convex MINLP

6.1 Multitree OA with parallel MILP solving

As OA is an iterative scheme in which an MILP and a fixed-NLP are solved alter-
natingly, a natural way of parallelizing it is to use a parallel MILP solver. We have
implemented the default OA scheme in Minotaur and also enhanced it in the follow-
ing way. We solve MILP relaxation at any iteration using an MILP solver. The MILP
solver can utilize all the available processors. MILP solvers also have the capability
of returning a pool of solutions which we use to generate additional linearizations.
For each solution xt in the pool returned by the MILP solver, we solve the corre-
sponding fixed-NLP F-NLP(xt) and generate the linearizations. These NLPs can in
turn be solved in parallel if the NLP solver is thread-safe. All linearizations that are
active at the NLP solution are added to the MILP. When all NLPs have been solved
and linearizations added, the MILP solver is called again and the process contin-
ues. Algorithm 6 describes the steps of the enhanced OA. We also solve multiple
F-NLPs, each corresponding to a distinct MILP solution, in parallel (the for loop in
Algorithm 6).

In order to further accelerate the MILP solver, we use the MIP starts functionality
provided by the MILP solver, CPLEX in our case. The solutions obtained by it are
written to a file and are read in the subsequent MILP call. In our experiments, we
observed that CPLEX was able to repair some of the solutions from the MIP starts
and obtain upper bounds, mainly because the MILPs in consecutive iterations dif-
fer only by a few linear constraints. Additionally, we provide the best known upper
bound of (P) to the MILP solver in each iteration to be used as a cut-off value. In
Minotaur, we interact with the CPLEX solver using a C++ wrapper that passes
information to and from CPLEX through its C interface.

We compare the performance of our two implementations of multitree OA. In
the first implementation, linearizations are added only at the point obtained from
the optimal solution of MILP. The second one uses all solutions of the solution pool
of MILP, and solves fixed-NLPs in parallel using multiple threads. We denote these
implementations of OA as oa and oaSol respectively. Figure 16 shows the scalability

460 M. Sharma et al.

1 3

graphs, and Tables 23 and 24 provide a summary of performance of these algo-
rithms. Here, we present the SGM for the number of iterations taken by oa. We
observe that the use of solution pool enables us to solve more instances. One can
also solve fixed-NLPs one-by-one if a thread-safe NLP solver is not available. In our
experiments, we found that using the solution pool and solving fixed-NLPs in paral-
lel is the most effective strategy. Compared to the traditional OA (oa1), we solved
up to 13 more instances and improved the wall clock time by more than 50%.

6.2 QG using MILP solvers with lazy cuts callback

This version of QG is also known as the Single-tree OA because it explores a sin-
gle tree, but uses an MILP solver for creating the tree. MILP solvers like CPLEX
and GUROBI provide the users with callback functions which can be invoked

Fig. 16 (Left) Effect of providing multiple threads to CPLEX in oa on test set TS. (Right) Performance
of oaSol that uses the solution pool of CPLEX and solves fixed-NLPs in parallel

Table 23 (Top) Comparison of oa using multiple threads. oa1 could solve 296 instances. (Bottom)
Break-up of oa16 results over instances of varying difficulty

Threads # Solved by Wall time Iterations

 (T) oaT Both oa1 Rel. oa1 Rel.

2 299 295 11.44 0.80 12.44 1.00
4 301 295 11.44 0.68 12.44 1.01
8 302 295 11.44 0.62 12.44 1.01
16 302 295 11.44 0.84 12.44 1.01

 Time #
Solved by

 Wall time Iterations

 Both oa1 Rel. oa1 Rel.

> 0 295 11.44 0.84 12.44 1.01
> 10 109 54.18 0.67 37.47 1.02
> 100 36 335.70 0.31 48.23 0.98
> 500 12 1161.57 0.22 73.49 0.94

461

1 3

Lin. and par. schemes for convex MINLP

in specific contexts, for example, when an integer feasible solution is found in
the MILP tree. In such contexts, the MILP solving is paused and the control is
transferred (temporarily) to a predeclared user-callback function. The user can
access MILP solving information, for example, the best solution, upper and lower
bounds etc., generated within the MILP solver so far. This information can then
be utilized in the callback to generate new cuts, feasible solutions etc. that are
passed back to the MILP solver through predefined functions. When solving con-
vex MINLPs, the MILP solver is not aware of the nonlinear constraints. When an
integer feasible solution to the MILP is obtained, it has to be checked for nonlin-
ear constraints. If the solution violates any of them, linearization cuts generated
using this point are added to the MILP as ‘lazy’ cuts, which cut this solution
off. In this way, the MILP tree is guided towards an optimal solution of (P). In
this algorithm, the MILP solver maintains the MILP tree, along with most of its
advanced MILP solving features like presolving, implications, heuristics etc. that
help accelerate the overall tree-search.

This implementation is similar to the multitree OA. First, the root MILP relax-
ation is passed to the MILP solver. Before solving the MILP, we activate the lazy
constraints callback function in the MILP solver. Whenever the MILP solver finds
an integer feasible solution, say xt , it returns the control back to Minotaur through
a predefined callback. We solve F-NLP(xt) in the callback, generate linearization
cuts for all nonlinear constraints active at the solution and pass them to the MILP
solver which then resumes the MILP tree-search. All the available processors are
utilized by the MILP solver within its algorithm. We observed that CPLEX sets
the parallel tree-search mode to deterministic when using the lazy cuts callback,
and only one thread is allowed to access the callback at a time. We conducted two
sets of experiments: one with the deterministic mode and the other by explicitly

Table 24 (Top) Comparison of oaSol using multiple threads. oaSol1 could solve 290 instances. (Bottom)
Results of oaSol16 over instances of varying difficulty

Threads # Solved by Wall time Iterations

(T) oaSolT Both oaSol1 Rel. oaSol1 Rel.

2 297 288 13.92 0.63 16.75 0.66
4 302 288 13.81 0.50 16.79 0.54
8 304 290 14.17 0.45 16.52 0.60
16 309 290 13.94 0.43 16.69 0.58

Time #
Solved by

 Wall time Iterations

 Both oaSol1 Rel. oaSol1 Rel.

> 0 290 13.94 0.43 16.69 0.58
> 10 108 67.46 0.27 40.24 0.51
> 100 35 401.20 0.16 62.52 0.58
> 500 14 1255.97 0.09 98.26 0.36

462 M. Sharma et al.

1 3

setting the parallel mode of CPLEX to opportunistic. The latter mode does not
guarantee reproducibility of results, so we performed 5 replications. For each
instance in test set TS, its solution time is computed as the arithmetic mean of
the 5 replications. Tables 25, 26 and Fig. 17 present the performance of deter-
ministic (lstoaD) and opportunistic (lstoaO) modes. We observed good
scalability with lstoaO. Using 16 threads, both solution time and tree-size were
improved by more than 60% . On the other hand, lstoaD did not show scalability,

Table 25 (Top) Comparison of lstoaD using multiple threads. lstoaD1 could solve 307 instances. (Bot-
tom) Break-up of results of lstoaD16 over instances of varying difficulty

Threads # Solved by Wall time Nodes

 (T) lstoaDT Both lstoaD1 Rel. lstoaD1 Rel.

2 308 306 9.86 0.93 8.6e2 1.05
4 309 306 9.86 0.83 8.6e2 1.07
8 309 306 9.86 0.80 8.6e2 1.09
16 309 306 9.86 0.92 8.6e2 1.17

 Time # Solved by Wall time Nodes

 Both lstoaD1 Rel. lstoaD1 Rel.

> 0 306 9.86 0.92 8.6e2 1.17
> 10 111 42.74 0.79 1.2e4 1.23
> 100 32 299.94 0.41 6.7e4 1.01
> 500 13 871.90 0.25 1.4e5 0.94

Table 26 (Top) Comparison of lstoaO using multiple threads. lstoaO1 could solve 307 instances. (Bot-
tom) Break-up of results of lstoaO16 over instances of varying difficulty

Threads

Solved by Wall time Nodes

(T) lstoaOT Both lstoaO1 Rel. lstoaO1 Rel.

2 317 307 12.32 0.74 8.6e2 0.07
4 318 305 12.35 0.57 8.6e2 0.06
8 323 307 12.32 0.44 8.6e2 0.08
16 325 307 12.32 0.37 8.6e2 0.07

Time #
Solved by

 Wall time Nodes

 Both lstoaO1 Rel. lstoaO1 Rel.

> 0 307 12.32 0.37 8.6e2 0.07
> 10 109 57.27 0.22 1.3e4 0.01
> 100 28 453.24 0.10 9.3e4 0.00
> 500 13 1024.61 0.08 8.8e4 0.01

463

1 3

Lin. and par. schemes for convex MINLP

probably due to the sequential NLP solving. Although, both qg and lstoa are
implementations of QG, use of advanced MILP solving techniques within lstoa
leads to better performance when compared to qg. We discuss it next.

7 Comparison of methods

In the next part of our study, we compare these enhanced routines to each other
and also to other MINLP solvers. The goal of this comparison is not to benchmark
these solvers, but rather to understand the broad effects of the choice of algorithms
and implementation details on the performance. We consider the serial and paral-
lel versions of four algorithms described in this paper: NLP-BB with sharing of
branching information between threads (mcbnbSRel), QG with extra linearizations
and parallelization using our own branch-and-cut implementation (mcqgHyb), QG
with branch-and-cut implementation of CPLEX MILP solver running in opportun-
istic mode (lstoaO), and OA with CPLEX MILP solver using all solutions from
CPLEX’s solution pool (oaSol).

We also include two other MINLP solvers that support parallelization: FSCIP
[53] and SHOT [37]. FSCIP is a shared-memory variant of the MILP and MINLP
solver SCIP [4]. SCIP was initially developed for MILP and was later extended [55]
to global optimization. Developed in C language, it has several plugins that exploit
problem structure for branching, presolving, heuristic search, cutting planes, conflict
analysis etc. SCIP can call several LP solvers including CPLEX and also the NLP
solver IPOPT for solving relaxations. As mentioned in Sect. 2.2, FSCIP uses the UG
framework to call separate SCIP instances at each thread. Open subproblems are
distributed to each thread which then solve the respective subtrees. UG also dynami-
cally controls and manages the load at each thread. SHOT was developed recently
for solving convex MINLPs. It implements ESH and ECP based algorithms, similar
to outer-approximation, that solve a sequence of MILP subproblems. SHOT also has
a lazy cuts based QG algorithm. SHOT depends on parallelism that the MILP solver

Fig. 17 Effect of providing multiple threads to lstoaD and lstoaO (qg implemented using CPLEX with
lazy cuts callback functionality using deterministic (left) and opportunistic (right) parallel mode) on test
set TS

464 M. Sharma et al.

1 3

exploits in both these algorithms. For our experiments, we use the default ESH and
lazy cuts based QG algorithm (also called single-tree polyhedral outer-approxima-
tion by SHOT [37]).

We compiled SCIP, SHOT and Minotaur using the same versions of CPLEX
(LP and MILP) and IPOPT (NLP) subsolvers. Also, we maintained all the default
settings of these solvers except in FSCIP, where we disabled convexity detection
routines by setting constraints/nonlinear/assumeconvex to True.
Table 27 summarizes the key differences in the basic algorithms, implementation of
branch-and-cut routines and the performance on the test set TS. Unlike earlier tables,
the SGM of the wall clock times is computed over the instances solved by the par-
ticular solver and does not depend on any other solver. We see that all solvers benefit
from parallelization, although without good scalability. We also see that OA with a
state-of-the-art branch-and-cut MILP solver performs better than the QG algorithm
with one’s own branch-and-cut implementation that may lack several key MILP fea-
tures. Implementing QG using callbacks to a fast commercial MILP solver seems to
be the best option. This option is however encumbered by the availability and licens-
ing of the MILP solver. QG with enhanced linearization schemes with one’s own
branch-and-cut is seen to be the next best option.

8 Some large scale experiments and conclusions

To test our algorithms on a higher number of processors, we ran some experi-
ments on a Intel(R) Xeon(R) E5-2695 v4, 2.1GHz compute node with 40 proces-
sors sharing a total of 192GB memory and the codes were compiled with GCC-
10.1.0. Rest of the setup was as mentioned in Sect. 2.3. We tested mcqgHyb and
lstoaO using 1, 20, and 40 processors. Tables 28 and 29 show the performance of
mcqgHyb and lstoaO, respectively, using up to 40 processors. While the number of
instances solved using 40 threads is the same as earlier, the SGM of solution times is
improved, especially for more difficult instances. On the other hand, lstoaO40 could
solve two additional instances and exhibited overall improvement in solution times.

Table 27 Comparison of algorithms deployed by different solvers along with the SGM of wall clock
times and number of instances solved from set TS

 Single thread 16 Threads

Solver Algorithm Relaxation Branch-and-cut∖
bound implemen-
tation

Solved

 Wall time #
Solved

 Wall time

mcbnbSRel NLP-BB NLP own 237 31.23 260 25.24
fscip QG LP own 276 14.99 273 5.93
shot QG LP MILP solver 309 8.75 309 6.40
mcqgHyb QG LP own 295 17.52 300 12.66
lstoaO QG LP MILP solver 307 12.32 325 6.66
oaSol OA MILP MILP solver 295 11.63 309 8.19

465

1 3

Lin. and par. schemes for convex MINLP

Figure 18 shows the performance profiles for these two algorithms using 1, 20, and
40 threads. mcqgHyb40 (faster on more than 75% instances) and lstoaO40 (faster on
more than 80% instances) perform better than their respective 20-thread variants.

Next, to estimate the efficiency of our parallelization mechanism, we define
and present an ‘idle time ratio’ = 1 - (process time)/(T*(wall clock time)), for
mcqgHyb20 and mcqgHyb40 in Table 30. The first column categorizes the instances
based on the wall clock time taken by mcqgHyb1. We observe that using 40 threads,
mean idle times are slightly reduced (up to 0.80), more so for the difficult problems.
However, a significant fraction of the wall clock time is spent by the processors
waiting during the synchronization step.

Table 28 (Top) Comparison of mcqgHyb1 with mcqgHyb20 and mcqgHyb40 on test set TS. mcqgHyb
could solve 275 instances. (Bottom) Break-up of results of mcqgHyb40 over instances of varying dif-
ficulty

Method # Solved by Wall time Nodes

(M) M Both qg Rel. qg Rel.

mcqgHyb20 297 275 21.47 0.38 1.5e3 1.30
mcqgHyb40 300 275 21.47 0.29 1.5e3 1.45

Time #
Solved by

Wall time Nodes

Both qg Rel. qg Rel.

> 0 275 21.47 0.29 1.5e3 1.45
> 10 120 100.87 0.16 1.8e4 1.37
> 100 50 377.00 0.10 6.2e4 1.27
> 500 16 1063.29 0.06 2.1e5 1.05

Table 29 (Top) Comparison of lstoaO1 with lstoaO20 and lstoaO40 on test set TS. lstoaO1 could solve
307 instances. (Bottom) Break-up of results of lstoaO40 over instances of varying difficulty

Method # Solved by Wall time Nodes

(M) M Both qg Rel. qg Rel.

lstoaO20 324 305 14.37 0.31 8.0e2 0.96
lstoaO40 327 305 14.37 0.24 8.0e2 0.94

Time #
Solved by

Wall time Nodes

Both qg Rel. qg Rel.

> 0 305 14.37 0.31 8.0e2 0.96
> 10 126 55.56 0.14 7.3e3 0.67
> 100 30 371.39 0.07 7.0e4 0.45
> 500 11 1323.52 0.02 6.7e4 0.20

466 M. Sharma et al.

1 3

We also analyze the ramp-up times taken by mcqgHyb20 and mcqgHyb40 and
also compare them against the wall clock times taken to solve the instances. Fig-
ure 19 shows how the ‘Ramp-up ratio’ defined as (ramp-up time/wall clock time)
varies across 218 instances for mcqgHyb20 and mcqgHyb40. Consolidated statistics
are presented in Table 31. The rows corresponding to mcqgHyb20 and mcqgHyb40
show the number (# Solved) of instances that could attain a ramp-up, the SGM of
the ramp-up times, and the minimum and maximum ramp-up times taken. Rows
corresponding to the ‘Ramp-up ratio’ indicates that only about 4% and 5% of the
total time is spent in ramp-up for mcqgHyb20 and mcqgHyb40, respectively. A shift
of 0.01 was used to calculate the SGM of the ratios.

To conclude, the serial implementation of QG sees about 12% improvement in
the solution time by using the proposed linearization schemes. The schemes reduce
the distance between the root LP solution and the feasible region of the continuous
relaxation at the root node by far greater extent than the reduction in the solution

Fig. 18 Performance profiles of wall clock times taken by mcqgHyb (left) and lstoaO (right) using 1, 20
and 40 threads on test set TS

Fig. 19 Ramp-up ratios taken by mcqgHyb using 20 and 40 threads on 218 instances from the test set TS

467

1 3

Lin. and par. schemes for convex MINLP

time. Exploiting the univariate structure in nonlinear constraints has a more sig-
nificant impact as compared to general-purpose routines. iAutomatically exploiting
more nonlinear structures like separability and perspective reformulations are two
promising future directions for us. Parallel extensions of the algorithms NLP-BB and
QG can speed them up by about 40-50% on 40 threads. The speedup is higher for
difficult instances. We see some scope of improvement here as the number of nodes
processed increased by only about 50% when using 40 threads. One can improve the
efficiency of the parallelization mechanism by using more opportunistic schemes.
Lastly, improvements in the techniques for MILP seem to have a significant impact
on the methods. MINLP solvers will gain a lot if the underneath MILP solver or
the branch-and-cut implementation is improved. The scope for improvement seems
especially high for the academic and open-source solvers currently available.

Appendix A

Test Instances

See Table 32

Table 30 Idle time ratio for mcqgHyb20 and mcqgHyb40 on test set TS over instances of varying dif-
ficulty for mcqgHyb1

Time # Solved
by

mcqgHyb20 mcqgHyb40

Both SGM Min. Max. SGM Min. Max.

> 0 334 0.88 0.52 0.98 0.87 0.50 0.99
> 10 179 0.84 0.52 0.95 0.82 0.50 0.98
> 100 109 0.83 0.52 0.95 0.80 0.50 0.98
> 500 75 0.85 0.70 0.95 0.83 0.51 0.98

Table 31 Ramp-up times and the ramp-up ratios exhibited by mcqgHyb using 20 and 40 threads

Solved SGM Min. Max.

mcqgHyb20 224 0.47 0.01 23.47
Ramp-up ratio 0.04 0.01 0.50
mcqgHyb40 221 0.75 0.01 26.25
Ramp-up ratio 0.05 0.01 0.55

468 M. Sharma et al.

1 3

Ta
bl

e
32

D

es
cr

ip
tio

n
of

 in
st

an
ce

s i
n

th
e

te
st

se
t T

S.
 T

he
 c

ol
um

ns
 S

et
, O

, a
nd

 C
 in

di
ca

te
 te

st
se

t (
 TS

1
 o

r T
S
2
),

no
nl

in
ea

rit
y

of
 th

e
ob

je
ct

iv
e

(1
, o

th
er

w
is

e
0)

 a
nd

 th
e

nu
m

be
r

of
 n

on
lin

ea
r c

on
str

ai
nt

s,
re

sp
ec

tiv
el

y.
 In

st
an

ce
s

ex
cl

ud
ed

 fr
om

 T
S

ar
e:

 a
b
e
l
,

a
r
k
i
0
0
0
1
,

g
t
m
,

h
a
r
k
e
r
,

i
m
m
u
n
,

l
i
n
e
a
r
,

m
e
a
n
v
a
r
,

p
a
r
a
b
o
l
5
_
2
_
1
,

p
o
l
l
u
t
,

p
r
o
c
s
y
n
,

q
p
2
,

q
p
4
,

s
a
m
b
a
l
,

s
a
m
p
l
e
,

s
r
c
p
m
,

t
u
r
k
e
y

, a
ll

in
st

an
ce

s
w

ith
 n

am
e

st
ar

tin
g

fro
m

 c
o
l
o
r
,

j
b
e
a
r
i
n
g
,

p
e
d
i
g
r
e
e

, a
nd

 9

fro
m

 s
t
_

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

al
an

T
S
2

1
0

cv
xn

on
se

p_
ps

ig
20

r
T
S
1

0
21

ba
ll_

m
k2

_1
0

T
S
2

0
1

cv
xn

on
se

p_
ps

ig
30

T
S
2

1
0

ba
ll_

m
k2

_3
0

T
S
2

0
1

cv
xn

on
se

p_
ps

ig
30

r
T
S
1

0
31

ba
ll_

m
k3

_1
0

T
S
2

0
1

cv
xn

on
se

p_
ps

ig
40

T
S
2

1
0

ba
ll_

m
k3

_2
0

T
S
2

0
1

cv
xn

on
se

p_
ps

ig
40

r
T
S
1

0
41

ba
ll_

m
k3

_3
0

T
S
2

0
1

du
-o

pt
5

T
S
2

1
0

ba
ll_

m
k4

_0
5

T
S
2

0
1

du
-o

pt
T
S
2

1
0

ba
ll_

m
k4

_1
0

T
S
2

0
1

en
pr

o4
8p

b
T
S
2

1
1

ba
ll_

m
k4

_1
5

T
S
2

0
1

en
pr

o5
6p

b
T
S
2

1
1

ba
tc

h0
81

2
T
S
2

1
1

ex
12

23
a

T
S
1

1
4

ba
tc

hd
es

T
S
2

1
1

ex
12

23
b

T
S
2

1
4

ba
tc

h
T
S
2

1
1

ex
12

23
T
S
2

1
4

ba
tc

hs
10

10
06

m
T
S
2

1
1

ex
4

T
S
2

1
25

ba
tc

hs
12

12
08

m
T
S
2

1
1

fa
c1

T
S
2

1
0

ba
tc

hs
15

12
08

m
T
S
2

1
1

fa
c2

T
S
2

1
0

ba
tc

hs
20

12
10

m
T
S
2

1
1

fa
c3

T
S
2

1
0

cl
ay

02
03

h
T
S
2

0
24

fla
y0

2h
T
S
1

0
2

cl
ay

02
03

m
T
S
2

0
24

fla
y0

2m
T
S
1

0
2

cl
ay

02
04

h
T
S
2

0
32

fla
y0

3h
T
S
1

0
3

cl
ay

02
04

m
T
S
2

0
32

fla
y0

3m
T
S
1

0
3

cl
ay

02
05

h
T
S
2

0
40

fla
y0

4h
T
S
1

0
4

cl
ay

02
05

m
T
S
2

0
40

fla
y0

4m
T
S
1

0
4

cl
ay

03
03

h
T
S
2

0
36

fla
y0

5h
T
S
1

0
5

469

1 3

Lin. and par. schemes for convex MINLP

Ta
bl

e
32

 (
co

nt
in

ue
d)

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

cl
ay

03
03

m
T
S
2

0
36

fla
y0

5m
T
S
1

0
5

cl
ay

03
04

h
T
S
2

0
48

fla
y0

6h
T
S
1

0
6

cl
ay

03
04

m
T
S
2

0
48

fla
y0

6m
T
S
1

0
6

cl
ay

03
05

h
T
S
2

0
60

fo
7_

2
T
S
1

0
14

cl
ay

03
05

m
T
S
2

0
60

fo
7_

ar
2_

1
T
S
1

0
14

cv
xn

on
se

p_
no

r-
m

co
n2

0
T
S
2

0
1

fo
7_

ar
25

_1
T
S
1

0
14

cv
xn

on
se

p_
no

r-
m

co
n2

0r
T
S
1

0
20

fo
7_

ar
3_

1
T
S
1

0
14

cv
xn

on
se

p_
no

r-
m

co
n3

0
T
S
2

0
1

fo
7_

ar
4_

1
T
S
1

0
14

cv
xn

on
se

p_
no

r-
m

co
n3

0r
T
S
1

0
30

fo
7_

ar
5_

1
T
S
1

0
14

cv
xn

on
se

p_
no

r-
m

co
n4

0
T
S
2

0
1

fo
7

T
S
1

0
14

cv
xn

on
se

p_
no

r-
m

co
n4

0r
T
S
1

0
40

fo
8_

ar
2_

1
T
S
1

0
16

cv
xn

on
se

p_
ns

ig
20

T
S
2

0
1

fo
8_

ar
25

_1
T
S
1

0
16

cv
xn

on
se

p_
ns

ig
20

r
T
S
1

0
20

fo
8_

ar
3_

1
T
S
1

0
16

cv
xn

on
se

p_
ns

ig
30

T
S
2

0
1

fo
8_

ar
4_

1
T
S
1

0
16

cv
xn

on
se

p_
ns

ig
30

r
T
S
1

0
30

fo
8_

ar
5_

1
T
S
1

0
16

cv
xn

on
se

p_
ns

ig
40

T
S
2

0
1

fo
8

T
S
1

0
16

cv
xn

on
se

p_
ns

ig
40

r
T
S
1

0
40

fo
9_

ar
2_

1
T
S
1

0
18

470 M. Sharma et al.

1 3

Ta
bl

e
32

 (
co

nt
in

ue
d)

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

cv
xn

on
se

p_
pc

on
20

T
S
2

0
1

fo
9_

ar
25

_1
T
S
1

0
18

cv
xn

on
se

p_
pc

on
20

r
T
S
2

0
19

fo
9_

ar
3_

1
T
S
1

0
18

cv
xn

on
se

p_
pc

on
30

T
S
2

0
1

fo
9_

ar
4_

1
T
S
1

0
18

cv
xn

on
se

p_
pc

on
30

r
T
S
2

0
29

fo
9_

ar
5_

1
T
S
1

0
18

cv
xn

on
se

p_
pc

on
40

T
S
2

0
1

fo
9

T
S
1

0
18

cv
xn

on
se

p_
pc

on
40

r
T
S
2

0
39

ga
m

s0
1

T
S
2

1
11

0

cv
xn

on
se

p_
ps

ig
20

T
S
2

1
0

gb
d

T
S
2

1
0

hy
br

id
dy

na
m

ic
_

fix
ed

T
S
2

1
0

rs
yn

08
20

h
T
S
2

0
14

ib
s2

T
S
2

0
10

rs
yn

08
20

m
02

h
T
S
2

0
28

jit
1

T
S
2

1
0

rs
yn

08
20

m
02

m
T
S
1

0
28

m
3

T
S
1

0
6

rs
yn

08
20

m
03

h
T
S
2

0
42

m
6

T
S
1

0
12

rs
yn

08
20

m
03

m
T
S
1

0
42

m
7_

ar
2_

1
T
S
1

0
14

rs
yn

08
20

m
04

h
T
S
2

0
56

m
7_

ar
25

_1
T
S
1

0
14

rs
yn

08
20

m
04

m
T
S
1

0
56

m
7_

ar
3_

1
T
S
1

0
14

rs
yn

08
20

m
T
S
1

0
14

m
7_

ar
4_

1
T
S
1

0
14

rs
yn

08
30

h
T
S
2

0
20

m
7_

ar
5_

1
T
S
1

0
14

rs
yn

08
30

m
02

h
T
S
2

0
40

m
7

T
S
1

0
14

rs
yn

08
30

m
02

m
T
S
1

0
40

m
ea

nv
ar

x
T
S
2

1
0

rs
yn

08
30

m
03

h
T
S
2

0
60

m
ea

nv
ar

xs
c

T
S
2

1
0

rs
yn

08
30

m
03

m
T
S
1

0
60

ne
tm

od
_d

ol
1

T
S
2

1
0

rs
yn

08
30

m
04

h
T
S
2

0
80

471

1 3

Lin. and par. schemes for convex MINLP

Ta
bl

e
32

 (
co

nt
in

ue
d)

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

ne
tm

od
_d

ol
2

T
S
2

1
0

rs
yn

08
30

m
04

m
T
S
1

0
80

ne
tm

od
_k

ar
1

T
S
2

1
0

rs
yn

08
30

m
T
S
1

0
20

ne
tm

od
_k

ar
2

T
S
2

1
0

rs
yn

08
40

h
T
S
2

0
28

no
7_

ar
2_

1
T
S
1

0
14

rs
yn

08
40

m
02

h
T
S
2

0
56

no
7_

ar
25

_1
T
S
1

0
14

rs
yn

08
40

m
02

m
T
S
1

0
56

no
7_

ar
3_

1
T
S
1

0
14

rs
yn

08
40

m
03

h
T
S
2

0
84

no
7_

ar
4_

1
T
S
1

0
14

rs
yn

08
40

m
03

m
T
S
1

0
84

no
7_

ar
5_

1
T
S
1

0
14

rs
yn

08
40

m
04

h
T
S
2

0
11

2
nv

s0
3

T
S
1

1
1

rs
yn

08
40

m
04

m
T
S
1

0
11

2
nv

s1
0

T
S
2

1
2

rs
yn

08
40

m
T
S
1

0
28

nv
s1

1
T
S
2

1
3

sl
ay

04
h

T
S
2

1
0

nv
s1

2
T
S
2

1
4

sl
ay

04
m

T
S
2

1
0

nv
s1

5
T
S
2

1
0

sl
ay

05
h

T
S
2

1
0

o7
_2

T
S
1

0
14

sl
ay

05
m

T
S
2

1
0

o7
_a

r2
_1

T
S
1

0
14

sl
ay

06
h

T
S
2

1
0

o7
_a

r2
5_

1
T
S
1

0
14

sl
ay

06
m

T
S
2

1
0

o7
_a

r3
_1

T
S
1

0
14

sl
ay

07
h

T
S
2

1
0

o7
_a

r4
_1

T
S
1

0
14

sl
ay

07
m

T
S
2

1
0

o7
_a

r5
_1

T
S
1

0
14

sl
ay

08
h

T
S
2

1
0

o7
T
S
1

0
14

sl
ay

08
m

T
S
2

1
0

o8
_a

r4
_1

T
S
1

0
16

sl
ay

09
h

T
S
2

1
0

o9
_a

r4
_1

T
S
1

0
18

sl
ay

09
m

T
S
2

1
0

po
rtf

ol
_b

uy
in

T
S
2

0
2

sl
ay

10
h

T
S
2

1
0

po
rtf

ol
_c

ar
d

T
S
2

0
2

sl
ay

10
m

T
S
2

1
0

472 M. Sharma et al.

1 3

Ta
bl

e
32

 (
co

nt
in

ue
d)

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

po
rtf

ol
_c

la
ss

i-
ca

l0
50

_1
T
S
2

0
1

sm
al

lin
vD

A
X

r1
b0

10
-0

11
T
S
2

0
1

po
rtf

ol
_c

la
ss

i-
ca

l2
00

_2
T
S
2

0
1

sm
al

lin
vD

A
X

r1
b0

20
-0

22
T
S
2

0
1

po
rtf

ol
_r

ou
nd

lo
t

T
S
2

0
2

sm
al

lin
vD

A
X

r1
b0

50
-0

55
T
S
2

0
1

pr
oc

ur
em

en
t2

m
ot

T
S
1

0
12

sm
al

lin
vD

A
X

r1
b1

00
-1

10
T
S
2

0
1

ra
ve

m
pb

T
S
2

1
1

sm
al

lin
vD

A
X

r1
b1

50
-1

65
T
S
2

0
1

ris
k2

bp
b

T
S
2

1
0

sm
al

lin
vD

A
X

r1
b2

00
-2

20
T
S
2

0
1

rs
yn

08
05

h
T
S
2

0
3

sm
al

lin
vD

A
X

r2
b0

10
-0

11
T
S
2

0
1

rs
yn

08
05

m
02

h
T
S
2

0
6

sm
al

lin
vD

A
X

r2
b0

20
-0

22
T
S
2

0
1

rs
yn

08
05

m
02

m
T
S
1

0
6

sm
al

lin
vD

A
X

r2
b0

50
-0

55
T
S
2

0
1

rs
yn

08
05

m
03

h
T
S
2

0
9

sm
al

lin
vD

A
X

r2
b1

00
-1

10
T
S
2

0
1

rs
yn

08
05

m
03

m
T
S
1

0
9

sm
al

lin
vD

A
X

r2
b1

50
-1

65
T
S
2

0
1

rs
yn

08
05

m
04

h
T
S
2

0
12

sm
al

lin
vD

A
X

r2
b2

00
-2

20
T
S
2

0
1

rs
yn

08
05

m
04

m
T
S
1

0
12

sm
al

lin
vD

A
X

r3
b0

10
-0

11
T
S
2

0
1

rs
yn

08
05

m
T
S
1

0
3

sm
al

lin
vD

A
X

r3
b0

20
-0

22
T
S
2

0
1

rs
yn

08
10

h
T
S
2

0
6

sm
al

lin
vD

A
X

r3
b0

50
-0

55
T
S
2

0
1

rs
yn

08
10

m
02

h
T
S
2

0
12

sm
al

lin
vD

A
X

r3
b1

00
-1

10
T
S
2

0
1

rs
yn

08
10

m
02

m
T
S
1

0
12

sm
al

lin
vD

A
X

r3
b1

50
-1

65
T
S
2

0
1

rs
yn

08
10

m
03

h
T
S
2

0
18

sm
al

lin
vD

A
X

r3
b2

00
-2

20
T
S
2

0
1

rs
yn

08
10

m
03

m
T
S
1

0
18

sm
al

lin
vD

A
X

r4
b0

10
-0

11
T
S
2

0
1

rs
yn

08
10

m
04

h
T
S
2

0
24

sm
al

lin
vD

A
X

r4
b0

20
-0

22
T
S
2

0
1

rs
yn

08
10

m
04

m
T
S
1

0
24

sm
al

lin
vD

A
X

r4
b0

50
-0

55
T
S
2

0
1

rs
yn

08
10

m
T
S
1

0
6

sm
al

lin
vD

A
X

r4
b1

00
-1

10
T
S
2

0
1

rs
yn

08
15

h
T
S
2

0
11

sm
al

lin
vD

A
X

r4
b1

50
-1

65
T
S
2

0
1

473

1 3

Lin. and par. schemes for convex MINLP

Ta
bl

e
32

 (
co

nt
in

ue
d)

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

rs
yn

08
15

m
02

h
T
S
2

0
22

sm
al

lin
vD

A
X

r4
b2

00
-2

20
T
S
2

0
1

rs
yn

08
15

m
02

m
T
S
1

0
22

sm
al

lin
vD

A
X

r5
b0

10
-0

11
T
S
2

0
1

rs
yn

08
15

m
03

h
T
S
2

0
33

sm
al

lin
vD

A
X

r5
b0

20
-0

22
T
S
2

0
1

rs
yn

08
15

m
03

m
T
S
1

0
33

sm
al

lin
vD

A
X

r5
b0

50
-0

55
T
S
2

0
1

rs
yn

08
15

m
04

h
T
S
2

0
44

sm
al

lin
vD

A
X

r5
b1

00
-1

10
T
S
2

0
1

rs
yn

08
15

m
04

m
T
S
1

0
44

sm
al

lin
vD

A
X

r5
b1

50
-1

65
T
S
2

0
1

rs
yn

08
15

m
T
S
1

0
11

sm
al

lin
vD

A
X

r5
b2

00
-2

20
T
S
2

0
1

sq
ufl

01
0-

02
5

T
S
2

1
0

sy
n1

0m
04

h
T
S
2

0
24

sq
ufl

01
0-

04
0

T
S
2

1
0

sy
n1

0m
04

m
T
S
1

0
24

sq
ufl

01
0-

08
0

T
S
2

1
0

sy
n1

0m
T
S
1

0
6

sq
ufl

01
5-

06
0

T
S
2

1
0

sy
n1

5h
T
S
2

0
11

sq
ufl

01
5-

08
0

T
S
2

1
0

sy
n1

5m
02

h
T
S
2

0
22

sq
ufl

02
0-

04
0

T
S
2

1
0

sy
n1

5m
02

m
T
S
1

0
22

sq
ufl

02
0-

05
0

T
S
2

1
0

sy
n1

5m
03

h
T
S
2

0
33

sq
ufl

02
0-

15
0

T
S
2

1
0

sy
n1

5m
03

m
T
S
1

0
33

sq
ufl

02
5-

02
5

T
S
2

1
0

sy
n1

5m
04

h
T
S
2

0
44

sq
ufl

02
5-

03
0

T
S
2

1
0

sy
n1

5m
04

m
T
S
1

0
44

sq
ufl

02
5-

04
0

T
S
2

1
0

sy
n1

5m
T
S
1

0
11

sq
ufl

03
0-

10
0

T
S
2

1
0

sy
n2

0h
T
S
2

0
14

sq
ufl

03
0-

15
0

T
S
2

1
0

sy
n2

0m
02

h
T
S
2

0
28

sq
ufl

04
0-

08
0

T
S
2

1
0

sy
n2

0m
02

m
T
S
1

0
28

ss
sd

08
-0

4
T
S
1

0
12

sy
n2

0m
03

h
T
S
2

0
42

ss
sd

12
-0

5
T
S
1

0
15

sy
n2

0m
03

m
T
S
1

0
42

ss
sd

15
-0

4
T
S
1

0
12

sy
n2

0m
04

h
T
S
2

0
56

474 M. Sharma et al.

1 3

Ta
bl

e
32

 (
co

nt
in

ue
d)

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

ss
sd

15
-0

6
T
S
1

0
18

sy
n2

0m
04

m
T
S
1

0
56

ss
sd

15
-0

8
T
S
1

0
24

sy
n2

0m
T
S
1

0
14

ss
sd

16
-0

7
T
S
1

0
21

sy
n3

0h
T
S
2

0
20

ss
sd

18
-0

6
T
S
1

0
18

sy
n3

0m
02

h
T
S
2

0
40

ss
sd

18
-0

8
T
S
1

0
24

sy
n3

0m
02

m
T
S
1

0
40

ss
sd

20
-0

4
T
S
1

0
12

sy
n3

0m
03

h
T
S
2

0
60

ss
sd

20
-0

8
T
S
1

0
24

sy
n3

0m
03

m
T
S
1

0
60

ss
sd

22
-0

8
T
S
1

0
24

sy
n3

0m
04

h
T
S
2

0
80

ss
sd

25
-0

4
T
S
1

0
12

sy
n3

0m
04

m
T
S
1

0
80

ss
sd

25
-0

8
T
S
1

0
24

sy
n3

0m
T
S
1

0
20

st_
e1

4
T
S
2

1
4

sy
n4

0h
T
S
2

0
28

st_
m

iq
p2

T
S
2

1
0

sy
n4

0m
02

h
T
S
2

0
56

st_
m

iq
p3

T
S
2

1
0

sy
n4

0m
02

m
T
S
1

0
56

st_
m

iq
p4

T
S
2

1
0

sy
n4

0m
03

h
T
S
2

0
84

st_
m

iq
p5

T
S
2

1
0

sy
n4

0m
03

m
T
S
1

0
84

sto
ck

cy
cl

e
T
S
2

1
0

sy
n4

0m
04

h
T
S
2

0
11

2
st_

te
st3

T
S
2

1
0

sy
n4

0m
04

m
T
S
1

0
11

2
st_

te
st4

T
S
2

1
0

sy
n4

0m
T
S
1

0
28

st_
te

st8
T
S
2

1
0

sy
nt

he
s1

T
S
2

1
2

st_
te

stg
r1

T
S
2

1
0

sy
nt

he
s2

T
S
1

1
3

st_
te

stg
r3

T
S
2

1
0

sy
nt

he
s3

T
S
1

1
4

st_
te

stp
h4

T
S
2

1
0

tls
12

T
S
2

0
12

sy
n0

5h
T
S
2

0
3

tls
2

T
S
2

0
2

sy
n0

5m
02

h
T
S
2

0
6

tls
4

T
S
2

0
4

475

1 3

Lin. and par. schemes for convex MINLP

Ta
bl

e
32

 (
co

nt
in

ue
d)

In
st

an
ce

Se
t

O
C

In
st

an
ce

Se
t

O
C

sy
n0

5m
02

m
T
S
1

0
6

tls
5

T
S
2

0
5

sy
n0

5m
03

h
T
S
2

0
9

tls
6

T
S
2

0
6

sy
n0

5m
03

m
T
S
1

0
9

tls
7

T
S
2

0
7

sy
n0

5m
04

h
T
S
2

0
12

un
itc

om
m

it1
T
S
2

1
0

sy
n0

5m
04

m
T
S
1

0
12

un
itc

om
m

it_
50

_2
0_

2_
m

od
_8

T
S
2

1
0

sy
n0

5m
T
S
1

0
3

un
itc

om
m

it_
20

0_
10

0_
1_

m
od

_8
T
S
2

1
0

sy
n1

0h
T
S
2

0
6

un
itc

om
m

it_
20

0_
10

0_
2_

m
od

_8
T
S
2

1
0

sy
n1

0m
02

h
T
S
2

0
12

w
at

er
co

nt
am

in
at

io
n0

20
2

T
S
2

1
0

sy
n1

0m
02

m
T
S
1

0
12

w
at

er
co

nt
am

in
at

io
n0

20
2r

T
S
2

1
0

sy
n1

0m
03

h
T
S
2

0
18

w
at

er
co

nt
am

in
at

io
n0

30
3

T
S
2

1
0

sy
n1

0m
03

m
T
S
1

0
18

w
at

er
co

nt
am

in
at

io
n0

30
3r

T
S
2

1
0

476 M. Sharma et al.

1 3

References

 1. Abhishek, K.: Topics in mixed integer nonlinear programming. Ph.D. thesis, Lehigh University
(2008)

 2. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: an outer approximation based solver for convex
mixed-integer nonlinear programs. INFORMS J. Comput. 22(4), 555–567 (2010)

 3. Achterberg, T.: Conflict analysis in mixed integer programming. Discret. Optim. 4(1), 4–20 (2007)
 4. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41

(2009)
 5. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed inte-

ger programming. Tech. Rep. 16-44, ZIB, Takustr. 7, 14195 Berlin (2016)
 6. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)
 7. Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems

(1998)
 8. Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University, Tech. rep. (2009)
 9. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear

optimization. Acta Numer 22, 1–131 (2013)
 10. Berthold, T.: A computational study of primal heuristics inside an MI(NL)P solver. J. Global Optim.

70(1), 189–206 (2018)
 11. Berthold, T., Farmer, J., Heinz, S., Perregaard, M.: Parallelization of the FICO Xpress-Optimizer.

Opt. Methods Softw. 33(3), 518–529 (2018)
 12. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming-a look back from

the other side of the tipping point. Ann. Oper. Res. 149(1), 37 (2007)
 13. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi,

A., Margot, F., Sawaya, N., et al.: An algorithmic framework for convex mixed integer nonlinear
programs. Discret. Optim. 5(2), 186–204 (2008)

 14. Bonami, P., Gonçalves, J.P.: Heuristics for convex mixed integer nonlinear programs. Comput.
Optim. Appl. 51(2), 729–747 (2012)

 15. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlin-
ear programming, MINLP, and constrained derivative-free optimization. CDFO. Eur. J. Oper. Res.
252(3), 701–727 (2016)

 16. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib–a collection of test models for mixed-integer
nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

 17. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: portable shared memory parallel program-
ming, vol. 10. MIT press, Cambridge (2008)

 18. Crainic, T.G., Le Cun, B., Roucairol, C.: Parallel branch-and-bound algorithms. Parallel combinato-
rial optimization pp. 1–28 (2006)

 19. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE
Comput. Sci. Eng. 5(1), 46–55 (1998)

 20. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to improve MIP
solutions. Math. Program. 102(1), 71–90 (2005)

 21. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91, 201–213 (2002)

 22. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer non-
linear programs. Math. Program. 36(3), 307–339 (1986)

 23. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math.
Program. 66(1–3), 327–349 (1994)

 24. Forrest, J.: CBC MILP solver. http:// www. coin- or. org/ Cbc
 25. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260

(1972)
 26. Grama, A., Karypis, G., K, V., A, G.: Introduction to parallel computing. Addison-Wesley, Boston

(2003)
 27. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer program-

ming. Manage. Sci. 31(12), 1533–1546 (1985)
 28. Hart, W.E., Phillips, C.A., Eckstein, J.: PEBBL: An object-oriented framework for scalable parallel

branch and bound. Tech. rep., Sandia National Laboratories (SNL-NM), Albuquerque, NM (United
States) (2013)

http://www.coin-or.org/Cbc

477

1 3

Lin. and par. schemes for convex MINLP

 29. Hijazi, H., Bonami, P., Ouorou, A.: An outer-inner approximation for separable mixed-integer non-
linear programs. INFORMS J. Comput. 26(1), 31–44 (2014)

 30. Hunting, M.: The AIMMS outer approximation algorithm for MINLP. Technical Report (2011)
 31. Kilinç, M., Sahinidis, N.V.: State-of-the-art in mixed-integer nonlinear programming. In: Advances

and trends in optimization with engineering applications, MOS-SIAM book series on optimization,
pp. 273–292. SIAM, Philadelphia (2017)

 32. Kilinç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear pro-
gramming. Ph.D. thesis, University of Wisconsin-Madison (2011)

 33. Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for con-
vex mixed-integer nonlinear programming. J. Global Optim. 64(2), 249–272 (2016)

 34. Lima, R.M., Grossmann, I.E.: Computational advances in solving mixed integer linear program-
ming problems. Chem. Eng. Greetings Prof. Sauro Pierucci, AIDAC 151, 160 (2011)

 35. Lin, Y., Schrage, L.: The global solver in the LINDO API. Opt. Methods Softw. 24(4–5), 657–668
(2009)

 36. Linderoth, J.T., Savelsbergh, M.W.: A computational study of search strategies for mixed integer
programming. INFORMS J. Comput. 11(2), 173–187 (1999)

 37. Lundell, A., Kronqvist, J., Westerlund, T.: The supporting hyperplane optimization toolkit—a poly-
hedral outer approximation based convex minlp solver utilizing a single branching tree approach.
Preprint, Optimization Online (2018)

 38. Mahajan, A.: Presolving mixed–integer linear programs. Wiley Encyclopedia of Operations
Research and Management Science (2010)

 39. Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: MINOTAUR: A mixed-integer non-
linear optimization toolkit. Optimization Online 6275, (2017)

 40. Melo, W., Fampa, M., Raupp, F.: An overview of MINLP algorithms and their implementation in
muriqui optimizer. Annal. Oper. Res. , 1–25 (2018)

 41. Misener, R., Floudas, C.A.: Antigone: algorithms for continuous/integer global optimization of non-
linear equations. J. Global Optim. 59(2–3), 503–526 (2014)

 42. Munguía, L., Oxberry, G., Rajan, D., Shinano, Y.: Parallel PIPS-SBB: multi-level parallelism for
stochastic mixed-integer programs. Comp. Opt. Appl. 73(2), 575–601 (2019)

 43. Quesada, I., Grossmann, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP
optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)

 44. Ralphs, T., Guzelsoy, M., Mahajan, A.: SYMPHONY 5.6.9 user’s manual (2015)
 45. Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed integer linear optimiza-

tion. In: Handbook of parallel constraint reasoning, pp. 283–336. Springer (2018)
 46. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)
 47. Sahinidis, N.V.: Baron: a general purpose global optimization software package. J. Global Optim.

8(2), 201–205 (1996)
 48. Sahinidis, N.V.: Mixed-integer nonlinear programming 2018. Opt Eng (2019)
 49. Shinano, Y.: The ubiquity generator framework: 7 years of progress in parallelizing branch-and-

bound. In: Operations Research Proceedings 2017, pp. 143–149. Springer (2018)
 50. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel extension of

SCIP. In: Competence in High Performance Computing 2010, pp. 135–148. Springer (2011)
 51. Shinano, Y., Berthold, T., Heinz, S.: ParaXpress: an experimental extension of the FICO Xpress-

Optimizer to solve hard MIPs on supercomputers. Opt Methods Softw. 33(3), 530–539 (2018)
 52. Shinano, Y., Fujie, T.: ParaLEX: A parallel extension for the CPLEX mixed integer optimizer. In:

European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pp. 97–106.
Springer (2007)

 53. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP–a shared memory parallelization of
SCIP. INFORMS J. Comput. 30(1), 11–30 (2017)

 54. Shinano, Y., Rehfeldt, D., Galley, T.: An easy way to build parallel state-of-the-art combinatorial
optimization problem solvers: A computational study on solving steiner tree problems and mixed
integer semidefinite programs by using ug [SCIP-*,*]-libraries. Technical Report (2019)

 55. Vigerske, S., Gleixner, A.: SCIP: Global optimization of mixed-integer nonlinear programs in a
branch-and-cut framework. Opt. Methods Softw. 33(3), 563–593 (2018)

 56. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

 57. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex minlp prob-
lems. Comput. Chem. Eng. 19, 131–136 (1995)

478 M. Sharma et al.

1 3

 58. Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer program-
ming. In: International Conference on AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, pp. 211–220. Springer (2017)

 59. Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Computational experience with a software frame-
work for parallel integer programming. INFORMS J. Comput. 21(3), 383–397 (2009)

 60. CPLEX 12.8 user’s manual (2019). https:// www. ibm. com/ suppo rt/ knowl edgec enter/ SSSA5P_ 12.8.
0/ ilog. odms. studio. help/ pdf/ usrcp lex. pdf

 61. FICO Xpress-Optimizer (2019). http:// www. fico. com/ en/ Produ cts/ DMToo ls/ xpress- overv iew/
Pages/ Xpress- Optim izer. aspx

 62. Gurobi optimizer 9.0 reference manual (2019). https:// www. gurobi. com/ wp- conte nt/ plugi ns/ hd_
docum entat ions/ docum entat ion/9. 0/ refman. pdf

 63. LINDO Systems Inc (2019). https:// www. lindo. com/ downl oads/ PDF/ Lindo Users Manual. pdf
 64. SAS/OR 15.1 user’s guide mathematical programming (2019). https:// suppo rt. sas. com/ docum entat

ion/ onlin edoc/ or/ 151/ ormpug. pdf

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf
https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf
https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf

	Linearization and parallelization schemes for convex mixed-integer nonlinear optimization
	Abstract
	1 Introduction
	2 Algorithms and solvers for convex MINLPs
	2.1 Algorithms
	2.2 Solvers
	2.3 Experimental setup

	3 Linearization schemes
	3.1 Linearization techniques at the root node
	3.1.1 Root linearization scheme 1 (RS1)
	3.1.2 Root linearization scheme 2 (RS2)
	3.1.3 Root linearization scheme 3 (RS3)
	3.1.4 Root linearization scheme 4 (RS4)
	3.1.5 Root linearization scheme 5 (RS5)

	3.2 Adding linearization constraints at other nodes
	3.2.1 Node linearization scheme 1 (NS1)
	3.2.2 Node linearization scheme 2 (NS2)
	3.2.3 Node linearization scheme 3 (NS3)
	3.2.4 Combination of linearization schemes at root and other nodes

	4 Shared-memory parallel search
	4.1 Parallel extension of NLP-BB
	4.2 Sharing pseudocosts in branching
	4.3 Parallel extension of the QG algorithm

	5 Combined effect of linearization and parallelization schemes
	6 Outer-approximation with parallelism in MILP solving
	6.1 Multitree OA with parallel MILP solving
	6.2 QG using MILP solvers with lazy cuts callback

	7 Comparison of methods
	8 Some large scale experiments and conclusions
	References

