
Some Studies on Similarity-based Methods
for Linear Optimization and Master

Production Schedule

A Thesis
Submitted in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy

by

Devanand
(134190003)

Supervisors:
Prof. Ashutosh Mahajan
Prof. N. Hemachandra

and

Tushar Shekhar

Industrial Engineering and Operations Research

Indian Institute of Technology Bombay
Mumbai 400076 (India)

8 May 2023

Approval Sheet

This thesis entitled “Some Studies on Similarity-based Methods for Linear Optimization

and Master Production Schedule” by Devanand is approved for the degree of Doctor of

Philosophy.

Examiners

Supervisor (s)

Chairman

Date:

Place:

Declaration

I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the

original sources. I declare that I have properly and accurately acknowledged all sources

used in the production of this report. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified any

idea/data/fact/source in my submission. I understand that any violation of the above will

be a cause for disciplinary action by the Institute and can also evoke penal action from

the sources which have thus not been properly cited or from whom proper permission has

not been taken when needed.

Devanand

Date: 8 May 2023 (134190003)

ii

Abstract

Mathematical optimization consists of systematic procedures to model and solve many

real-world problems in various disciplines, such as computer science, management sci-

ence, and economics. Despite the advancement of mathematical programming, backed

by heavy computational power, there is no universal method for solving all optimization

problems - we have to select an appropriate algorithm for the specific problem. However,

the general mathematical procedures used for solving many “difficult” optimization prob-

lems can be thought of as solving the related sequence of “easy” mathematical problems.

In this thesis, we focus on two procedures that solve a sequence of easy problems, the

linear programs (LPs) that we can solve in polynomial time using mathematical program-

ming, to obtain the solution of difficult problems. We exploit the structural relationship

among LPs to enhance the underlying strategies.

The first procedure is a “branch-and-bound” algorithm for solving mixed integer

programs (MIPs) belonging to the NP−hard class. The branching procedure is an essen-

tial step in the branch-and-bound. We detail popular branching procedures and investigate

their issues in solving mixed-integer linear programs (MILPs). One of the issues, even in

the state-of-the-art branching rule, we primarily focus on is the unnecessary use of “strong

branching” calls at nodes in the branching process. The proper use of an expensive strong

branching, which solves two LP-relaxations for each branching candidate, motivates us

to devise the concept of ‘similarity’ between the current node and the nodes already ex-

plored in the tree. Using information from “similar” nodes, we estimate the change in the

objective value for each branching candidate, much like reliability branching, to select

the variable to branch on. The idea develops into a new branching procedure that effec-

tively exploits the information generated from explored nodes. We call it “SimBranch”.

We develop efficient procedures for implementing this scheme, perform computational

experiments on benchmark instances, and show the results with the default scheme of an

open-source optimization solver (CBC).

The second procedure is a “lexicographic” method for solving hierarchical-

multiobjective programs (h-MOLPs), the multiobjective LPs where the order of priorities

iii

Abstract iv

among the objectives is specified. We study the methods and challenges of two pop-

ular lexicographic methods, “constraint-addition” and “variable-fixing”. It includes the

derivation of the variable-fixing rule and the theoretical justification of its equivalence

with the constraint-addition rule. The study also emphasizes the issue of reoptimizing

in their solving process. This further motivates us to introduce a concept of ‘similarity’

between LPs solved in the lexicographic process. The idea of similarity developed into a

new lexicographic technique called “ SimLex”. It exploits the structure of the underlying

hierarchical model by monitoring the changes in the input parameters and leverages re-

optimization - to decide whether to solve the current linear program from scratch or use

the available feasible solution obtained from the previous LP solve. We show the com-

putational effectiveness of our approach by comparing it with the standard lexicographic

methods available in CPLEX for some hierarchical models chosen from benchmark h-

MOLP instances.

Apart from studying the above two procedures for MILPs and h-MOLPs, our contri-

bution to industry problems is to perform a detailed study of one of the main components

in master planning in manufacturing industries, known as “master production schedule”

(MPS), and some related restrictions associated with it. We mathematically model the

MPS as h-MOLP, study popular MPS business objectives, and introduce a toy example

called the “potato chip model” to explain the modeling steps. Unlike the lexicographic

method, combining objectives using a weighted-sum approach avoids solving several sin-

gle objective linear programs but faces challenges in obtaining a Pareto optimal solution.

We develop customer-specific rules to combine the weighted-sum method with the lex-

icographic method for computing the underlying MPS. On the computational front, we

empirically show the benefit of our idea by implementing and running it for some industry

datasets and comparing it with the standard lexicographic method.

Further, we study the challenges in evaluating MPS due to supply chain process re-

strictions in some industries that produce multiple products from the same assembly line

and face a trade-off between inventory and production changeover, known as the “cam-

paign planning” (CP) problem. We study the existing procedure that handles campaign

planning restrictions and their limitations. We study the existing procedure that handles

campaign planning restrictions and their limitations. We address the issues and observe a

significant improvement over two supply chain problems by modeling them as sequential

decision problems using the “Cross-entropy” method and providing mathematical models

for MPS with CP constraints.

Table of Contents

Abstract iii

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Notation . 7

1.2 Branch and Bound Algorithm . 7

1.2.1 Node Selection . 10

1.2.2 Branching Strategy . 12

1.3 Multiobjective Linear Program . 16

1.3.1 Lexicographic Method . 18

1.4 Master Planning in Supply Chain Planning 23

1.4.1 Master Production Schedule . 25

1.5 Manufacturing Campaign Planning . 28

1.5.1 Sequential Decision Making . 31

1.5.2 Cross-Entropy Method . 33

1.6 Outline of Thesis and Contributions . 35

2 Similarity-based Branching for Integer Optimization 38
2.1 Introduction . 38

2.2 Branching Schemes . 39

2.2.1 Schemes based on Pseudocosts 41

2.2.2 Some More Branching Rules . 47

2.3 Issues in Reliability Branching . 51

2.3.1 Reliability Requirements - Same for Every Branching Candidates 51

2.3.2 Limited Information in Branching Selection Score 51

2.3.3 Threshold Value is Invariant over Problem Instances 52

v

Table of Contents vi

2.3.4 Branching Decision is Short-Sighted in Nature 52

2.3.5 Uneven Calls of Strong Branching 52

2.4 The Notion of Similarity-based Branching - SimBranch 54

2.4.1 Similarity of Nodes . 54

2.4.2 Connections with Other Methods 56

2.5 Implementing SimBranch . 57

2.5.1 Storing Branching Information 59

2.5.2 Selecting a Branching Candidate 60

2.5.3 Parameters in SimBranch . 61

2.6 Computational Results and Summary 63

3 Similarity-based Method for Hierarchical Multiobjective Linear Program 72
3.1 Introduction . 72

3.2 Issues with Constraint-addition Rule . 73

3.3 Linear Program with Bounded Variables and Fixing of Variables 76

3.3.1 Fixing of Variables Using Reduced Costs 78

3.4 Notion of Similarity and SimLex . 81

3.4.1 Notion of Similarity between Linear Programs 82

3.5 Implementation . 84

3.6 Computational Result and Summary of the Work 86

4 Master Production Schedule as h-MOLP 92
4.1 Popular Objectives used in MPS . 93

4.1.1 Maximizing Meeting of Demand 93

4.1.2 Avoiding Lateness . 96

4.1.3 Other Important Business Objectives 97

4.2 Combining Objectives . 99

4.3 Implementation of Combining Objectives: Benefits and Challenges 103

4.4 MPS in Potato Chip Manufacturing Model 106

5 Master Production Schedule with Campaign Planning Restriction 112
5.1 Campaign Planning as SDP . 114

5.1.1 Sequential Decision Problem . 116

5.1.2 Steps in Cross-entropy Method 118

5.2 Formulation of Campaign Planning as a Mixed Integer Program 123

5.3 Implementation, Computational Results and Conclusion 127

5.4 Campaign Planning in one of the Tire Manufacturing Industries 130

Table of Contents vii

5.4.1 Industrial Outlook of the Challenges of Campaign Planning . . . 130

6 Conclusion and Future Work 132

Appendices 135

A MIP Instances 135

B Mathematical Modeling and h-MOLP Instances 141
B.1 Instances . 141

B.2 Formulation of MPS for Potato Chips Industry 141

C Modeling of MPS for the Small-industry Problem 143

Bibliography 145

List of Publications 157

Acknowledgements 159

List of Figures

1.1 A linear, a mixed-integer and a pure integer feasible set (Read from left

to right) . 4

1.2 Various states of a node in B&B . 8

1.3 The strategy of the depth first search (DFS) and the breadth first search

(BFS) . 11

1.4 Best first search . 11

1.5 Branching steps in B&B for problem IP1 15

1.6 Pareto Optimal Set . 17

1.7 A Pareto Front . 17

1.8 Solution set for the first objective for the model (1.9) and the model (1.10)

is denoted by the yellow point (6, 0) and line segment (6, 0) − (6, 2) . . 19

1.9 Iterative LP solves in LM with hot-start 22

1.10 Supply Chain Planning Matrix . 24

1.11 Constrained Resource in a Simplistic Supply Chain Model 29

1.12 Update in a state when an agent interacts with the environment through

action (Image taken from [1]) . 32

2.1 Child and grandchild nodes of a node in B&B tree 46

2.2 Node8 and Node14 are only differ by x2. Whereas, Node8 and Node9

have bound differences in x1, x2 and x4 53

2.3 Node 2 is differ by one, two and four bounds from the node 0, node 1 and

node 6, respectively. 53

2.4 Similarity in B&B tree: Shaded nodes are at a distance three or less from

Node19. Darker nodes are more similar to 19 than others. 56

2.5 A scatter plot of ratio of number of strong branching iterations (Sim-

BranchStrong) when SimBranch is chosen as branching candidate to that

of Default-Cbc on 71 solved benchmark instances: 68% of points are be-

low the reference line. 67

viii

List of Figures ix

2.6 A scatter plot of time taken in computing hash values in SimBranch proce-

dure: Shifted geometric mean with a shift of 1 sec is 3.51 sec (horizontal

line) . 68

2.7 Scatter plot comparing solving time of 71 ‘solved’ instances by Sim-

Branch with three different random seeds 69

3.1 Instance -2 (left) and Instances -5 (right). Objective wise performance

comparison of SimLex with variable-fixing. Blue points at level 1 indicate

solving with hotstart and at level 0 indicate solving from scratch 90

4.1 Fair-Shared Demand Allocation . 103

4.2 Supply Chain Diagram of a Potato Chip Manufacturing Industry 111

4.3 Network Flow of Material Over the Planning Horizon 111

5.1 Steps followed in the heuristic method 115

5.2 Cross-entropy method for learning the input weight vector used in the

improved heuristic . 119

List of Tables

2.1 Notation for SimBranch . 58

2.2 Number of strong branching nodes in the tree for the given values of θF

and number of binaries . 64

2.3 Computational summary of performance of SimBranch compared to

Default-Cbc. 68

2.4 Comparison of SimBranch and Default-Cbc on instances where one solve

hit time limit . 69

2.5 Branching candidates (brCand) and strong branching candidates (str-

Cand) upto depth 2 in the B&B for the instance gmu_35_40 solved by

Default-Cbc . 70

2.6 Branching candidates (brCand) and strong branching candidates (str-

Cand) upto depth 2 in the B&B for the instance gmu_35_40 solved by

SimBranch . 71

3.1 Performance summary of SimLex compared to other rules over various κ . 87

3.2 Problem summary of h-MOLPs selected for the computational experiment 88

3.3 Solving times (in seconds) of selected MPS models for an ideal κ for SimLex 88

3.4 Result summary of solving times (in sec) of SimLex over other rules . . . 89

4.1 Solving time using Default Lexicographic in Cplex and ObCrunch for the

data sets from CPG customers . 105

5.1 Plan quality dependency on input weight vector 114

5.2 Performance comparison of improved planner over the heuristic method

on small-industry dataset . 121

5.3 A result summary of the heuristic method and the improved campaign

planner with various input demand scale 122

5.4 Demand planning summary of supply chain scenarios, ‘S1’ by heuristic-

based planner and our MIP-based planner. 128

x

List of Tables xi

5.5 Demand planning summary of supply chain scenarios, ‘S2’ by heuristic-

based planner and our MIP-based planner. 129

A.1 Running time (t, in seconds), number of nodes processed (n) and number

of strong branching iterations (#strong_itrn) by SimBranch and Default-

Cbc on all 222 benchmark instances . 135

A.2 number of nodes enumerated (n), strong branching iterations

(#strong_itrn) and percentage gap (gap) of those instances which

could not be solved by both the procedures for a given time limit of 7200

seconds . 138

B.1 MOLP instances selected from MOPLIB library for our computational

experiment . 141

Chapter 1

Introduction

Mathematical Optimization is often used to help a decision-maker choose the ‘best’ plan

of action. Its use has become quite prevalent in industry and business where managers

face complex constraints and objectives. Mathematically, an optimization problem may

be expressed in many different ways. A form that we consider in this thesis is as follows.

minimize
x

f (x)

subject to gi(x) ≤ bi, i = 1, . . . ,m,

xi ∈ Z, i = 1, . . . , d. (1.1)

Here x ∈ Rn is the decision variable, m, n and d, where d ≤ n, are non-negative inte-

gers, and f : Rn → R, is the objective function consisting of k decision functions. The

inequalities gi(x) ≤ bi, where gi : Rn → R, bi ∈ R, i = 1, . . . ,m, are called constraints.

The set X = {x ∈ Zd × Rn−d | gi(x) ≤ bi, i = 1, . . . ,m} is called the feasible region of

the mathematical optimization problems (1.1). These problems are also sometimes called

mathematical programs.

Mathematical programs are classified into different categories based on the decision

variables, objective function, and constraints. For problem 1.1, we can categorize it ac-

cording to the type of decision variable x, the feasible set X, and the input parameters,

m, n, d and, k. Some of the prominent categories are:

1. Constrained and Unconstrained Program: If none of the constraints restrict the

problem, i.e., X = Rn, we call it an unconstrained optimization problem. Other-

wise, it is a constrained program.

2. Linear and Nonlinear Program: If any function f or gi, i = 1, . . . ,m is nolinear,

we call the problem a nonlinear program (NLP). If the objective function and con-

straints are linear, we call it a linear program (LP).

1

2

3. Integer, Mixed-Integer and Continuous Program: The problem is said to be an inte-

ger program (IP) if d = n. If d = 0, it is called a continuous program. If 0 < d < n,

it is called a mixed-integer program (MIP). A MIP with linear objective and linear

constraints is called a mixed-integer linear program (MILP). A MIP is known as a

mixed-binary program (MBP) if its integer variables are restricted to be binary, i.e.,

xi ∈ {0, 1} i = 1, . . . , d.

4. Single Objective and Multiobjective Program: The problem (1.1) is a single-

objective program (SOP). Sometimes one may have more than one objective

function. The output of the objective function is then a solution vector, i. e.,

f : Rn → Rk. We call it a multiobjective program (MOP). An LP, an IP, and, a MIP,

with k > 1, are generally referred to as a multiobjective linear program (MOLP),

a multiobjective integer program (MOIP), and a multiobjective mixed-integer pro-

gram (MOMIP), respectively. Most of the literature on mathematical optimization

focuses on SOPs and refers to them as optimization problems. This thesis uses the

term “optimization problems” for the single-objective programs and uses MOLP to

refer to multiobjective linear programs.

The categories above are not exhaustive. There are several other important categories

that we have not listed as they are not studied in this thesis. An interested reader may

refer [2] to for other categories. A point x is feasible to optimization problem (1.1) if

x ∈ X. We call X a feasible set consisting of all the points feasible to the problem. A

point x∗ is optimal for the problem if 1) x∗ is feasible and 2) the value of the objective

function at x∗ is not greater than that of any other feasible solution. That is, f (x∗) ≤ f (x)

for all feasible x. In the case of MOP, it is not easy to compare the objective values at

two feasible points. We require a comparison of solution vectors. To obtain a superior

solution, instead of optimal solution, we use the concept of dominance for two solutions

and the Pareto solution. We will discuss it in detail in Section 1.3.

Based on the complexity of the problems, we can divide them into two major classes.

1. “easy" - Problems that we can solve in polynomial time using some mathematical

programming. Linear programs are considered easy problems as there are available

optimization solvers to solve them in polynomial time.

2. “difficult" - Problems that belong to the NP−hard class [3]. As we increase the

input size, the time for solving the problem using any known algorithm increases

exponentially. MILP comes under this class because no algorithm can guarantee to

provide the optimal solution in polynomial time.

3

Mathematical programming includes developing theories about the form of a solution,

constructing algorithms or procedures to seek a solution, formulating problems into math-

ematical programs, etc. Due to the computational complexities, some of the procedures

solve a series of easy optimization problems to get the solution to a difficult problem.

This thesis focuses on two strategies that solve a sequence of LPs to get the solution

to a difficult problem and exploit the structural relationship among LPs to enhance the

performance of the underlying procedures. These strategies are 1) branch-and-bound al-

gorithm to solve an MILP and 2) lexicographic procedure to solve a hierarchical-MOLP.

We explain these terms briefly.

Branch-and-bound algorithm
The branch-and-bound (B&B), proposed by Land and Doig [4], is a general frame-

work and a widely-used methodology for producing exact solutions to NP−hard opti-

mization problems. It is a strategy of divide-and-conquer where we partition the feasible

region into smaller regions and then, if required, further partition the subdivisions. In

general, there are a number of ways to divide the feasible region, and as a consequence

there are a number of branch-and-bound algorithms. For solving an MILP, the B&B con-

structs a search tree by successively dividing the problem into subproblems based on the

LP-relaxation information at a node. LP-relaxation of an MILP is the LP obtained by

relaxing the integrality restrictions in the MILP.

A MIP denotes an optimization problem where some decision variables are restricted

to integers. MIP appears in many areas, including operations research, power systems,

health-care, supply chain industries, etc. There are many applications such as scheduling

[5], planning, shortest path-finding [6], and optimizing complex systems such as those

arising in transportation, telecommunications, etc., that can be modeled in MIPs. We will

use the terms MILP and MIP interchangeably as this thesis only considers optimization

programs consisting of linear objective functions and constraints.

We define an MILP as the following optimization problem:

MILP : minimize
x

cTx

subject to Y := {x ∈ Rn | Ax ≤ b, xi∈ Z, i ∈ I}, (1.2)

where c, b are given rational vectors of size n, m, respectively, A is a given rational matrix

of size m× n and I is a given index set of variables constrained to be integers. B&B is the

most popular method for solving an MILP. Aided by several other enhancements like cut-

ting planes, presolving, heuristic search, etc., B&B provides provable optimal solutions

to MILPs. Its main components are the methods for creating and solving relaxations,

node selection strategies, and branching schemes. Associated with B&B is a search tree

4

Constraint 2

Constraint 1

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

Feasible

region is

the pink

colored area

Constraint 2

Constraint 1

x- axis

y-axis

0 1 2 3 4 5 6

Feasible regions

are the black

lines in the pink

colored area

Constraint 2

Constraint 1

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

Feasible points

are the black

dots in the pink

colored area

Figure 1.1: A linear, a mixed-integer and a pure integer feasible set (Read from left to

right)

consisting of nodes and edges that denote the MILP subproblem and the choice of the

branching decision, respectively. The root node corresponds to the original MILP. This

B&B tree can grows exponentially in the number of integer variables. Unlike LP, MILP

lies in the class of NP−hard problems. As the size of input parameters increases, the

difficulty of solving MIPs using current state-of-the-art algorithms can increase at an ex-

ponential rate. An LP is an MILP with all the integer variables are relaxed to continuous

variables of the following form:

LP : minimize
x

cTx

subject to Z = {x ∈ Rn | Ax ≤ b, xi∈ R+, i ∈ [n]}, (1.3)

Figure 1.1 depicts the feasible regions of linear set, an integer set and a mixed-

integer set. Clearly, linear set is the LP-relaxation of the integer set. The image in the

middle represents the feasible region of the MIP where continuous vertical lines indicate

the variable x ∈ Z and the variable y ∈ R. LP-based B&B method works as follows: First,

the integer constraints x j ∈ Z are relaxed to x j ∈ R, ∀ j ∈ I. The relaxed problem is an LP

- which is much easier to solve both in theory [7] and practice than the MIP. If the solution

of the LP-relaxation, say x̃, is integer feasible, then x̃ is optimal to MIP as well. If the

feasible region of the LP-relaxation is empty, then so is the feasible region of the MIP

and we can stop. If the LP is unbounded, then the MIP is either unbounded or infeasible

and we can again stop. Otherwise, the LP solution value provides a lower bound on the

optimal objective value of the MIP (1.2) and x̃ j < Z for some j ∈ I. In this case, the search

5

space for the optimal solution is divided into two or more parts by branching. Each forms

the subproblem and points to a child node in the B&B tree. The node selection rule is

the procedure for choosing one node to solve the associated subproblem from the list

of unexplored nodes. We study LP-based B&B, popular node selection strategies and

branching procedures in B&B in Section 1.2.

Lexicographic method
The second procedure we focus on is the lexicographic method (LM). It is a preemp-

tive priority-based procedure to solve hierarchical multiobjective programs (h-MOP). A

multiobjective program (MOP) also named as vector optimization, Pareto optimization,

or multicriteria optimization is the area of multi-criteria decision making where more than

one objectives are involved and the target is to solve them simultaneously. The credit of

introducing the idea of optimization problem with multiple objectives goes to Y. Edge-

worth [8] and Vilfredo Pareto [9]. They brought the theory of indifference curve and, for

the first time, mentioned the difficulty of obtaining its solution, and developed the basic

concept of optimality for MOP in the context of economics, which is now referred to as

the “Pareto optimal solution" (we will discuss later in this Section). We refer the readers

to [10, 11, 12, 13] for various works and surveys of MOP.

This thesis focuses on the hierarchical- MOLP (h-MOLP). It is the MOLP where

the order of priorities among the objectives in the problem is specified. We study the

following h-MOLP with bounded variables, i.e., the variables that are upper and lower

bounded by some finite known values:

lexmin c1Tx, c2Tx, . . . , ctTx

subject to Ax = b,

l ≤ x ≤ u, (1.4)

where ck, k = 1, . . . , t, are cost vectors, b is a vector of size m and A is a rational matrix of

size m × n. l and u are lower and upper bound parameter vectors. Here the term “lexmin"

denotes lexicographic minimum, also denoted as c1Tx ≫ c2Tx . . . ≫ ctTx. It signifies that

first objective (c1Tx) is much more important than the second objective (c2Tx) which is, on

its turn, much more important than the third one (c3Tx), and so on and, the last objective

(ctTx) is of least importance. The additional upper and lower bounds restrictions make

it more practical in industry applications. There are broadly two approaches for solving

h-MOLP, preemptive method and non-preemptive method [12]. This thesis focuses on

the lexicographic method, a preemptive priority-based method for h-MOLP. One of the

benefits of preferring the lexicographic method is that it always provides a Pareto optimal

6

solution [14]. We study two popular lexicographic methods of h-MOLPs that solve a

sequence of LPs, constraint-addition rule and variable-fixing rule, in detail in Section

1.3.

Apart from studying various branching strategies for MILPs and lexicographic meth-

ods for h-MOLPs, our contribution to industry problems is to perform a detailed study

of one of the main components in master planning in manufacturing industries, known

as master production schedule (MPS), and some related restrictions associated with it.

MPS expresses planning for the production of each commodity in specific configurations,

quantities, and dates, consisting of many business objectives [15]. We consider MPS as a

h-MOLP and enhance the existing popular methods used to solve MPS. We discuss them

in Section 1.4.1.

Further, we study the challenges in evaluating MPS due to supply chain process re-

strictions in some industries, especially process industries. They produce multiple prod-

ucts from the same assembly line and face a trade-off between inventory and production

changeover. Switching production from one product to another incurs an overhead in cost

and time. Such a problem of planning the production of batches of different products,

known as a campaign planning (CP) problem, makes the MPS difficult. We study the

existing procedures that handle campaign planning restrictions and their limitations. We

address one of them by modeling it as a sequential decision problem, solving it using the

Cross-entropy method, and providing a mathematical model for MPS with CP constraints.

We discuss this in detail in Section 1.5.

Before proceeding further, we summarize the main goals of this research as follows:

1. Study branching rules in B&B for solving MILPs, and lexicographic rules for solv-

ing hierarchical MOLPs and investigate the challenges these rules face.

2. Define the concept of similarity between a sequence of “easy” LPs while solving

“hard” MILPs and MOLPs using B&B and lexicographic methods, respectively.

3. Develop new branching and lexicographic rules based on similarities between LPs

for solving MILPs and h-MOLPs, respectively. Study their computational effec-

tiveness over existing methods.

4. Study MPS as h-MOLP and analyze complexities and challenges in its solution

computation.

5. Study supply chain campaign planning problems as 1) sequential decision prob-

lems, and 2) MIP, and explore the challenges to solve them.

1.1 Notation 7

1.1 Notation

Unless otherwise mentioned, this thesis uses the following notation throughout: We use

lowercase italics to denote scalars, e.g., α, c, κ. A one-dimensional vector also follows the

same notation as a scalar, though the context makes the reader distinguish between them.

The set of real numbers will be denoted by R, that of integers by Z, that of natural numbers

by N and that of rational numbers by Q. Upper case italicized letters e.g. A, S represents

sets. For a given set A, A+ := {x ∈ A | x ≥ 0} represents the set of non-negative elements.

So, Z+ and R+ represent the set of non-negative integers and linear numbers, respectively.

The ceiling and floor of the scalar a are represented by ⌈a⌉ and ⌊a⌋, respectively. For a

non-negative integer t, we define [t] := {1, 2, . . . , t} if t > 0 and [t] := ∅ if t = 0. The

dot product of two vectors u ∈ Rn and v ∈ Rn is denoted by uTv. Similar to sets, matrices

are denoted with italic capital letters, e.g. A, S . The context lets the reader distinguish

between the matrix and the set. For an m × n real matrix M ∈ Rm×n we use MT to denote

the transpose of M. We use Mi to denote the ith column of a matrix, M.

1.2 Branch and Bound Algorithm

The branch-and-bound algorithm (B&B), a “divide and conquer” method, successively

divides the problem into smaller subproblems. The process can be represenetd by a tree

called a branch-and-bound tree (B&B tree), where each node corresponds to the subprob-

lem. At any point in time, the subproblem occupies one of the states of the node, 1)

the root node - a starting stage where we solve the relaxation of the original optimization

problem, 2) the solved node - a node whose child we have already explored, 3) the feasible

node - a node that yields a feasible solution to the original problem and might update the

incumbent solution and 4) the pruned node - a node that will not be investigated further.

We have shown these states in Figure 1.2.

B&B for solving an MILP follows the following steps: We start with the root node that

corresponds to the MILP, the original problem which we want to solve. We drop all the

integrality constraints in MIP and solve its LP-relaxation. We have defined MILP in the

model (1.2) and its LP-relaxation in the model (1.3). The solution of the LP-relaxation is

also the solution to MILP if there are no integer violations. In such a case, we stop with

this solution. Else, if it is infeasible, so for the MILP and we stop. If it is unbounded, it

will be either infeasible or unbounded to the MILP and we stop. If some of the variables

which are restricted to be integer are fractional in the solution of LP-relaxation, it will

1.2 Branch and Bound Algorithm 8

R

P S

F C

U U

root node

pruned node solved node

feasible node
current node

unsolved nodes

Figure 1.2: Various states of a node in B&B

not be a feasible solution for the MILP. The optimal value of the LP-relaxation gives

the lower bound to the optimal value of the MILP. We divide the search space into two

or more parts, using a technique called branching, each forming an MILP. The union

of feasible regions (sets) of subproblems corresponds to the feasible set of the original

problem and the intersection may be an empty set. Each subproblem corresponds to the

child nodes of the root node. From such unexplored child nodes, we select one using a

technique called node selection. We follow the same procedure with the selected node as

we do with the root node. The optimal solution value of a subproblem must be at least

the lower bound obtained from the LP-relaxation of its parent. If a subproblem provides

a feasible integer solution, then we get an upper bound on the optimal value of (MILP)

of the original problem. Nodes associated with all subproblems that have lower bounds

more than this upper bound can be pruned in the B&B tree. We continue until, we process

all the nodes in the B&B tree. The Algorithm 1 mentions the steps in a LP-based B&B to

solve the MIP (1.2).

The procedure in the B&B points to two important questions one may ask, one is

about the “node selection”, and the other is about the “branching strategy”. This thesis

focuses on the second question, the branching procedure, specifically a variable-branching

rule. While discussing branching procedures, we assume that the node selection method

is known and fixed for any experiments with various branching methods.

1.2 Branch and Bound Algorithm 9

Algorithm 1: Branch and Bound
Input: N0: root node pointing to the original problem MLP0 =MILP.

Output: z∗, x∗: optimal value and optimal solution to the MILP.

Initialize: L = {N0}, x∗ = ϕ, z = −∞, z = ∞.

Step 1: if L is empty: no node is available then
Optimal solution is x∗, Optimal value is z∗;

Stop.
else

Choose a node N i in L. Update L = L − {N i}. /* Node Selection */

end
Step 2: Solve LP-relaxation, LPi of MIPi of node N i. /* Bound */

if LPi is infeasible then
go to Step 1.

else
Let xi and zi be optimal solution and optimal objective value of LPi. Step 3:

if zi ≥ z then
go to Step 1 ;

else
if xi is feasible to the MILP then

set x∗ := xi z := zi. Delete all nodes Nk from L(pointing to those

problem MIPk) that have optimal value zk > z and go to Step 1.

/* Prune */

else
Step 4: From MIPi, construct MIPi

1, . . . ,MIPi
k problems, k ≥ 2,

with smaller feasible regions (by adding linear inequalities)

whose union does not contain (xi), but contains all the solutions

of MIPi and each solution from MIPi
t, t ∈ [k] is an integer

feasible solution to the selected MIP. Add new nodes N i
1, . . . ,N

i
k

to L and go to Step 1. /* Branch */

end

end

end
Step 5: Update z = min{zi | N i pointing to MIPi ∈ L}. If z ≥ z, stop. Else, go to

step 1.

1.2 Branch and Bound Algorithm 10

1.2.1 Node Selection

There are many node selection schemes, broadly categorized into two parts, in-

formed and un-informed node selection strategies (also known as blind search). An

un-informed search is the one where the agent has no information about the number of

steps and corresponding possible cost needed to reach from the current state to the goal.

Breadth-first search (BFS) and depth-first search (DFS) are two such popular techniques

[16]. On the other hand, an informed search is an information-centric search that takes

into account the goal at each search step and provides some additional information. Best-

first search (BestFS) and A* search are the popular informed search strategies. In DFS,

we start from the root node and explore the nodes as deep down as possible along each

branch before returning (backtracking). Usually, it is preferable over other node selection

strategies for the following reasons.

1. In general, most integer feasible solutions lie deep in the tree. DFS can find them

faster than the other procedures. For some problem instances, finding an optimal

solution is time consuming and difficult. For them finding a feasible solution at

an early stage is essential if we want to abort the solver early because it cannot

compute an optimal solution in a reasonable time.

2. DFS is beneficial for those problems that do not have an objective function and

where the solving process is only to find a feasible solution. It helps in solving pure

feasibility problems like SAT.

3. The DFS is a recursively defined function, which simplifies the coding and thus

makes the implementation more manageable.

4. As one moves down the enumeration tree, each subproblem refers to the subsequent

nodes obtained from the preceding one with few changes in the relaxation. Vari-

able branching simply adds (or updates) an upper or lower bound for a particular

variable. These few changes between the parent and child nodes sometimes speed

up the solution of the subproblems associated with these child nodes by using the

optimal solution of the problem associated with the parent node. This process is

called reoptimization. We will discuss the concept in Section 1.3.

However, problems may arise if an optimal solution is located near the root node and

the DFS prefers a long path (especially in the unbalanced tree) on which no optimal so-

lution is located. Unlike, DFS, BFS explores the nodes near the root before processing

1.2 Branch and Bound Algorithm 11

0

1

3

7

4

8 9

2

5

10

6

0

1

3

7

4

8 9

2

5

10

6

Figure 1.3: The strategy of the depth first search (DFS) and the breadth first search (BFS)

0

1

3 4

7 8

2

5

9

6

5

6
9

87 8

5

10
6

6

Figure 1.4: Best first search

1.2 Branch and Bound Algorithm 12

the subproblems positioned far from the root node. This strategy has the advantage that

an optimal solution is always found that is closest to the top node of the tree (especially

for unbalanced search trees). In general, however, it is seen that complete solutions are

usually in greater depth. The BFS naturally cannot use pruning rules compared to the in-

cumbent solution. It leads to a relatively high memory requirement than the DFS. The is

the main reason why we do not prefer it in the B&B context. Figure 1.3 illustrates the or-

der in which BFS and DFS process the nodes in B&B. The problem with the blind search

in both BFS and DFS is that it does not use information about the problem structure. It

led to spending a significant amount of time exploring a poor search space region. BestFS

is an informed node selection strategy that, unlike the blind search, uses node information

in its selection decision. In the B&B context, it aims to improve the global lower bound

as fast as possible by always selecting a subproblem with the smallest lower bound of

all new nodes. The benefit of BFS is that it does not stick to exploring the nodes in one

branch before backtracking to another branch. It is one of the reasons that BestFS is often

able to find the optimal solution earlier in the search process. Figure 1.4 depicts the order

in which BestFS processes the nodes. Nodes 1 and 5 are processed before they meet the

optimal node 4. However, when the selection depends on a tie-breaking rule, the BFS

may spend a lot of time in the middle regions of the search tree and never find an optimal

solution. This situation arises when more than one node points to the subproblem whose

LP-relaxation solution consists of an optimal solution. A trade-off among these static

selection approaches leads to the development of a variant of DFS and BestFS strategies

[17]. A default node selection strategy in SCIP combines all three of these strategies.

It starts with DFS and continues with a few consecutive nodes. Then, a node with the

best estimate is chosen. At a particular frequency, a node with the smallest dual bound is

selected instead of a node with the best estimate [18].

1.2.2 Branching Strategy

The branching scheme has a significant impact on the performance of B&B and is

the focus of our study. The importance of selecting a good branching candidate has been

recognized early by [19, 20] and is still an active area of research. As we see in Algo-

rithm 1, it is a dividing procedure that divides the problem, associated with the currently

exploring node into smaller subproblems. It leads to the formation of child nodes to the

current processing nodes, where each node points to the respective smaller subproblem.

In our thesis, we focus on a generic branching procedure, known as a variable-branching

scheme. It is a most natural ways of branching where we select one variable out of the set

1.2 Branch and Bound Algorithm 13

of “fractional" variables C = {i ∈ I | x̃i < Z} and create two subproblems by adding the

constraints x j ≤ ⌊x̃ j⌋ and x j ≥ ⌈x̃ j⌉ :

minimize cTx

subject to Ax ≤ b,

x j ≤ ⌊x̃ j⌋

xi ∈ Z, i ∈ I.

and

minimize cTx

subject to Ax ≤ b,

x j ≥ ⌈x̃ j⌉

xi ∈ Z, i ∈ I.

The two subproblems are also MILPs. Their optimal solution values must be at least the

lower bound obtained from the LP-relaxation of their parent. In the next chapter, Chapter

2, we will study various braching procedures in detail. Let us understand the steps in

B&B and the variable-branching procedure with the following example:

IP1 : minimize − 17 x − 12 y,

subject to S := { Constraint 1 := 10x + 7y ≤ 40,

Constraint 2 := x + y ≤ 5,

x, y ≥ 0

x, y are integers }. (1.5)

Figure 1.5 shows the division of feasible regions from the variable-branching scheme

where a variable for branching is assumed to be selected from the candidate set randomly

when solving the problem (1.5). The node selection procedure is random. We start with

the LP-relaxation of IP1, whose feasible region S is denoted by black coloured dots

inside the pink coloured regions. The pink coloured region is the feasible region for

the LP-relaxation of IP1. The optimal solution of the relaxation, (5
3 ,

10
3), indicated by a

green dot, does not coincide with block coloured dots - it’s not the feasible solution of

IP1. It invokes a branching procedure. We select x from the candidate set, {x, y}. The

branching step divides IP1 into two subproblems. S 1 and S 2 are the feasible reasons of

the subproblems, whose feasible regions for the LP-relaxation of the subproblems are the

pink coloured regions. The optimal solution to the LP-relaxation of the first subproblem

(with feasible region S 1) is (1, 4). It is also feasible to the integer program. We do not

explore this subproblem further. The optimal solution for the LP-relaxation of the other

subproblem is (2, 2.86). Since the solution is not integer feasible, we perform a branching

operation on the selected branching candidate y with the solution value 2.86. This results

in two subproblems 1) one with the addition of the constraint y ≥ 3 is infeasible, and 2)

1.2 Branch and Bound Algorithm 14

one with the addition of the constraint y ≤ 3 is feasible to LP. The feasible region of the

new subproblem is S 3. The optimal solution of its relaxation (2.6, 2.0) is again integer

feasible. This calls the branching procedure. We continue the similar process of creating

new subproblems, solving the relaxation, and deciding whether to process further, stop or

branch. We found (4, 0) to be the optimal solution for IP1. The optimal value obtained

is 68.

This B&B tree can be quite large and grows exponentially with the number of integer

variables. Unlike an LP, an MILP lies in the class of NP−hard problems [3], so the

number of LP-relaxations required to solve an MILP can be exponentially large in the

worst case. However, with the advances in LP- and MILP-based solvers, many medium

and large-size problems can be solved in reasonable amount of time.

One popular variable branching strategy is to select a variable that leads to the largest

improvement of the lower bound and resulting in fewer nodes in the B&B tree [21]. The

idea, called strong branching (SB) is to simulate the change in the lower bound by solving

two LP-relaxations for each candidate and identifying the changes in the bounds explic-

itly. The candidate that pushes the lower bound the most is selected for branching. SB

has been observed to reduce the number of nodes in the tree but requires a large amount

of computational time to evaluate all candidates. It is one of the widely used methods

that later became the integral component of the other state-of-the-art branching schemes.

Pseudocost branching [19] tracks changes in the lower bounds every time a new node is

processed. The pseudocost score of a variable candidate is, roughly speaking, the average

change in the objective function seen by changing the bounds of the variable. It has been

observed to be useful only once the tree has become large and sufficient data has been

collected. Reliability branching [22] tries to collect the SB scores in the early stages of

B&B. Once a sufficiently large sample of scores has been collected for a variable, its av-

erage score can be used as an estimate for the SB score. While reliability branching has

been shown to outperform previously proposed schemes, the evaluation of SB scores is

concentrated at the top of the search tree, and hence the estimates may not be accurate.

We will discuss the impact of this limitation, do a literature review and, provide a moti-

vation for a new branching procedure that effectively exploits the information generated

from the explored nodes in the B&B tree in Chapter 2.

1.2 Branch and Bound Algorithm 15

Constraint 2

Constraint 1

S

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

(5
3 ,

10
3)

Branching

on x = 5
3

Constraint 2

Constraint 1

S 1

S 2

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

(1.0, 4.0)

(2.0, 2.86)

Branching

on y = 2.86

Constraint 2

Constraint 1

S 1

S 3

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

(2.6, 2.0)Branching

on x = 2.6

Constraint 2

Constraint 1

S 4

S 5

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

(2.0, 2.0)

(3.0, 1.43)

Branching

on y = 1.43

Constraint 2

Constraint 1

S 4

S 5

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

(3.3, 1.0)

Branching

on x = 3.3

Constraint 2

Constraint 1

S 4

S 5

x- axis

y-axis

0

1

2

3

4

5

0 1 2 3 4 5 6

(3, 1)

(4, 0)

Figure 1.5: Branching steps in B&B for problem IP1

1.3 Multiobjective Linear Program 16

1.3 Multiobjective Linear Program

A Multiobjective linear program (MOLP) is a multiobjective optimization where all the

objective functions and constraints are linear. The Mathematical model of an MOLP is

expressed as follows:

MOLP : minimize
x

(c1Tx, c2Tx, . . . , ctTx)

subject to X = {x ∈ Rn | Ax = b,l ≤ x ≤ u,xi ∈ R+, i ∈ [n]}, (1.6)

where ck, k = 1, . . . , t, are the cost vectors, t, m, n ∈ Z+, b is the rhs vector of size m

and A is a rational matrix of size m × n. Input vectors l and u are the lower and the upper

bound parameter vectors.

A feasible solution x∗ ∈ X that minimizes all ci, i = 1, . . . , t simultaneously is called

a ideal-solution. Clearly, if x∗ ∈ X is the ideal solution then for any x ∈ X, ci(x∗) <

ci(x), i = 1, . . . , t. Some literature also refer it as utopia point. For a non-trivial MOLP

where objective functions are conflicting in nature, i.e., increasing objective value of one

objective function will lead to a decrease in the other objective functions, no ideal solution

exists. If such a solution exists, there is no motivation to consider multiple objectives. We

determine the goodness of a solution by a concept called dominance. Consider two points,

x1, x2 ∈ X in . We say x1 dominates x2 (or x2 is dominated by x1) if, 1) ci(x1) ≤ ci(x2)

for all i = 1, . . . , t and 2) there exists at least one objective c j from the list of objectives

such that c j(x2) > c j(x1). The non-dominated set of all feasible space is called “Pareto

optimal" solution and the set of Pareto optimal outcomes is often called the Pareto front,

Pareto frontier, or Pareto boundary. Let us consider an MOLP:

MOLP1 : minimize (f1 := − 5x1 + 2x2, f2 :=x1 − 4x2)

subject to constraint1 : −x1 + x2 ≤ 3,

constraint2 : x1 + x2 ≤ 8,

0 ≤ x1 ≤ 6,

0 ≤ x2 ≤ 4. (1.7)

Figures 1.6 and 1.7 depict its Pareto optimal solution and the Pareto front. Since

there are infinitely many Pareto optimal solution exists, selecting one of them asks the

1.3 Multiobjective Linear Program 17

Constraint 2

Constraint 1

y = 4

x = 6

x- axis

y-axis

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Figure 1.6: Pareto Optimal Set

f1

f2

-7

-5

-3

-1

1

3

5

7

9

11

13

15

-7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Figure 1.7: A Pareto Front

1.3 Multiobjective Linear Program 18

question of how to solve the MOP and incorporate the preferences of the decision maker.

This leads to broadly divide the optimization methods for the MOP into following classes

- 1) apriori method, where the domain expert (or the decision maker) provides the pref-

erence information of the business objectives before solving the MOP, 2) a posteriori

method, where the MOP is solved first, to obtain all the Pareto optimal solution, and then

the domain expert selects one (or few) of them, and 3) interactive method, where MOP

is solved in iterations and at each iteration the domain expert sets the preferences to get

the Pareto optimal solution. We focus on the apriori-based class and in that more specif-

ically lexicographic method. A lexicographic method solves MOLPs with the available

preferences of objectives. Such MOLPs are called hierarchical MOLPs (h-MOLPs). A

mathematical definition of a h-MOLP is defined in the model (1.4).

1.3.1 Lexicographic Method

Unlike the common apriori-based MOP method (such as a weighted sum method

(WSM)[23]), a lexicographic method (LM) imposes the preferences by ordering the ob-

jective functions as per the decision of the domain expert about the significance of these

objective functions. Because WSM combines all the objectives, it only needs one LP

solver call to obtain the solution of the MOLP. In contrast the WSM, the LM requires

many LP solver calls – one call for each objective. To solve the model (1.4) in a hierar-

chical fashion, we need to solve a sequence of single-objective optimization problems for

k = 1, . . . , t as follows:

The objective functions c1, c2, . . . , ct, ranked with highest to the lowest order of im-

portance, are available to us. To preserve the hierarchy of the objective functions, we

solve as follows:

LPk := min ckTx

subject to Ax = b,

cix ≤ yi, ∀ i ∈ [k − 1],

l ≤x ≤ u, (1.8)

where yk is the optimal value of the problem LPk (it is assumed that the problem LPk is

feasible) for each k = 1, . . . , t. We start with computing y1 = {min c1Tx | Ax = b, l ≤

x ≤ u}. If the solution is unique, we stop, and the obtained solution is optimal to the h-

MOLP. Otherwise, we solve the next immediate linear program, LP2 with a newly added

constraint, c1Tx ≤ y1 by preserving the previously obtained solutions. We follow the

1.3 Multiobjective Linear Program 19

Constraint 2

Constraint 1

Obj1

y = 4

x = 6

x- axis

y-axis

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Constraint 2

Constraint 1

Obj1

y = 4

x = 6

x- axis

y-axis

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Figure 1.8: Solution set for the first objective for the model (1.9) and the model (1.10) is

denoted by the yellow point (6, 0) and line segment (6, 0) − (6, 2)

same procedure until we reach to solve the lowest priority program LPt. We call this

constraint-addition rule.

After every LP solve in the LM, the uniqueness of the obtained solution will deter-

mine whether we should terminate the process or not. The LM and the h-MOLP we solve

are interesting only if we have alternate optimal solutions while solving the high-priority

objectives. If the current problem has alternate optima, i.e., the solution obtained is not

unique, then we continue to solve the next LP. Otherwise, the current solution of LP is

also the solution to the h-MOLP. For example, if the preference of the objective functions

are known in the model (1.7), we have a reformulation in the h-MOLP as follows:

h −MOLP1 :lexmin f1 := − 5x1 + 2x2, f2 :=x1 − 4x2

subject to Constraint1: − x1 + x2 ≤ 3,

Constraint2: x1 + x2 ≤ 8,

0 ≤ x1 ≤ 6,

0 ≤ x2 ≤ 4. (1.9)

Now consider the new h-MOLP model which is same as the model (1.9) with only

change in the first objective function as follows:

h −MOLP2 : lexmin − x1, x1 − 4x2

1.3 Multiobjective Linear Program 20

subject to Constraint1: − x1 + x2 ≤ 3,

Constraint2: x1 + x2 ≤ 8,

0 ≤ x1 ≤ 6,

0 ≤ x2 ≤ 4. (1.10)

Figure 1.8 shows the optimal solution set of the first objective function and the Pareto

set of the h-MOLP for models (1.9) and (1.10). There is no requirement of solving the

second objective using constraint-addition method for model (1.9) as it has unique optimal

solution to the first LP in the iterative procedure of LM. It is denoted by a yellow circle at

point (6, 0). Whereas, we denote the optimal solution to the first LP solve for the model

(1.10) by the yellow continuous line segment with the two closed end points (6, 0) and

(6, 2).

If the solution of an LP is available, it is easy to identify whether it has an alternate

optimal solution or only a unique solution exists. For a standard LP defined in the problem

(1.3), if x∗ is the basic feasible solution and if the reduced cost of every non-basic variables

is positive, then x∗ is the unique optimal solution [24, Exercise 3.6]. For LPs with bounded

variables that we are interested to solve in a sequence for the h-MOLP (1.4), consider x∗

as the basic feasible solution for one of the LPs, say LP1. If the reduced cost of every

non-basic variables at their upper bound is positive and the reduced cost of every non-

basic variables at their lower bound is negative, then x∗ is the unique optimal solution [25,

Chapter 5]. Given x∗ as the optimal solution of the LP1 in the LM procedure (1.8), if the

set of optimal solution F := {x ∈ S := {x ∈ Rn | Ax = b, l ≤ x ≤ u} | c1x = c1x∗} of LP1 is

singleton, then x∗ will be the solution to the model (1.4). Otherwise, we find the optimal

solution for LP2, which is a point y∗ ∈ F, such that c2y∗ ≤ c2x for all x ∈ F. Without

additional computational effort many LP solvers provide reduced cost information along

with the solution. In practice, it becomes easier to determine the existence of alternate

optimal solution using the reduced costs. For LPs with many zero-valued coefficients

in their objective functions, the probability of an alternative optimal solution is high. In

our contribution to industry challenges, we pick large scale problems posed to h-MOLPs.

In most cases, the h-MOLPs for such problems contain many zeros in their objective

functions. It motivates us to solve such problems.

A column-dropping or variable-fixing rule is another type of LM that reduces cost

information in the sequence of LP solves. Unlike the constraint addition rule, instead

of adding the constraints cix = yi, ∀ i ∈ [k − 1], it equivalently fixes a certain number

of variables at one of their upper or lower bounds. For a minimization problem, if the

reduced cost of a non-basic variable is positive, we fix its obtained solution value at its

1.3 Multiobjective Linear Program 21

lower bound. Similarly, if the reduced cost of a non-basic variable is negative, we fix its

obtained solution value at its upper bound. The model (modLPk) in the method (1.11)

mentions the sequence of solves using the variable-fixing rule.

modLPk := min ckx

s.t. Ax = b,

x j = f j ∀ j ∈ Jk ⊆ [n],

l ≤ x ≤ u. (1.11)

Here Jk denotes the index subset of {1, . . . , n} for which components of the decision vari-

able x j is fixed at f j. This procedure requires changes in the bound section, and objective

function between two consecutive LP solves. It is different than the constraint-addition

rule where changes are realized in the rhs vector, the coefficient matrix, and the objective

function vectors. We discuss variable-fixing rule in detail, the benefit of using it over the

constraint-addition rule, and its limitations in Chapter 3.

One of the major disadvantages of both the rules is that they can require the so-

lution of many single objective problems to obtain just one solution point. It becomes

a challenge for large h-MOLPs, for example, the master production schedule (MPS) in

some supply chain manufacturing industries with a large-sized constraint set and many

business objectives. To speed up the methods, almost all the optimization solvers pro-

vide a feature of using the solution of the high-priority objectives as a starting solution

to solve the low-priority objectives. This reuse of the previous solution aims to save

computation time. For example, Gurobi [26] uses the advance basis and Cplex [27] uses

the advanced indicator flag to allow the user to save and reuse the solution basis. We

call it reoptimization. It is a technique to solve a new mathematical model by using the

available solution of a similar model with slight modification to the new model. We can

find a wide range of work of reoptimization in the literature of application of reoptimiza-

tion, such as scheduling problems[28, 29, 30], Steiner tree [31, 32], covering problems

[32], travelling salesman problem [33, 34] and several other applications of reoptimiza-

tion [35, 36, 37, 38, 39, 40, 41, 42] and warm-start procedures [43, 44, 45, 46] for various

optimization problems. Generally, optimization solvers offer two flavors of reoptimiza-

tion, warm-start - where the solution basis of one of the LPs is saved to solve a new LP

and hot-start - where the solution basis is readily available for solving the new LP. A hot-

start in B&B for MIPs works well when DFS is chosen as the node selection strategy.

The minor change between LPs associated with two adjacent nodes helps in reusing inter-

1.3 Multiobjective Linear Program 22

Load h-

MOLP

Solution

Obtained

Hot-

start?

Var-

fix/const-add

Stop?

Solve LP

Figure 1.9: Iterative LP solves in LM with hot-start

nal matrix factorization available after the LP solve and results in dramatic performance

improvement compared to the situation where we do not consider hot-start.

Reoptimization helps to solve a new model by applying the available solution of a

similar model with slight modification in the rhs vector, cost vector, bounds of variables,

and coefficient matrix. Figure 1.9 illustrates the flow of LP procedure and its compo-

nents. LM loads the h-MOLP problem and solves the current LP. It checks the stopping

conditions. If it covers all the objectives or the solution of the current LP is unique, the

process is terminated. Otherwise, it preserves the preference among objective functions

by the variable-fixing or the constraint-addition rule and then it checks if reoptimization

is enabled. If so, hot-start (or warm-start) is used to solve the LP with a new updated

objective function. The available basis for the new LP, which is always primal feasible,

makes hot-start favourable. Because objective functions differ in each LP solve, we can

not guarantee dual feasibility. The reason for primal feasibility is that the constraint set

of the new LP is the subset of the constraint set of the recently solved LP obtained af-

ter adding a constraint or updating the bounds. In Chapter 3, we refer to this subset of

constraint-set as the “face” of the constraint set of the LP solved. We will provide some

results on it and also give a theoretical guarantee of primal feasibility.

Reoptimization does not always help. In Chapter 3, we will see that there are instances

for which it is better to avoid the available starting solution and start afresh. We will also

1.4 Master Planning in Supply Chain Planning 23

discuss that instead of an ad-hoc decision, a systematic reoptimization in LM can speed

up the process. We highlight the challenges in popular lexicographic methods, mainly the

limitations in solving a sequence of LPs in their procedures, and devise a new strategy for

an adaptive reoptimization that closely look into the fractional changes in LP parameters.

1.4 Master Planning in Supply Chain Planning

At a high level, we consider a supply chain as a network of two or more legally separate

organizations linked by material, information, and financial flows. These organizations

may be suppliers, manufacturing plants and inventory locations, transportation services,

and the ultimate customers. The recurring task of integrating these organizations along

a supply chain and coordinating material, information, and financial flows to fulfil the

customer demands to improve the competitiveness of a supply chain as a whole is known

as supply chain management [47]. Oliver and Webber, in 1982, coined the terms sup-

ply chain (SC) and supply chain management (SCM) and defined SCM as the “process

of planning, implementing and controlling the operations of the supply chain with the

purpose to satisfy customer requirements as efficiently as possible” [48]. However, SCM

lacks a universally accepted definition as the supply chain evolved with time. Other than

the firms, external influencing factors redefine the concept of SCM [49]. Initially, firms

used to operate locally, and most of the manufacturers owned their own factories - there

was no concept of outsourcing. Today, companies are connected to international organi-

zations and are agile enough to handle global impacts, such as Covid 19, global inflation,

wars, etc. From managing the flows of materials and information to addressing the inter-

national effect, SCM changes its role as it evolves.

As per the “SCOR-Model”, a standard for representing, analysing, and configur-

ing supply chain at a high level, SCM consists of five components - planning, sourcing,

making, delivering, and returning [50].

1. Planning is the management of balancing resource capacities with demand require-

ments and the communication of plans across the supply chain. It also covers mea-

suring supply chain performance and managing inventory, assets, and transporta-

tion.

2. Sourcing is managing suppliers that procures goods and services to meet demand

efficiently and economically.

3. Making is responsible for each action that transforms raw materials into the final

product to meet planned and current demand.

1.4 Master Planning in Supply Chain Planning 24

4. Delivering is the component that covers all the steps necessary for order manage-

ment, warehouse management, and reception of products at a customer’s location,

together with installation. It includes all responsibility to have seamless delivery to

consumers, utilizing the freights -road, rail, and air.

5. Returning is the management of post-delivery customer services. It includes return-

ing defective items or excess supply chain products.

Supply Chain Planning (SCP) is an essential aspect of SCM. It is the preparation

process for sequencing activities in the supply chain - to answer a question about the next

scheduled task on a respective machine, to optimize the delivery of goods, services and

information from supplier to customer, and to balance supply and demand. An advanced

planning system (APS) is a tool that integrates all the different planning processes in

supply chain planning across the other components of the supply chain [51]. It uses

solution approaches such as mathematical programming or metaheuristics and associates

various planning tasks with supply chain processes. The supply chain planning matrix

(SCPM), the underlying structure of APS, categorises planning tasks under two aspects:

1) planning horizon - it classifies the planning into long-term, mid-term, and short-term

planning, and 2) supply chain processes - it divides the plan from most upstream to most

downstream sectors in the supply chain. Figure 1.10 [52] illustrates various planning tasks

along the supply chain. We focus on a “master planning” that deals with medium-term

procurement, production, and distribution planning.

Figure 1.10: Supply Chain Planning Matrix

1.4 Master Planning in Supply Chain Planning 25

Master planning looks for the most efficient way to meet demand forecasts and cus-

tomer requirements. Association for Supply Chain Management (APICS)[53] defines

master planning as “A group of business processes that includes the following activities:

demand management (which includes forecasting and order servicing); production and

resource planning; and master scheduling (which includes the master schedule and the

rough-cut capacity plan)”. To understand the importance of master planning in the indus-

try, let us think about what will happen if we do not consider master planning. Without

a master planner, there will be a lack of coordination between sales and production ends.

Suppose production is not aware of the time and amount of bulk orders. In that case, it

will produce as per a regular schedule, leading to not meeting the demand or overpro-

duction and thus the inventory overhead. Sudden information about bulk manufacturing

of items might not help meet the demand requirement as the raw material would not be

readily available for sudden large production. If you cannot meet the customer demand

on time, you will lose the customer. Master planning consists of three major segments of

supply chain processes 1) demand management, 2) sales and operations plan, and 3) mas-

ter production schedule. Demand management (DM) manages forecasted and customer

demand orders. The previous sales history, order history, and forecasts are scrutinized to

the consensus demand forecast. DM is usually a monthly process. If the supply is limited,

prioritizing the forecasted consensus demand is also essential. The demand information is

then input to sales and operation planning (S&OP) and master production schedule (MPS)

segments. S&OP integrates sales, marketing, development, manufacturing, sourcing, and

financial plans with the available strategic plan and demand pictures. Its two primary aims

are 1) to balance supply and demand through integration between company departments

and with suppliers and customers and 2) the alignment of the strategic plan and the op-

erational plan of a company. At a high level, S&OP gives the business the blueprint or a

‘game-plan.’ The responsibility of an MPS is to use this blueprint and the demand details

obtained from DM. In this thesis, our contribution towards industry work is on MPS.

1.4.1 Master Production Schedule

A master production schedule (MPS) is a mid-term production plan that lists what

the company plans to produce. It expresses the planning for the production of each com-

modity in specific configurations, quantities, and dates. We refer the reader to [54, 55, 15]

for details of the objectives and goals of MPS.

MPS provides a rough-cut capacity plan of what and when needs to be produced

based on the required information of quantity and date as input demand list. Other input

information includes inventory, production lead time, and resource capacity. The output

1.4 Master Planning in Supply Chain Planning 26

MPS obtains the information about the producing items, the quantities available by the

due date, the delay in meeting the demands, the resource capacity required, and other

information that feeds into a materials requirements planning (MRP) schedule. These

outputs form many business objectives, such as maximizing demand requirements, mini-

mizing backlog in production, minimizing inventory at various points in the supply chain,

minimizing safety stock violations, etc. Some of the industries also cover distribution

planning along with production planning. Considering all of them together makes MPS

complex, as some conflict with the varied scale of units, and there is a trade-off in optimal

value selection. This complexity in MPS has attracted researches to model it to multiob-

jective optimization problem and solve them with various available methods, such a goal

programming [56], multi-objective programming (MOP) [57, 58, 59, 60] and evolutionary

algorithms [61, 62, 63, 64]. Some industries set priority among the business objectives

considered under MPS in order to make the solving method simpler. A hierarchical-

based process, such as the lexicographic procedure, is simple to obtain the Pareto optimal

solution for MPS. [59], [60] attempted LM for solving biobjective problem and in multi-

objective production planning problem. We focus on explaining a simplistic hierarchical

model for a manufacturing firm to understand MPS. LM is used to solve this model.

Mathematical Modeling of Master Production Schedule

For mathematical modeling of MPS in a given supply chain problem, we have the follow-

ing information:

1. a set of resources with known capacities and a list of operations utilizing the re-

spective resources,

2. a list of on-hand inventory such as raw materials, fixed goods, etc., and the rate of

production or consumption of raw material, intermediate and finished goods,

3. a list of customer demand requirements and set of business requirements in the

form of cost functions, such as minimizing unmet demand, minimizing inventory,

minimizing safety stock requirement violation, etc.,

4. production horizon that consists of discrete-time intervals, each called bucket, and

associated parameters such as resource load limit per bucket in the horizon.

With this information set, the planner must optimize each business requirement without

any violation of the hierarchy.

Let R and I denote the index sets of resources and inventory items available in the

production process. Let O be the index set of operations with subsets Ok ⊆ O that can

1.4 Master Planning in Supply Chain Planning 27

utilize the resource rk ∈ R. A known amount ‘load_per’ is the amount of resource utilized

by one unit of operation. Let us consider there is a demand of d̃ j
tx

, where j and tx denote

the corresponding item code and the due date to receive the demand requirement.

Let us define the unknown decision variables cr
1, c

r
2, . . . c

r
t̃

to be the amount of re-

source (associated to each resource r ∈ R) required to process the associated operations at

time bucket t = 1, 2, 3, . . . , t̃. Each variable cr
t is upper bounded by the known amount of

resource, maximum capacity(max_cr
t). Similarly, the decision variable opi

j, t defines the

operation i ∈ O j with the resource j utilizes at time bucket t that is needed to produce one

unit of product item. Associated to each inventory location i ∈ I and resource type j, a

decision variable bi
j,t defines the amount of inventory carried from time bucket t to t + 1.

We also define an associated decision variable xd j
tx

that denote the demand (of type j) that

could be satisfied over the given due date tx over the known supply chain settings.

The bucket to bucket planning of the supply chain creates a network structure that

helps in posing a network-type mathematical formulation. For a simplistic formulation,

assume there is only one resource r that can load three operations O1,O2 and O3. Here

Or = {1, 2, 3} is the index set of production operations and, r = 1 is the resource type.

Each operation type consumes raw material (available in infinite amounts) and produces

the corresponding finished goods d1, d2, and d3.

We set the planning horizon as a daily bucket window, t = 1, . . . ,T days. We can

simplify it by considering load_per, the rate at which an operation consumes a resource,

to one. Lead time is set to zero. We set consume_per (produce_per), the rate at which a

manufacturing operation consumes (produces) items, to one.

The demand requirements for the finished products are: d̃1
t1 units of item d1 on

t = t1 day, d̃2
t2 units of item d2 on t = t2 day, and d̃3

t3 units of item d3 on t = t3 day. The

requirement of demands is of equal priority. MPS can be mathematically formulated with

demand satisfaction as one of the business requirements as follows:

LP1: obj1:= min−xd1
t1 − xd2

t2 − xd3
t3

subject to
∑
i∈O1

opi
1,t − c1

t ≤ 0, for all t = 1, 2, 3, . . . ,T ,

opi
1,1 − bi

1,1 = 0 for all i = 1, 2, 3,

opi
1,2 + bi

1,1 − bi
1,2 = 0 for all i = 1, 2, 3,

...

opi
1,ti + bi

1,ti−1 − bi
1,ti − xdi

ti = 0 for all i = 1, 2, 3,

bound: 0 ≤ xdi
ti ≤ d̃i

ti for all demand item i = 1, 2, 3,

0 ≤ c1
t ≤ max_c1

t for all bucket t = 1, 2, 3, . . . ,T ,

1.5 Manufacturing Campaign Planning 28

opi
1,t, b

i
1,t ≥ 0 for all i = 1, 2, 3, and t = 1, 2, 3 . . . ,T . (1.12)

LP1 consists of inventory balance constraints that balance the total inflow, total outflow,

and inventory carryover of materials at a location and a particular time bucket, and re-

source load constraints that consider the capacity utilization of resources. The objective

function used in LP1 is to minimize unmet demand (equivalent to maximizing demand

satisfaction). We also need to consider other key performance indicators (KPIs) required

for MPS. Optimizing them simultaneously over the given supply chain constraints is not

possible. We solve them in a hierarchy by associating each business requirement with a

priority value by modeling it to a h-MOLP. The preference of objectives depends upon

the decision of the planner. Generally, minimizing unmet demand is set as the highest pri-

ority demand. It is followed by the objective of minimizing backlog. The backlog refers

to the quantity of those unfulfilled demand orders delivered to the customer after the due

date. The objective is to minimize such delays in meeting demands. Decision-makers also

consider other objectives for the MPS process, such as minimizing the operation earliness

(i.e., reducing early production), minimizing time-based and amount-based safety-stock

requirements violations, inventory, and other critical business objectives. The selection

of these objective functions and their priorities are industry-specific. Moreover, for large-

scale industries, the mid-term period sometimes spans one year, involving hundreds of

business objectives. It leads to a h-MOLP formulation with millions of constraints and

variables requiring many LP solver calls. In Chapter 4, we discuss MPS with a potato chip

industry, a hypothetical model, and devise methods to solve them faster than the existing

conventional methods. We also provide the detail of implementing a new similarity-based

lexicographic process for large-scale MPS.

1.5 Manufacturing Campaign Planning

Every manufacturing industry has limitations that may restrict products manufactured

on demand. Such limitations are resource constraints, financial limitations, inventory-

related issues, etc. Here, we deal with a manufacturing system facing resource constraints

where specific resources require setups to support multiple operations. Some process

industries with heavy set-up times and additional sequence-dependent constraints that

produce various products from the same assembly line face a trade-off between inventory

and production changeover. Figure 1.11 shows a process industry, for example, a beverage

industry.

1.5 Manufacturing Campaign Planning 29

Figure 1.11: Constrained Resource in a Simplistic Supply Chain Model

Two operations that consume intermediate items share a tank, known as a shared resource.

Such situations mainly occur in manufacturing systems that produce similar products with

minor changes. In the beverage industry, making soft drinks with different flavors needs to

clean the tank to remove the previous flavors and add a new flavor. Also, some constrained

resources are blending tanks, which mix different types of intermediate products, and can

be used only to make one beverage category, for example, a flavor of soft drink. The

Setup-change (cleaning) of such tanks from one kind of production to another requires

a significant amount of time. Similarly, in the glass manufacturing industry, where the

oven can only be used to produce one color of glass at a time, for example, clear, green,

or brown, and there can be a significant amount of time required to change from one

color to another. In chemical industry, to produce one chemical item for another requires

cleaning up the chemical containers. Switching from one type of product to another

requires an overhead. We call it changeover time. It is time-consuming and costly. It

is necessary to manufacture on time to meet the customer requirement of various types

of product items timely. However, deciding when to switch the production from one

type of product to another is difficult. A frequent switch will incur high changeover time

and lead to increased set-up costs, and less frequent will impact customer satisfaction if

demand is unmet. Also, with the seldom changeover, producing every type of product

beforehand leads to an inventory problem. Such manufacturing problems are known as

campaign problems, and the computed manufacturing orders based on time or quantity by

applying campaign planning to the production process are called the campaigns. We need

a planning strategy that avoids the campaign problem, an MPS that provides the campaign

for production such that:

1. there should not be a degradation in productivity

1.5 Manufacturing Campaign Planning 30

2. customer demand requirements should not be unsatisfied

3. there should not be an excess inventory

It is essential to consider campaign constraints during planning. In most industries, shared

resources that load a similar group of operations consist of complicated changeovers that

are sequence-dependent. If we do not consider it during planning, the resulting plan

becomes infeasible during scheduling.

Research on campaign planning has always been active and challenging. Many

studies related to campaign planning problems could be found in the literature on setup

minimization, scheduling in process industries, manufacturing campaign planning, and

case studies that discuss the campaign planning challenges in some specific plants [65,

66, 67, 68, 69]. However, we limit ourselves to literature focusing on the mathematical

formulation for MPS with campaign planning restrictions. The MILP-based campaign

scheduling in a chemical plant is studied in [70]. In this, scheduling is done on short or

mid-term production planning in the continuous time frame.

This problem involves making discrete decisions (discussed in the later section) that

require a MIP formulation. In most campaign planners, LP can be used as a guide to

determine the campaign plan for sets of resources. Advanced production scheduling for

batch plants in process industries is the work done by Neumann et al. [71] that formulates

an MINLP to do the production schedule. Some literature discusses campaign planning

with case studies such as food processing [72] and chemical plant [70], which use the

heuristic method. C. Suerie describes the model based on a standard lot-sizing of PLSP

(proportional lot-sizing and scheduling problem)[73, 74]. Unlike the above models that

explicitly use the campaign as a discrete variable and minimize setup time and holding

cost separately, [75] by NB Kamath, et al. includes campaign planning with MPS heuris-

tically by imposing campaign constraints locally. It proceeds in the following steps: First,

it does the production planning, considering all business objectives hierarchically with-

out looking into any violation of campaign planning restriction. This computed planning

helps to evaluate the weighted consumption profile (WCP), a measure used to set the pri-

ority values for each operation. Then, planning violations are avoided by inspecting each

bucket by turning assembly operations off or on as per their priorities. We refer to this as

the ‘heuristic method’. We observe that the heuristic method imposes the campaign con-

straints at each campaign bucket and then resolves the MPS. Thus for every bucket, there

is an MPS run which is computationally expensive. Further, the plan quality obtained is

sensitive and relies on weights chosen for the WCP computation, leading to a suboptimal

plan.

1.5 Manufacturing Campaign Planning 31

We propose two methods to address these issues:

1. Improve the ‘heuristic method’ by formulating the campaign planning problem as a

sequential decision problem and finding the ideal parameter values using the Cross-

entropy method [76]. We call it ‘improved-heuristic’. and,

2. Reformulate the MPS model by incorporating campaign constraints. We call it the

“exact-method”. The complexity is that the supply chain constraint set changes

from continuous to an integer. The benefits are 1) the model returns a globally

optimal solution by a single MILP solver call, and 2) it computes other important

KPIs without violating the campaign constraints and avoiding additional modeling

effort.

The details of the challenges and the proposed methods are discussed in Chapter 5. A

mathematical program with integrality constraints is modeled for the exact method. This

mathematical model includes all the campaign planning restrictions of the whole MPS

planning horizon. Now we explain a sequential decision problem and the Cross-entropy

method used for an improved-heuristic for the MPS with the CP.

1.5.1 Sequential Decision Making

Sequential decision making is a situation where a decision maker’s objective de-

pends on the sequence of decisions. We also call this decision objective a utility or a

long-term reward. The sequential decision-making problem (SDP) is the problem of se-

lecting a sequence of actions from a set of sequences of actions to obtain the best possible

outcome. Such a sequence is known as a policy. The decision maker’s objective is to

compute the best policy. SDP under a certain domain (i.e., with the certainty of actions

and rewards) can be solved using some search algorithms. The solution in such a case

will be the sequence of steps that leads to an optimal state - for example, solving mixed-

integer linear programs using the branch-and-bound method. Here the series of branching

decisions leads to the node whose associated LP-relaxation provides the optimal solution.

On the other hand, SDP with uncertain domains requires a set of action-state pairs in

a sequence that leads to the optimal state. For example, the Markov decision problem

(MDP), a stochastic sequential decision model with a memorylessness property, is solved

using some methods based on reinforcement learning (RL). In our context, we use the

term “SDP” for SDP under uncertainty, unless otherwise mentioned. In engineering field,

we find them in the optimal control area. In operations research area, it is available as

dynamic programming. In neuroscience, we can study SDP as reward systems. In day-to-

day life, a chess game is an example of sequential decision making where the decision to

1.5 Manufacturing Campaign Planning 32

Figure 1.12: Update in a state when an agent interacts with the environment through

action (Image taken from [1])

win a match can not be decided by a single action but by a sequence of moves. A player

needs to come up with a set of moves that leads him to the win state without sacrific-

ing their more number of pieces. Here, the game’s moving from one state to another is

associated with probability. Formally, SDP consists of the following components:

1. S – a set of all possible states of the system.

2. A – a set of all possible actions when a system is occupied with a given state.

3. M – a transition probability matrix, consists of the probability of moving to one

state from the current state and action taken. In the case of a situation where transi-

tion probability is only conditioned over the current state and independent from the

current action taken, we can make such transition as state transition probability. We

assume that the decision maker’s information of M is known.

4. T – a set, the decision time horizon.

5. R(state, action) – a reward function representing an expected reward obtained when

the system is currently in a given state, state, and taking the action, action.

MDP, an SDP model generally studied in RL due to it memorylessness property which

says that the current state captures all the information from the past that is relevant in

determining the future states and rewards, i.e., Prob(S t+1|S t) = Prob(S t+1|S 1, . . . , S t).

Figure 1.12 depicts the interaction of an agent in the environment. The current state

S t updated to S t+1 after action, At is taken. This action results in the current reward,

Rt. The agent’s objective is to maximize a specific reward function (utility) with some

pre-decided standard reward criteria such as

1.5 Manufacturing Campaign Planning 33

1. the utility over the finite horizon - It is the sum of all the expected rewards obtained

from updating the state from starting to the state at the last finite known horizon.

We can write it as a utility given the initial state m and the final period T , V(m) =

maxπ Eπ

∑T
t=0 Rt.

2. the discounted reward function over the infinite horizon - Here, the reward function

= maxπ Eπ

∑∞
t=0 Rtα

t, where α is the discount factor.

3. reward is average, i.e., reward function = maxπ lim inf
T→∞

1
T Eπ

∑T−1
t=0 Rt. Here Eπ de-

notes the expectation over some probability measure induced by a policy π.

If the reward function, Rt, and transition probability matrix, M, are known to an agent,

several strategies exist to find the policy that maximizes the return. On the other hand,

if an agent is unaware of the model or assumes that information of Rt and M are not

(entirely) available, we need to have a learning scheme to obtain the optimal policy that

leads to maximum return. Here in our study, we focus on the Cross-entropy method, an

evolutionary algorithm to learn the model and obtain the optimal policy.

1.5.2 Cross-Entropy Method

From a biological perspective, the Cross-entropy method (CE) is an evolutionary

algorithm where some well-fit individual survives from the population and governs the

future generation. From a mathematical context, it is a derivative-free optimization, where

the problem/model is considered a black box, i.e., we do not have any information about

the model. We know that the black box takes some input and provides output without

detailed mathematical processing.

CE has a wide range of applications. The literature survey on the application of CE

range from the application of machine learning (ML) and the heuristics based on combi-

natorial optimization, such as policy learning [77, 76], black box optimization for TSP,

Maxcut problems, etc., to the industries, such as facility layout [78], buffer allocation[79],

manufacturing planning[80, 81], etc. The CE involves an iterative procedure. Each itera-

tion comprises two phases - generating a random data sample using some distribution rule

and updating the distribution rule’s parameters to produce a “better" sample in the next

iteration. Steps followed in the CE in mentioned in Algorithm 2.

At any time step t, given a state S t and a set of possible actions AS t , the controller has

to take action a∗t ∈ AS t such that the total reward i.e., total score achieved at the termination

stage be maximized. In other words, we must have a “good” policy to achieve this total

reward. Given a state S t and an action set AS t as an input, for each time step t, from start

1.5 Manufacturing Campaign Planning 34

Algorithm 2: Cross-entropy Method
Initialize: Choose initial parameters - mean µ0i and standard deviation σ0i, for

individuals wi, corresponding to the weight vector of size s:

W0 = (w01, . . . , w0s). Set iteration number k = 0 and the total number of

iterations = maxItr.

Step 1: Generate n random sample vectors X j = (X j1, . . . , X js), j = 1, . . . , n

using normal sample distribution with parameter vectors (µk1, . . . , µks) and

(σk1, . . . , σks).

for every elements in a vector using normal sample distribution with

parameter vectors (µk1, µk2, . . . , µks) and (σk1, σk2, . . . , σks).

Step 2: For each generated sample as an input weight vector, use some policy

defined by the decision maker, based on evaluation function, and compute the

utility value Out j ∀ j = 1, . . . , n.

Step 3: Sort sample vectors by generated output values (in descending order).

Assign the top output value as OutTopk.

Step 4: if k > itrn or output value starts converging then
Exit with Wk = OutTopk and corresponding input weight vector.

else
k = k + 1.

end
Step 5: Choose top m sample vectors and evaluate mean and standard deviation:

µki =
1
m

m∑
j=1

X ji and σki =

√√
1
m

m∑
j=0

(µki − X ji)2 ∀i = 1, . . . , s.

and return to Step 1.

1.6 Outline of Thesis and Contributions 35

till the termination, we obtain the following action:

a∗t = arg max
ai∈AS t

{Exp(Reward(S t, ai))}.

Here (S t, ai) is a state obtained by taking an action ai on state S t.
a∗t can be extended as,

a∗t = arg max
ai∈AS t

∑
{
S j ∈ set of possible states after (S t, ai)

}Prob((S t, ai), S j) × Reward(S j).

where Prob((S t, ai), S j) is the transition probability from (S t, ai) to S j and

Reward(S j) is maximum evaluation-value of the possible next state, i.e.,

Reward(S j) = max
aq∈AS j

{Eval(S j, aq)}.

Evaluation function: The Evaluation function has the form :

Eval = w1 × f1 + w2 × f2 + w3 × f3 . . . + wn × fn,

where Eval, gives evaluation-values of the given configuration of the states. It is

a linear combinations of the features (f1, f2, f3, . . . , fn) weighted by the coefficients

(w1, w2, w3, . . . , wn). Note that each feature defines “goodness” of the configuration of

a state and corresponding weights.

The ‘heuristic method’ generates and solves a sequence of linear models. We can

formulate it as an SDP. The planner (the agent), at each time bucket (the decision epoch),

takes an effective campaign decision (the action). The decision to stop some running oper-

ations and start the idle process changes the configuration of the campaign from one state

to another. A set of key performance indicators (KPIs) can form an element of a suitable

utility function for a good campaign decision criteria. A MIP and SDP formulations of

the MPS with campaign planning constraints using the CE method are discussed in detail

in Chapter 5. We find the features and corresponding weights required in CE for policy

learning for the CP problem. Further, we discuss a case study focusing on the industrial

outlook and challenges of a tire manufacturing industry.

1.6 Outline of Thesis and Contributions

We start with the literature survey of some popular variable-branching procedures and

highlight the challenges in reliability branching, the state-of-the-art branching rule, in a

branch-and-bound algorithm, in Chapter 2. We exploit a concept known as “similarity be-

tween nodes” that addresses the significant challenges that popular branching rules face

1.6 Outline of Thesis and Contributions 36

when using strong branching, and introduce a new branching procedure. Its connection

with other branching rules is also discussed. Further, computational results on benchmark

instances are presented and compared with the default branching scheme of a solver, Coin-

or branch-and-cut (CBC). In Chapter 3, we obtain some theoretical developments related

to lexicographic methods. We highlight the challenges and present a new lexicographic

method, a variant of the variable-fixing rule, that exploits the structure of the underlying

hierarchical model, a h-MOLP. Further, we provide some computational experiments and

compare them with other methods. Chapters 4 and 5 provide our contribution to the in-

dustry wherein the master production schedule posed to the h-MOLP model. In Chapter

4, along with modeling the MPS, we investigate the procedure to solve this model effi-

ciently by improving the existing methods and using the new lexicographic discussed in

Chapter 3. In Chapter 5, we discuss the extension of work on MPS, discussed in Chapter

4, where we address the challenges of enhancing the mathematical modeling of MPS that

also considers the campaign planning problem, which we generally encounter in some

process industries. We do a case study on the importance of campaign planning in one of

the tire manufacturing industries. We summarize the salient contributions of this thesis:

1. We show the limitations of reliability Branching, the state-of-the-art branching pro-

cedure in a branch-and-bound algorithm. We define a concept, “similarity between

nodes”, to find the fraction of similarity among a sequence of ‘easy’ subproblems

solved to obtain the solution of the ‘difficult’ MIP problem using a branch-and-

bound algorithm.

2. Using the concept of “similarity”, we develop a new branching rule, “SimBranch”,

that addresses one of the significant issues in reliability branching. We also ob-

tain its connection with other popular branching schemes. Detailed computational

results are obtained on benchmark MIP instances by implementing SimBranch on

CBC, an open-source MIP solver, and results are compared with the default branch-

ing rule in CBC.

3. We show the theoretical results on the equivalence between the variable-fixing rule

and the constraint-addition, two popular LMs for a h-MOLP. We define a concept,

“similarity between LPs” to find the fraction of similarity among ‘easy’ LP prob-

lems solved to obtain the solution of the ‘difficult’ h-MOLP with LMs. With this

concept, we develop a new LM, “SimLex”, that effectively exploits reoptimization

between LPs for faster solution of the h-MOLP and show its computational effec-

tiveness over existing LMs on some available benchmark problems.

1.6 Outline of Thesis and Contributions 37

4. We formulate MPS to h-MOLP and obtain some techniques to speed up the existing

LMs for its solution. The supply chain of some consumer products and goods

industries is studied to obtain the MPS and find the impact of preferring ‘SimLex’

over other LMS.

5. An MPS that respects campaign planning constraints are mapped as a sequential

decision-making problem. An evolutionary method, the Cross-entropy method, is

used to solve it.

6. We provide a mathematical model for MPS that respects campaign planning con-

straints for large-scale industries. The MPS of the tire manufacturing industries are

obtained using this model and compared with the existing method.

7. We perform a detailed case study of the importance of campaign planning in one of

the tire manufacturing industries and highlight managers’ and planners’ viewpoints

on it.

Chapter 2

Similarity-based Branching for Integer
Optimization

2.1 Introduction

We have introduced a branching scheme in the branch-and-bound algorithm (B&B), with

an example in the previous chapter. In this chapter, we detail some branching procedures

and investigate the issues reliability branching, one of the variable branching schemes,

faces in solving mixed-integer linear programs (MILP). One of the issues we mainly fo-

cus on is the unnecessary use of strong branching calls at nodes in the branching pro-

cess. The strong branching simulates the change in the lower bound by solving two

LP-relaxations for each branching candidate that result in fewer nodes in the branch-and-

bound tree (B&B tree). Achterberg, in his research [82], finds that it results in 65% fewer

search tree nodes on average, compared to the state-of-the-art hybrid branching strategy,

but with the expense of an increase of up to 44% in computation time. He introduces

the concept of a reliable candidate and develops a new hybrid rule, known as reliability

branching, by combining pseudocosts branching and strong branching techniques. How-

ever, reliability branching also suffers from the unnecessary use of strong branching calls,

which we will discuss in Section 2.3.

The proper use of strong branching calls to improve branching schemes motivates us

to devise the concept of ‘similarity’ between the current node and the nodes already ex-

plored in the tree. It defines a similarity measure between nodes computed using relevant

features of the relaxation like bounds on variables. Using the information from simi-

lar nodes, we estimate the change in the objective value for each branching candidate,

much like reliability branching, to select the variable to branch on. The idea develops

into a new branching procedure that effectively exploits the information generated from

38

2.2 Branching Schemes 39

explored nodes. We call it SimBranch. It tries only a few strong branching calls placed

strategically in a few search tree nodes and only uses the collected strong branching in-

formation when relevant. SimBranch is generic - we can relate it with other popular

branching procedures, such as strong branching, reliability branching, and pseudocost

branching. Later in this chapter, we show that this similarity-based strategic decision of

using relevant strong branching calls can improve the speed of solving various benchmark

MILPs. We recall problem (1.2), an MILP defined in Chapter 1:

MILP : minimize
x

cTx

subject to Y := {x ∈ Rn | Ax ≤ b, xi ∈ Z, i ∈ I}. (2.1)

For the sake of explanation of the SimBranch procedure, we assume that all the integer

decision variables in the MILP are binary, i.e., xi ∈ {0, 1}, i ∈ I. It forms the following

mixed binary program (MBP):

MBP : minimize
x

cTx

subject to B := {x ∈ Rn | Ax ≤ b, xi ∈ {0, 1}, i ∈ I}, (2.2)

Here B is the feasible set to the MBP. Other parameters used are the same as in problem

(2.1). The idea of similarity can be extended for general integer cases and possibly other

programs, like MINLP and CSP.

The remainder of the chapter is organized as follows. We provide a literature survey

of some popular branching procedures in Section 2.2. Section 2.3 discusses the issues

in reliability branching. The main idea of SimBranch is explained in Section 2.4. For-

mal notation, the algorithm and parameter selection guidelines are presented in Section

2.5, and the computational results on benchmark instances and summary of the work in

Section 2.6.

2.2 Branching Schemes

The objective of an ideal branching mechanism is to minimize the number of subproblems

(nodes) in the B&B that need to be evaluated. Also, the method should not be costly as

there might be a situation where the time to solve a problem is more to minimize the

evaluation of the total node. Its primary purpose should be to divide the feasible regions

Y of the MIP (2.1) into k, k ≥ 2 subregions, S 1, S 2, . . . , S k such that

Y = ∪k
i=1S i. (2.3)

2.2 Branching Schemes 40

The subregions will further create k MIPs, each with the same objective function of the

problem (2.1) but with different set of feasible points S 1, S 2, . . . , S k. In this thesis, we fo-

cus on a variable branching scheme that forms two subproblems after dividing the feasible

region by branching on the fractional variable. Branching on a variable is a simple way

to divide the feasible area that satisfies equation (2.3). In some cases, dividing the prob-

lem into more than two subproblems is effective [83, 84], but most procedures employ

splitting into only two subproblems by variable-based branching.

Let x̃ and zk be the optimal solution and optimal value to the current LP-relaxation

of a subproblem MIPk, an MILP associated with the node Nk at iteration k in the B&B

for solving the program (2.1). Consider Ck be the subset of I, an index set of variables

constrained to be integers, defined as:

Ck = {i ∈ I | x̃i < Z}.

A variable branching scheme that branches on xi ∈ Ck generates subproblems, MIPk−
i

and MIPk+
i , by adding two trivial inequalities, xi ≤ ⌊x̃i⌋ and xi ≥ ⌈x̃i⌉ respectively, in

the constraint set of MIPk (1.2.2). We represent subproblems MIPk−
i and MIPk+

i by the

nodes Nk−
i and Nk+

i , respectively, the left and right-side children of Nk in the tree. Let zk−
i

and zk+
i be the optimal objective values of the LP-relaxation of MIPk−

i and MIPk+
i . This

information at Nk, will be used to calculate the branching score needed to find an ideal

variable to branch on.

The notations we referred to for components and parameters in the variable branch-

ing process above will later help explain some well-known branching methods. In addi-

tion, we will also use the following terminology:

• An MILP is assumed to be of the form (2.1) and the mixed binary program (MBP)

will be of the form (2.2).

• Candidate set: Set Ck, the set of fractional variables that participates in the branch-

ing variable selection, we call it a candidate set at node Nk.

• Up-fractionality and Down-fractionality: For a candidate i ∈ Ck, up-franctionality,

and down-fractionality are defined as:

f +i := ⌈x̃i⌉ − x̃i and f −i := ⌊x̃i⌋ − x̃i. (2.4)

• Down-child and Up-child of Nk: Nk−
i and Nk+

i , the left and right child created after

branching on xi ∈ Ck at the node Nk, are called down-child and up-child.

2.2 Branching Schemes 41

• Relaxed-objective value at Nk: zk, the optimal objective value of the relaxation of

MIPk will be referred as relaxed-objective value at node Nk.

• Relaxed-down objective and Relaxed-up objective values at Nk: zk−
i and zk+

i , the

optimal objective values of the relaxation of MIPk−
i and MIPk+

i will be called as

relaxed-down and relaxed-up objective values at Nk.

• Branching node: A node Nk in the tree which calls branching operation.

• Branching variable or Ideal candidate at Nk: A candidate xi chosen for branching

from the candidate set Ck, using a given branching scheme at a node Nk, is called a

branching variable or an ideal candidate of that node.

2.2.1 Schemes based on Pseudocosts

The popular and highly used measure in selecting the branching variable is the esti-

mation of an average objective gain, known as pseudocosts. This section defines pseudo-

costs and describes the branch schemes based on it.

Pseudocost Branching

Pseudocosts branching is the scheme based on the scores that estimate the average objec-

tive gain of branching candidates. We call it a pseudocost score. Consider we are solving

an MILP using B&B and, at iteration k, we have processed the node Nk. Assume the can-

didate set and the relaxed-objective value at Nk are Ck and zk, respectively. Also, given

the branching variable xi, the relaxed-down and relaxed-up objective values are zk−
i and

zk+
i , respectively.

Using the above information at Nk, we define the unit objective gain for down-child

and up-child as follows:

∆k−
i =

zk−
i − zk

f −i
and ∆k+

i =
zk+

i − zk

f +i
. (2.5)

At node N t, t > k with available candidate set Ct, we compute pseudocosts, the down

score and the up score, for each branching candidate xi, i ∈ Ct as follows:

Ψt−
i =

∑
k∈{ j|xi∈C j}

∆k−
i

ηt−
i

and Ψt+
i =

∑
k∈{ j|xi∈C j}

∆k+
i

ηt+
i

. (2.6)

Here ηt−
i is the number of nodes processed, up to iteration t, whose 1) selected branching

candidate was xi, and 2) down-child provided a feasible solution. Analogously we define

2.2 Branching Schemes 42

ηt+
i where up-child provided a feasible solution. C j is the candidate set at branching node

N j, 1 ≤ j < t.

Pseudocost branching uses Ψt−
i and Ψt+

i , pseudocosts scores to select the branching

variable as follows:

i∗ = arg max
i∈Ct
{si := W(Ψt−

i , f −i ,Ψ
t+
i , f +i)}. (2.7)

Here si is a score associated with the candidate xi, defined as a function that takes pseu-

docosts and fractionality scores as input. Beninchou et al. [19] provided the following

score function to choose the branching variable xi∗:

si = min{Ψt−
i · f −i ,Ψ

t+
i · f +i }. (2.8)

Later Linderoth et al. [85] suggested another selection rule, a linear approach with the

use of the parameter α ∈ [0, 1] as

si = α ·min{Ψt−
i · f −i ,Ψ

t+
i · f +i } + (1 − α) ·max{Ψt−

i · f −i ,Ψ
t+
i · f +i } (2.9)

Achterberg [82] proposed the following product-based rule with ϵ ∈ [0, 1]:

si = max{Ψt−
i , ϵ} ·max{Ψt+

i , ϵ} (2.10)

This rule, with the setting of ϵ = 0.6 outperforms the linear approach by 14% even with

the best possible tunning of α.

One of the difficulties with pseudocost branching is that it does not have any infor-

mation about the past branching decisions at the beginning of the algorithm. The pseu-

docosts associated to candidates must be initialized at the early nodes before using it to

compute the branching variable using equation (2.7) in somewhere later nodes for the

branching decision. One basic setting rule is to initialize Ψt−
i = 1, if all the down scores

are uninitialized, i.e., there is no xi such that ηt−
i > 0. If some of them are initialized with

some scores, the uninitializedΨt−
i will be equal to the average of that scores. We similarly

initialize Ψt+
i .

The branching decisions at the early nodes in the B&B tree have enormous impacts

on the tree’s structure and the underlying subproblems. Gauthier et al. [19] initially

studied it. The mechanism of initializing variables with uninitialized pseudocosts using

strong branching was later developed by Linderoth et al. [85]. It is a hybrid approach that

uses strong branching calls at the top nodes, at some fixed depth, and then to switches to

pseudocost branching. Achterberg improved this idea and introduced a term ‘reliability’

that used strong branching with pseudocost branching in more dynamic way.

2.2 Branching Schemes 43

Strong Branching

Applegate et al.[86] developed the idea of strong branching for solving the traveling

salesman problem. (We refer [87] to the reader for the problems and methods on trav-

eling salesman problem). In the process of selecting an ideal candidate to branch on, a

strong branching method first evaluates the LP-relaxations of the subproblems to the child

nodes to the current processing node with an MILP associated with it. The splitting of the

current problem into subproblems is done on some selected candidates from candidates

set by variable branching procedure.(see Section 1.2.2). The computed LP-relaxations

with respect to the branching candidate evaluates the improvement in dual bounds. A

candidate that returns the most improvement is selected as the ideal branching candidate.

Suppose, at iteration k, we have processed node Nk. Assume the candidate set and the

relaxed-objective value at Nk are Ck and zk, respectively. For a candidate xi, we compute

relaxed-down and relaxed-up objective values, zk−
i and zk+

i , respectively, by solving LP-

relaxations on the child nodes of Nk. Using objective gain, defined in equation (2.5), we

compute S Bi, a strong branching score, as follows:

S Bi = max{∆−i , ϵ} ·max{∆+i , ϵ}. (2.11)

The candidate xi∗ is selected as a branching variable with maximum strong branching

score, that is, i∗ = arg maxi{S Bi}.

If the strong branching score is computed for all the candidates in candidate set

Ck, given the score computation function, we can obtain the best branching variable lo-

cally.This strategy, known as full strong branching, is computationally costly as strong

branching explicitly solves two (up and down child) LP-relaxations for all the candidates

in Ck.

We can speed up the full strong branching by limiting the number of simplex itera-

tions in the LP-relaxation solves. Another way to improve the computation overhead is

by selecting a subset of Ck as branching candidates. Most solvers [27, 88, 89, 26] provide

the parameters to tune the simplex iterations, and number of candidates to participate for

strong branching.

Reliability Branching

Achterberg et al. [22] improved the idea of [85] by dynamically using strong branching

with pseudocost branching and developed a scheme known as reliability branching. It is

considered to be the state-of-the-art branching rule for almost all MIP/MINLP solvers.

Reliability branching combines strong branching with pseudocost branching by using

2.2 Branching Schemes 44

strong branching for the variables with uninitialized pseudocosts and those set to unre-

liable. A variable is reliable if it calls more than a fixed number of strong branching.

Otherwise, it is unreliable. This fixed number is called a threshold value.

Consider the relaxed-objective value zk and the candidate set Ck at Nk are available

to us. Suppose Nk−
i and Nk+

i are down and up child nodes of Nk, generated by branching

on the candidate xi, i ∈ Ck. The corresponding relaxed-objective values are zk−
i and zk+

i

obtained after solving LP-relaxation with a maximum α number of dual simplex itera-

tions. We first compute score si, for each xi, i ∈ Ck and pick the γ number of most scoring

candidates from Ck for the branching decision. The parameter γ controls the maximum

strong branching calls per node. For a candidate xi, we check min(η−i , η
+
i) < λ, a condi-

tion that ensures this strategy does not call strong branching on reliable candidate. Down

and up objective gains are computed by solving two LP-relaxation, one at each child node.

Besides γ and λ, a parameter α controls the computational overhead by limiting the dual

simplex iterations in solving of LP-relaxation of the MIPs associated with child nodes.

Using down and up gains, we compute the pseudocost score of all the chosen candidates

and pick the candidate with the best pseudocost score. One more parameter, β, a looka-

head value, is used to stop the evaluation if no new best candidate appears for the beta

number of successful candidates. Algorithm 3 mentions the steps in reliability branching

at node Nk.

We provide more insights on reliability branching in Section 2.3.

Lookahead Branching

Lookahead Branching [90] selects the branching variable by predicting the lower bounds

of grandchild nodes. It studies the impact of the current branching decision on the bounds

of grandchild nodes of the current node. Given a node N t at iteration t with the relaxed-

objective value z and candidate set Ct. Let us consider N t−
i and N t+

i are its down and up

child nodes with the relaxed-objective values, z−i and z+i , respectively. Further assume

that N t−−
i j and N t−+

i j are the down-child and up-child with relaxed-objective values, z−−i j and

z−+i j respectively, evaluated by branching the node N t−
i at x j, j ∈ Ct−

i . Similarly we have

objective values, z+−ik and z++ik by branching the node N t+
i at xk, k ∈ Ct+

i . Here Ct−
i and Ct+

i

are the candidate sets at down-child and down-child of N t, respectively. We depicts this

two level deep branching with notation in Figure 2.1.

Along with z−−i j , z
−+
i j , associated with N t−

i , we use indicator parameters ρ−−i j , ρ
−+
i j . They are

set to 1 if the corresponding nodes, N t−−
i j and N t−+

i j , would be pruned. Similarly we have

2.2 Branching Schemes 45

Algorithm 3: Reliability Branching
Initialize: i = 0, l = 1, and s∗prev = −∞

Step I: Calculate pseudocost score, s j (using 2.7) for each j ∈ Ck.

Step II: F := a list consists of candidates from the sorted Ck in non-increasing

order of their pseudocost scores. Assume len(F) is the size of F.

while i ≤ min (γ, len(F)) and min (η−j , η
+
j) < λ do

1. Compute ∆k−
F(i) and ∆k+

F(i), down and up objective gains (using the

expression 2.5). /* F(i) is the ith element in F */

2. Update Ψt−
F(i) and Ψt+

F(i), down and up pseudocosts (2.6) using the down

and up gain scores ;

3. Update pseudocost score sF(i). Compute s∗ = maxt∈F st.

if s∗prev < s∗ then
s∗prev = s∗ and l = 1.

else
if l < β then

Set l = l + 1.

else
Go to Step III.

end

end

end
Step III: Return with F(i).

2.2 Branching Schemes 46

z

z−i

z−−i j z−+i j

z+i

z+−ik z++ik

i ∈ Ct

j ∈ Ct−
i

k ∈ Ct+
i

xk ≤ ⌊x∗k⌋ xk ≥ ⌈x∗k⌉

xi ≥ ⌈x∗i ⌉xi ≤ ⌊x∗i ⌋

x j ≤ ⌊x∗j⌋ x j ≥ ⌈x∗j⌉

Figure 2.1: Child and grandchild nodes of a node in B&B tree

ρ+−ik , ρ
++
ik for the nodes N t−−

ik and N t−+
ik . A weighting function,

si = W(z, z−−i j , z−+i j , z+−ik , z−+ik , ρ
−−
i j , ρ

−+
i j , ρ

+−
ik , ρ

++
ik)

uses the computed objective values and the indicator parameter values and returns a score

si. The xi with maximum score is chosen to be an ideal candidate to branch on. We refer

[90] for the W function used for the score computation where the lookahead score com-

puted from the weighting function considers the objectives of minimizing the number of

grandchild nodes that are created and decrease the LP-relaxation bounds at the grandchild

nodes as much as possible.

Lookahead branching is even more expensive than strong branching as instead of

solving two LP-relaxations associated to the down and up child nodes, it requires solv-

ing many LP-relaxations, each associated with one grandchild. The computational result

shows that the idea can often significantly reduce the number of nodes in the search tree.

However, calling strong branching information at grandchild nodes leads to computational

overhead.

Hybrid Branching

Hybrid branching is a general branching rule that combines different branching schemes

to form an efficient mechanism, resulting in lesser node evaluation and improved com-

putation time in the B&B tree. Reliability branching is one of the examples of hybrid

branching that combines pseudocosts branching and strong branching using reliability

that dynamically use strong branching calls. Another hybrid scheme combines inference

branching (which will discuss later in this section) with reliability branching. The recent

hybrid scheme [91] is a default branching rule in the MILP solver, SCIP [89]. It combines

three branching techniques:

1. Inference branching for solving constraint satisfaction problems (CSP)

2. Variable state independent decaying sum [92]used for solving satisfiability prob-

lems (SAT)

2.2 Branching Schemes 47

3. Reliability branching for solving MIP

Variance-based Branching

Gregor Hendel [93] highlights the issue of sample variance in reliable scores in reliability

branching. He introduces a variance-based reliability scheme that updates the pseudocost

scores by using the sample variance of the past observation of each candidate. A subset

of variables with high variance is considered unreliable. These are the potential candidate

for “strong-branching." A subset of variables with low variance is considered unreliable.

They will use the pseudocosts score in the computation of the branching variable. The

method implemented in SCIP shows a promising result for effectively reducing the size of

branch-and-bound trees compared to the reliability branching, especially for large trees.

2.2.2 Some More Branching Rules

Random Branching

Random branching is the most basic branching scheme that does not use any information

from the LP-relaxation. It randomly selects a branching candidate from the candidate set

and does branching by creating the explicit bounds on it.

Most Infeasible Branching and Least Infeasible Branching

Most infeasible branching chooses a variable from the branching candidate whose frac-

tional part is close to 0.5. In contrast, the least infeasible branching determines the vari-

able x, whose fractional portion is closed to 0. Both the rules are rare in use - like random

branching, they yield an inferior performance.

Inference Branching

This branching rule, applied to MIP, is mainly inspired by the branching mechanism used

in the solvers (for example, SATZ [94]) that solve SAT/CSP instances where no objective

function is available. Branching decisions based on LP-relaxation of the objective value

is useless for such cases. For such a situation, one idea is to select a branching variable

that produces a more significant number of deductions in other variables after fixing a

value to it. Let us consider an instance with the following set of constraints:

x1 + x2 = 1,

x1 + x3 + x4,≤ 1

−x1 + z ≥ 3.

2.2 Branching Schemes 48

If we set x1 = 0, then the domain deduction on other variables is inferred to x2 = 1, z ≥ 3.

So the number of deductions is 2. Similarly, if x1 = 1, it implies x2 = x3 = x4 = 0 and

z ≥ 4. In that case, the number of inference deductions is 4. Similar to pseudocosts, an in-

ference value to a given variable is evaluated using the (previous and current) information

of the number of domain deductions on other variables defined (in [95]) as:

For up and down score on variable xi, i ∈ C, we have:

Φ+i =
φ+i
ν+i

and Φ−i =
φ−i
ν−i
.

Where φ+i and ν+i are the total number of inference deductions and the number of corre-

sponding subproblems on which domain propagation has already applied with respect to

variable xi. Domain propagation refers to the task of tightening the domains of variables

by inspecting the constraints and the current domains of other variables at a local subprob-

lem in the search tree. Similar to pseudocost branching, inference branching also suffers

from the problem of initializing the up and down scores. Like pseudocosts branching

uses strong branching for initializing variables with no initial pseudocost score, inference

branching uses presolving techniques such as probing on constraints. For presolving in

MIP, we refer to [96] and [82, Chapter 10].

Orbital Branching

Orbital branching is a branching method in B&B to solve the MIPs containing a great

deal of symmetry. Instead of using a single variable to branch on, it finds a group of

variables called orbits. In their work on orbital branching, J. Ostrowski, et al. developed

the idea of using orbit to solve covering and packing problems and implemented it in the

solver MINTO [97]. The method is limited to deal with the problem containing structured

symmetric groups. Consider an example where O be an index set containing indices of

the group (orbit) of variables. We can have the branching:
∑

i∈O xi ≥ 1 or
∑

i∈O xi ≤ 0.

Now, if at least one of the variables is set to one and all are equivalent, we can pick any

(t ∈ O) variable arbitrary, i.e., xt = 1 or
∑

i∈O xi = 0. In other way, if xt is chosen as a

branching variable, the nodes corresponding to x j, j ∈ O − {t} will be prune nodes.

Backdoor Branching

In the context of branching mechanism, a backdoor is a set of branching variables whose

integrality is enough to guarantee the optimal solution value to the MIP. Backdoor branch-

ing [98] iteratively uses the idea of a backdoor. It makes a sequence of short enumeration

runs in the “sampling mode”. (See sampling mode in [99]). At each sampling run, it

2.2 Branching Schemes 49

solves a set covering model and collects backdoor, a small cardinality set of branching

variables “covering” all fractional solutions in the current list. A MIP solver is then called

to solve the model by choosing the covered variables as the highest priority variable for

branching. It will provide a low-cost fraction solution. After the specific iteration, we

solve the final run considering MIP solver as a black box where, without looking into

any criteria, we set branching priority 1 to all the variables in the solution of the last set-

covering problem and 0 to the remaining ones. Backdoor branching is compared with the

default procedure in the state-of-art MIP solver IBM ILOG Cplex 12.2 [100]. The re-

sult shows that backdoor branching performs better on geometric mean average (if we do

not consider the sampling time) over on some specific instances taken from MIPLIB2003

[101], MIPLIB2010 [102] and COR@L [103], libraries of benchmark instances.

Nonchimerical Branching

Nonchimerical branching [104] improves strong branching by selectively using branching

candidate set. It only keeps the variables with nonchimerical fractionalities. It iteratively

removes the variables with chimerical fractionalities (the fractionality whose impact is

low in the LP solution) and ends up providing the candidate set with nonchimerical frac-

tionalities that significantly impact the objective function by rounding them up or down.

The strategy is implemented in the solver IBM ILOG Cplex 12.2 using callback functions

and compared with full strong branching and hybrid branching, with a specific number of

strong branching, on the benchmark instances considered in [22, 99] and chosen from the

MIPLIB2010. In specific settings, this strategy shows a good improvement.

Cloud Branching

Cloud branching [105] introduces a novel method to use the cloud of the LP-relaxation.

The cloud is a multiple alternative optimal (relaxation) solution. The branching method

exploits the information such as dual degeneracy from the cloud that can enhance branch-

ing rules, such as strong branching and pseudocost branching. The cloud branching, im-

plemented with full-strong branching, showed an encouraging reduction of the mean run

time than the default full strong branching on the standard MIP test sets on SCIP solver

[106] and opens the opportunity for other cloud-based branching rules.

Abstract Model-based Branching

Pierre Le Bodic and George Nemhauser present the first theoretical model for selecting

branching variables in their work on branching [107]. It introduces a polynomially solv-

2.2 Branching Schemes 50

able decision problem, called single variable branching (SVP), to study the model that

defines a simplistic B&B. The existing score functions which evaluate the pseudocosts

score for the branching candidates are discussed and verified with SVB that the score

functions used for pseudocosts computation are imperfect. Further, a Multiple Variable

Branching problem (MVP), the extension of the SVB problem, is introduced. These prob-

lems help analyze the model, present new scoring functions that analytically estimate the

dual bound improvement, and select the variable for branching. The abstract-based model

proves its efficiency in both simulated experiments and MIP instances.

ML-based branching

Some branching schemes apply machine learning-based concept. An approach by Elias

Khalil et al. [108] provides the machine learning framework for the branching variable

selection in B&B for MIPs. It learns surrogate functions to mimic strong branching by

solving the learn-to-rank problem [109]. The model uses three broad features: atomic

features, interaction features, and features equivalent to the degree-2 polynomial kernel.

These consist of 1) static information containing various information extracted from the

MIP problem and 2) the dynamic features extracted from the current and the solution his-

tory. Experiments on MIP benchmark instances by implementing it on IBM cplex 12.6.1

produces a significantly smaller search tree than existing heuristics finding it competitive

with a state-of-the-art commercial solver.

Similar work on a learning-based approximation to estimate the strong branching is

mentioned in [110]. It broadly collects two types of features, static and dynamic. Static

features are from input parameters in the MIP. Dynamic features are chosen from 1) so-

lution of the problem at a current node, such as Driebeek penalties [111], up and down-

fractionality in the solution, and 2) state of the optimization solution, such as a change

in objective value when a variable is chosen for branching. Once the features are col-

lected, an extremely randomized trees [112], a modified random forest algorithm, is used

for learning the branching heuristic function. The experiment of applying the strategy

showed promising results on some chosen instances from MIPLIB libraries.

Branching on Multi-aggregated Variables

Multi-aggeration is a presolving method to reduce the number of variables. It replaces

variables with an affine linear sum of other variables. Though it reduces the size of the

problem, it restricts the degree of freedom in variable-based branching rules. Gerald

Gamrath, et al., in their work on branching [113], presented a scheme for considering both

2.3 Issues in Reliability Branching 51

general disjunctions defined by multi-aggregated variables and the standard disjunctions

based on single variables for branching. It leads to a hybrid method that uses variable and

constraints-based branching rules. The idea is implemented in SCIP and incorporated into

a strong branching rule, that reduces the number of nodes on a general test set of publicly

available benchmark instances. The computational result shows that method is effective

for a specific class of problems.

2.3 Issues in Reliability Branching

2.3.1 Reliability Requirements - Same for Every Branching

Candidates

In a reliability branching scheme, whether the given branching information of the

branching candidate is reliable is decided by a positive parameter. We generally call this

the threshold value (λ). Note that we perform λ number of strong branching calls on a

candidate until it contains reliable branching information. Once it has reliable informa-

tion, we stop calling strong branching and start estimating the branching information by

using the weighted average of previously calculated explicit information obtained from

strong branching calls. The disadvantage of this rule is that the threshold value for all the

variables is the same. However, structurally different variables inside a model will have

other reliability requirements. Gregor Hendel [93] in his work on a sample variance-based

pseudocosts variable branching, emphasizes this issue. He develops a variance-based

reliability scheme that updates the pseudocost scores (to modify the reliability require-

ment) by using the sample variance of the past observation of each candidate. A subset

of variables with high variance is considered unreliable candidates and thus calls strong

branching, and those with low variance are considered reliable.

2.3.2 Limited Information in Branching Selection Score

Reliability branching only uses objective gain information in the pseudocosts evalu-

ation. One can use more information besides the objective value, such as dual information,

a sensitivity range of the objective function coefficient of decision variables, the impact

of the active constraints in the relaxation of the subprogram to the parent node [114],

Driebeek penalties [111]. A work on machine learning-based variable branching [110]

uses such information to approximate the strong branching.

2.3 Issues in Reliability Branching 52

2.3.3 Threshold Value is Invariant over Problem Instances

The same fixed threshold value over various problem instances might not scale with

the changes in the problem sizes. The growth of the B&B tree is unpredictable while

solving the problem instances. If it were, we would have an ideal branching mechanism

to judge the threshold value before solving a model.

2.3.4 Branching Decision is Short-Sighted in Nature

Including reliability branching, almost all current branching mechanisms are my-

opic. That is, they exploit (select) the branching variable with the highest objective gain,

but do not spend time choosing other variables. The decision to locally select the best

candidates causes it suffers from the problem of not finding optimal local solutions.

2.3.5 Uneven Calls of Strong Branching

The decision of what should be an ideal threshold value and when to perform strong

branching calls in reliability branching is crucial. In Achterberg’s reliability branching,

strong branching is called more often on the top nodes in the tree. It is because every

integer variable which appears as a branching candidate (for the first time) is initialized

as unreliable and set to reliable only if the number of strong branching calls on it reaches

the threshold value (λ). This leads to the problem of uneven calls of strong branching in

reliability branching. The resulting B&B tree contains nodes with strong branching calls

on the top nodes and nodes with no strong branch calls after a certain level of depth in

the tree. This may result in sharing of branching information between two structurally

different nodes and performing strong branching on two structurally similar nodes. We

use the term structurally different and similar nodes to denote the extent to which the

subproblems associated with the nodes differ in bounds on variables. Two nodes are

similar if fractional changes in bounds on variables are much less. Else, we call them

different nodes. We can avoid this by calling the strong branching not only the top node

but throughout the tree. One of the rules of thumb is to provide a fixed gap (say g) between

two consecutive strong branching calls. With this, we can avoid calling strong branching

on a candidate on both the nodes, which are not more than g hops apart. It can help

spread the total strong branching calls throughout the tree. However, the problem with

such a rule is the unnecessary calls of strong branching even if one of the nodes, which is

“structurally similar" to the current node, has already called the strong branching on the

corresponding variables. We mean the similar term nodes here to denote the nodes with

2.3 Issues in Reliability Branching 53

0

1

3

5 6

4

7 8

2

9

11 12

10

13

15 16

14

x2 ≤ 0 x2 ≥ 1

x4 ≤ 0 x4 ≥ 1

x1 ≤ 0 x1 ≥ 1 x1 ≤ 0 x1 ≥ 1

x5 ≤ 0 x5 ≥ 1

x1 ≤ 0 x1 ≥ 1

x4 ≥ 1x4 ≤ 0

x1 ≤ 0 x1 ≥ 1

Figure 2.2: Node8 and Node14 are only differ by x2. Whereas, Node8 and Node9 have

bound differences in x1, x2 and x4

0

1

3

5 6

4

2

x2 ≤ 0 x2 ≥ 1

x1 ≤ 0 x1 ≥ 1

x4 ≥ 1x4 ≤ 0

Figure 2.3: Node 2 is differ by one, two and four bounds from the node 0, node 1 and

node 6, respectively.

nearly equal change in the objective function. We define it formally in the next section.

Let us consider two examples:

Figure 2.2 represents a typical branch-and-bound tree to understand this issue. In this

figure, we highlight the position of different nodes, which perform strong branching calls

on the potential candidates. If we measure the similarity between nodes by the number

of hops between them, Node 8 and 14 are farther apart–the distance between nodes 8

and 14 is 5 hops. If the fixed gap (g) is set to 4, we will call strong branching on both

the nodes even though the subproblems associated with those nodes only differ in one

2.4 The Notion of Similarity-based Branching - SimBranch 54

bound, which is x2. Assuming such a slight change in the problems result in a similar

behavior of the branch-and-bound algorithm, the branching information obtained at Node

8 can be helpful to Node 14. Similarly, if we call strong branching on 8, we will not

call strong branching at Node 9 as g = 4. However, structurally subproblems associated

with 8 and 9 are different by 4 variable bounds. Figure 2.3 also mentions the case where

strong branching is called at the current processing node 2, just after the Node 6 was

processed. There might be the case where strong branching is called on variable x4 at

Node 2. We can observe that Node 1 has the strong branching information for variable

x4, and it (structurally) differs by only one bound. Node 1 could have shared the strong

branching information with Node 2.

2.4 The Notion of Similarity-based Branching -

SimBranch

We discussed in the previous section the importance of strong branching in most variable

branching schemes. It is mostly helpful in reducing the number of search nodes in the tree,

but it requires much effort to evaluate the branching candidates. To overcome the issues of

effective use of strong branching, we try a two-pronged strategy. First, we perform strong

branching at nodes that are well ‘spread-out’. Second, at any given node, say Node A, we

use the strong branching information collected from only those nodes that are ‘similar’ to

A.

We keep track of nodes where strong branching was deployed for any candidate. At

an active node where we want to select a branching candidate, we first find all ‘similar’

nodes and collect strong branching information from these nodes only. If a branching

candidate was evaluated in any of nodes ‘similar’ to the current node, then the information

available from similar nodes is used to estimate the candidate’s score. If none of the

‘similar’ nodes evaluated the candidate, we perform strong branching to get the score.

This strong branching information is then stored for future use. We start by explaining

the notion of ‘similarity’ and then describe the algorithm. The details of how the strong

branching information is stored and retrieved are presented later.

2.4.1 Similarity of Nodes

We would ideally like to call two nodes of a B&B tree ‘similar’ if branching on any

given candidate in the two nodes results in a nearly equal change in objective function

values. Predicting whether two nodes are similar without actually evaluating the change

is difficult, so we resort to a different and easier criterion. Since the LP-relaxation of

2.4 The Notion of Similarity-based Branching - SimBranch 55

Algorithm 4: SimBranch
Input: N i: Current processing node; Ci: List of branching candidates

associated to N i

Output: A suitable candidate, j∗ for the branching

Find list of processing nodes, S i similar to N i

for j in Ci do
if branching score of j is not available in any node in S i then

call strong branching to compute a score s j on j;

else
collect the average branching score available from the score of j from

the nodes S i;

end

end
Return candidate j∗ with maximum score s j for j ∈ Ci.

a node differs from that of another only in bounds on the integer variables, our notion

of similarity is also based on the bounds of integer variables. A more general notion of

similarity can include more features of the subproblems besides the bounds on variables

and can be explored in the future. We define the similarity between two nodes A and B,

as follows:

Definition 2.1. Suppose FA ∈ Rd and FB ∈ Rd are feature vectors associated with nodes

A and B respectively. We say A and B are similar if ||FA − FB||1 ≤ θF where θF > 0 is a

given parameter. We refer to the distance ||FA − FB||1 as ‘feature distance’ between nodes

A and B.

To better explain the notion of similarity among nodes, we take the help of a simplis-

tic B&B tree illustrated in Figure 2.4. We assume that the MILP has only binary variables,

n in number, and that we branch on variables only. Each branching thus creates two new

(child) subproblems by fixing the suitable branching candidate to zero or one. Further, we

assume that branching variables are chosen lexicographically, i.e., variable x1 is used for

branching in node-0, variable x2 in nodes 1, 2, x3 in 3, 4, 17, 18 etc. The feature vector for

any node in this example would have 2|I| binary elements. For example, F0, F1 and F2 at

the corresponding nodes 0, 1 and 2, with |I| = 6 binary variables, are as follows: F0 :=

[0 1 0 1 0 1 0 1 0 1 0 1], F1 := [0 0 0 1 0 1 0 1 0 1 0 1] and F2 := [1 1 0 1 0 1 0 1 0 1 0 1].

Here each element in the list with odd index j ∈ O := {1, 3, 5, 7, 9, 11} contains the lower

bound of a variable x j+1
2

. And even index j ∈ [12] − O contains the upper bound of a

variable x j
2
. The first and the second elements in F0, F1 and F2, are 0 1, 0 0 and 1 1. It

2.4 The Notion of Similarity-based Branching - SimBranch 56

0

1

3

5

7 8

6

4

9

11

13

15 16

14

12

10

2

17

19

21

23 24

22

20

18

25

27

29 30

28

26

Figure 2.4: Similarity in B&B tree: Shaded nodes are at a distance three or less from

Node19. Darker nodes are more similar to 19 than others.

indicates that x1 is fixed as x1 = 0 and x1 = 1 in the subproblem at node N1 and N2,

respectively. By Definition 3.7 ||F19 − F5|| = ||F19 − F23|| = 2, that is Node 5 is quite

similar to Node 19, even though the two seem to appear far apart in the tree.

If suppose θF = 2 in the above example, then any information collected from strong

branching at nodes 2, 5, 17, 20, 25 will be used to estimate scores of candidates at Node

19. If there is no information for a candidate in any of these nodes, then strong branching

is performed for that candidate. The steps in SimBranch for a branching variable selection

are described in Algorithm 2.4. As θF is increased, the distribution of nodes similar

to a given node becomes more complicated, and explicitly storing the feature vectors

and strong branching information becomes too cumbersome. So we need a systematic

approach to manage this difficulty. We describe it after pointing out some connections

between SimBranch and other strong branching related methods.

2.4.2 Connections with Other Methods

The similarity parameter θF is important and can be used to control the method.

A low value of θF allows few nodes to be considered similar and leads to more strong

2.5 Implementing SimBranch 57

branching calls. When θF = 0, strong branching will be called on every branching candi-

date at every node.

SimBranch can also be viewed as a variant of reliability branching [91] with some

key differences. Borrowing the notion of a reliable candidate, we can say that a candidate

in SimBranch is considered reliable if we have information about it from a node that has

characteristics similar to the current node. Reliability branching has a threshold parame-

ter, λ, to decide whether a branching score of a candidate is reliable. If strong branching

has been performed on a candidate λ times, anywhere in the tree, it is considered reliable

and its branching score is evaluated on the basis of previously collected scores.

SimBranch with a very high value of θF is similar to reliability branching with λ = 1

– both methods will evaluate each candidate only once before switching to estimated val-

ues. Selecting an extremely high value of λ in Reliability Branching or setting θF = 0 in

SimBranch makes them both equivalent to the traditional strong branching. When θF is

not set to any of its extreme values, SimBranch may behave quite differently from relia-

bility branching. SimBranch will re-evaluate candidates only when the tree size becomes

large and the nodes become dissimilar. The variance-based enhancements [93] of relia-

bility branching does something similar by looking at the variance in the output i.e. the

variance in the observed values of changes in objective values. We, in contrast, look at

the variance in the inputs (the features or characteristics of nodes).

2.5 Implementing SimBranch

In order to implement SimBranch efficiently, two key concerns need to be addressed: (a)

how to store the information collected at various nodes and (b) how to find ‘similar’ nodes

and compute the scores. The first concern arises because we need the information about

the nodes in addition to the strong branching scores. Before addressing this concern in

Section (2.5.1), we describe hashing functions for storing node features. We use some

additional notations to describe SimBranch. We have mentioned them in Table 2.1. For

the sake of explanation, we will assume the problem to be an MBP (2.2). We also assume

that the B&B method always branches on a binary variable. These assumptions are not

too restrictive and the method can be extended for cases where they do not hold. A

feature vector that defines a node under these assumptions is just a binary vector of size

2|I| containing lower and upper bounds of binary variables. If FN is a feature vector, one

of its representations would be

[lbN
I(1), ubN

I(1), lbN
I(2), ubN

I(2), · · · , lb
N
I(|I|), ubN

I(|I|)].

2.5 Implementing SimBranch 58

Table 2.1: Notation for SimBranch

N i : node i of branch-and-bound tree

κ : number of hashes computed for any node

hi : vector (of size κ) of hash values of node i

Ci : index set of candidate branching variables at node i

S i : the set of nodes which are similar according to our measure to N i

∆i+
j ,∆

i−
j : Up and down strong branching scores of variable j at N i

δi
j : Indicator variable that is one if strong branching is done on variable j at

N i, and zero otherwise

ψi+
j , ψ

i−
j : up and down pseudocosts of variable j computed up to node i

σi+
j , σ

i−
j : up and down similarity scores of variable j at node i

τi
j : total SimBranch score of variable j based on pseudocosts and similarity

score at node i

α, β : parameters in [0, 1] used to compute τi
j from ψi+

j , ψ
i−
j , σ

i+
j , σ

i−
j

lbi : a vector of lower bounds on variables at node i

ubi : a vector of upper bounds on variables at node i

L : a list containing strong branching information collected at nodes

θ : threshold value for similarity measure.

2.5 Implementing SimBranch 59

Where I(i) is the ith element in index set of binary vectors I and, lbN
I(i) and ubN

I(i) are the

lower and upper bounds of the of the binary variable xi.

One of the significant computational challenges in implementing SimBranch is find-

ing the similarity between the nodes (say node A and node B) using to Definition 2.1.

There are many procedures to explicitly measure the degree to which feature vectors, FA

and FB, are similar, such as Jaccard coefficient, Cosine similarity, Hamming distance, Eu-

clidean distance, and Minkowski distance [115]. These procedures are computationally

expensive for a large data set. As the size of the B&B tree grows, finding nodes similar to

the current processing node amongst all the explored nodes by explicitly comparing the

features is computationally inefficient. Also, subtrees that have been explored are usu-

ally deleted to reduce the memory requirements, thereby making those nodes unavailable

for evaluating their features. To overcome these challenges, we use a hashing scheme to

represent the nodes and the information we want to exploit to overcome these challenges.

For a fixed parameter κ, vectors H1, . . . ,Hκ each having 2|I| random numbers drawn

from uniform distribution are created. κ hash values hi
1, . . . , h

i
k are created for node i using

the relation

hi
j = HT

j F i, j = 1, . . . , κ. (2.12)

Instead of storing and comparing large feature vectors for every node, we propose to

store hash values hi
j, j = 1, . . . , κ for each node. As we shall see, κ = 5 works reasonably

well, even when |I| can be in thousands, so our storage requirements come down. Since

we store only the hash values, then Definition 2.1 for ‘similarity’ needs to be suitably

modified.

Definition 2.2. Suppose FA ∈ Rd and FB ∈ Rd are feature vectors (each containing d

features) associated to node A and B respectively. We say A and B are similar if |hA
j −hB

j | ≤

θ for each j = 1, . . . , k, where θ ≥ 0 is a given parameter.

If two nodes are similar in features, then their hash values would also be similar.

The converse is not always true, but by choosing a sufficiently large κ, we can ensure that

the converse is true with a high probability. These hash values can therefore be used to

find similar nodes faster and with less storage. In return for this gain, we may have to

sacrifice of some accuracy.

2.5.1 Storing Branching Information

All similarity-based branching information is stored in a single data-structure as

follows. We store node specific information for only those nodes where we perform

strong branching on at least one variable. This information consists of:

2.5 Implementing SimBranch 60

1. An array of κ hash values of the node

2. An array of indices of variables on which we performed strong branching at this

node

3. Two arrays, one for storing the up-scores of strong branching variables and the other

for their down-scores

The vectors H1, . . . ,Hk are created before the start of B&B and stored. Suppose we

are processing a node N i with bounds, lbi and ubi on its variables. If the node relaxation is

infeasible or if the relaxation solution is integer feasible or if node is pruned because of its

lower bound, then no extra branching information is required to be stored. If branching

is required, then a vector F i is first created, by concatenating lbi and ubi of all binary

variables of the problem associated with Node i, and all the κ hash values are computed.

Nodes similar to Node i are searched for information collected.

If strong branching is required at the node, then the information generated from the

branching is stored using the above mentioned data-structure. A linked list L is used to

store data-structures for different nodes. The number of objects in this list L is usually

much smaller than the number of nodes in the tree as only those nodes where strong

branching is performed enter this list.

2.5.2 Selecting a Branching Candidate

Given a node N i, a solution to the relaxation, x̂, and bounds, lbi and ubi, on the

variables of the subproblem, the following procedure can be used to select a branching

candidate. SimBranch first finds the set S i of nodes “similar” to N i. The set S i is initially

empty. The hash values hi
j, j = 1, . . . , κ are computed. Each element of the linked-list L is

considered one-by-one. Suppose for notational convenience, an element of L corresponds

to Node-Nk of B&B tree. Nk is added to S i if they are similar, i.e., if

∣∣∣hi
j − hk

j

∣∣∣ ≤ θ, for each j = 1, . . . , κ

Next, a list Ci of branching candidates is created. It is comprised of all integer

variables that have a fractional value in x̂. For every variable x j ∈ Ci, we collect all

available strong branching scores of x j from each node in S i and aggregate them into the

‘similarity scores’

σi+
j = α ·

∑
k∈S i(∆k+

j)∑
k∈S i δk

j

+ (1 − α)ψi+
j and σi−

j = α ·

∑
k∈S i(∆k−

j)∑
k∈S i δk

j

+ (1 − α)ψi−
j , (2.13)

2.5 Implementing SimBranch 61

if any similar nodes are found. Here α ∈ [0, 1] is a fixed parameter that defines relative

weight of Pseudocost Score and SimBranch Score. ∆k+
j , ∆

k−
j are strong branching scores

obtained from the node Nk. δk+
j , δ

k−
j are one if strong branching information for variable

x j is available at Nk and zero if not.

The above scores are defined only if one or more nodes in S i have Strong Branching

information about x j. In such a case, the total score of x j is evaluated as:

τi
j = β ·max{σi+

j , σ
i−
j } + (1 − β) min{σi−

j , σ
i+
j }, (2.14)

where β is a fixed parameter in [0, 1]. Parameter β is also used in pseudocost branching

similarly. [22] also suggested the product rule to combine the up and down scores

τi
j = max{∆i−

j , β} ·max{∆i+
j , β}. (2.15)

In case none of the nodes in S i have any strong branching information about x j,

then we perform strong branching on x j. The strong branching up and down scores are

evaluated as

∆+i =
fNk+

i
(x̂) − fNk(x̂)

f +i
and ∆−i =

fNk−
i

(x̂) − fNk(x̂)

f −i
. (2.16)

Where fNk+
i

(x̂) and fNk−
i

(x̂) are the objective value of the relaxations of subproblems related

to up and down child nodes.

∆i+
j and ∆i−

j are added to the data-structure for future use. The score of x j at N i is

determined as:

τi
j = β ·max{∆i+

j ,∆
i−
j } + (1 − β) min{∆i+

j ,∆
i−
j }

Every time we perform strong branching we also update the pseudocosts ψi+
j and ψi−

j .

Finally, the variable with maximum score is selected as the branching candidate.

j∗ = arg max
j∈Ci
{τi

j}. (2.17)

2.5.3 Parameters in SimBranch

Performance of SimBranch relies on the values of its parameters. Among these, the

parameters θF , θ and κ are crucial to SimBranch. In spite of its clear and natural inter-

pretation, parameter θF is not directly used in the algorithm. We propose the following

formula for setting for θ from θF and κ. Assume θF is a positive integer. For each hash

vector Hi, define θi as

θi =

θF∑
k=1

ωk
i , i = 1, 2, 3, . . . , κ,

where ωk
i is the kth largest element in Hi. Thus, θi is the sum of θF largest elements of Hi.

Then θ can be set to

θ = max
i=1,2,··· ,κ

θi

2.5 Implementing SimBranch 62

The motivation for setting θ in this manner is as follows. We would like a value of

θ so that we are as accurate as possible in determining similarity. There can be two types

of errors when trying to ascertain similarity from θ in place of θF .

1. T1 error (false positive): ||FA − FB||1 ≤ θF . But
∣∣∣hA − hB

∣∣∣
∞
> θ.

2. T2 error (false negative): ||FA − FB||1 > θF . But
∣∣∣hA − hB

∣∣∣
∞
≤ θ.

The proposed scheme ensures that T1 error is zero.

Proposition 2.3. Given κ vectors H1,H2, . . . ,Hκ each having d random numbers drawn

from a uniform distribution [0, 1], and the threshold integer parameter θF , let

θi =

θF∑
k=1

ωk
i , ∀i = 1, 2, 3, · · · κ,

where ωk
i is the kth largest element in Hi. If, for any two binary vectors F1 and F2 of size

d, we have ||F1 − F2||1 ≤ θF , then |HT
i F1 − HT

i F2| ≤ θi, ∀i = 1, 2, . . . , κ.

Proof. For feature vectors F1 and F2, suppose ||F1 − F2||1 ≤ θF . Let I be an index set

such that F1(i) , F2(i) for each i ∈ I. Clearly, the number of elements in I, len(I) ≤ θF .

Define two sets I+ = {i ∈ I | F1(i) = 1} and I− = {i ∈ I | F2(i) = 0}. Clearly I+ ∪ I− = I,

I+ ∩ I− = ∅. For all i = 1, 2, . . . , κ, we have

|HT
i F1 − HT

i F2| = |1
∑
j∈I+

Hi[j] − 0Hi[j] + 0
∑
k∈I−

Hi[k] − 1Hi[k]|.

= |
∑
j∈I+
|Hi[j]|,

≤
∑
j∈I+
|ω

j
i |,

≤

θF∑
k=1

ωk
i .

□

The above mentioned choice of θ ensures that we never perform strong branching on

a candidate if the required information is available in a node whose real feature distance

is within θF . On the other hand, we may still have T2 error: we may assume two nodes

are similar because of their close hash values, when in fact, they may be far apart feature

wise.

Next we consider the choice of θF . To gain some insight, we perform an experiment

in which we mimic a very specific B&B tree (Tlex): a full binary tree where branching

2.6 Computational Results and Summary 63

decisions are taken in lexicographical order (similar to the example (4)). The goal of the

experiment is to study the effect of θF on number of times we have to perform strong

branching. We further assume that at all nodes in the B&B tree, all binary variables that

have not been fixed by earlier branching take fractional values. Thus at any node, we

either perform strong branching for all unfixed variables or none. For the branching score

initialization, we call strong branching at the root node. We calculate the total number

of strong branching calls needed to evaluate the score of the last (lexicographic) variable.

Since it is the last variable, we never branch on it (except at the leaf nodes), but strong

branching is performed on it every time we visit a node that is dissimilar to those where

strong branching was done earlier.

Table 2.2 tells us the maximum number of times we have to perform strong branch-

ing for a variable for three different tree sizes. We see that the number of calls of strong

branching reduce quite fast (nearly exponentially) as θF increases, and low values of θF

may suffice for most trees. In our experiments described in Section 2.6 we use two differ-

ent values: 10 and 30.

Lastly, a note about choice of κ. The selection of a good kappa value leads to em-

bedding a set of points in a high-dimensional space into a much lower dimension so that

distances between the points are nearly preserved. A high kappa value means more pro-

jection operations, ensuring low T2 errors at the cost of extra computing. A low kappa

value will neglect some points in high dimensions to be preserved in low dimensions.

We found κ values in the range 3-7 to be quite reasonable. We use the value 5 in our

experiments described next.

2.6 Computational Results and Summary

In this section we provide empirical evidence of the effectiveness of SimBranch by imple-

menting it in CBC (Coin-OR Branch and Cut) [88], an open-source mixed-integer linear

programming solver. We compare the performance of our implementation (SimBranch)

with that of the default branching scheme in CBC (Default-Cbc). For both solvers, we

turned off primal heuristics and provided the best known solution value as an input. This

change was made to neutralize the unpredictable behaviour of the solvers on account of

‘accidently’ finding feasible solutions either through primal heuristics or during the B&B

tree search. All other settings including those of presolve, cuts etc., were left undisturbed.

Like CBC, our subroutines are written in C++ and compiled with GCC-6.3.0.

The hardware used for the computation is a 64−bit Intel(R) Xeon (R) E5-2670 v2

at 2.50GHz CPUs with 20 cores and 128GB RAM. To avoid multiple processes to share

2.6 Computational Results and Summary 64

Table 2.2: Number of strong branching nodes in the tree for the given values of θF and

number of binaries

Depth of the tree 9 10 11

Total nodes 1023 2047 4095

θF Strong branching nodes

0 1023 2047 4095

1 341 1365 1365

2 253 529 1013

3 121 441 441

4 46 84 156

5 17 64 64

6 17 17 49

7 17 17 17

8 5 10 14

9 1 9 9

common resources, we run one job at a time. CBC by default does not use multiple CPUs

in parallel.

Test problems for our comparison of different approaches consist of instances cho-

sen from MIPLIB 2010 [102] and MIPLIB 2017 [116], libraries of MILP benchmark

problems. MIPLIB 2010 and MIPLIB 2017 comprise 87 and 240 benchmark instances

that respectively contain 84 and 221 pure and mixed binary instances. We ran both Sim-

Branch and Default-Cbc solvers on these 305 pure and mixed binary instances and short-

listed those instances for which at least one of the two solvers took more than 100 nodes

to solve. There were 222 such instances in all.

We set the computational time limit to 7200 seconds for each test instance. The

settings for SimBranch procedure implementation are as follows. Parameter κ is set to 5.

Based on the experiment in Section 2.5.3, we set θF to 30 if the number of binary variables

in an instance is more than 300. Otherwise, we set it to 10. Also, branching parameters

‘maxstrCand’ and ‘maxitrPerStr’, which define the maximum number of strong branching

candidates per node and maximum number of (dual simplex) iterations in each strong

branching operation, are set to 10 and 100 respectively. We set ‘maxstrCand’ to 20 and

‘maxitrPerStr’ to 80 for the instances with less than 300 binary variables. The parameter

α is set to 1 so as to not have any effect of Pseudocost Scores in candidate selection.

2.6 Computational Results and Summary 65

The rule used to compute the branching score for each candidate in SimBranch is

same as in Default-Cbc. The score-factor β is set to a constant value 6E-7 in both solvers.

Table 3.4 compares the overall performance of our branching procedure to CBC.

We use shifted geometric mean (SGM) to summarize the solving time. SGM, similar to

geometric mean of n elements, is the n-th root of their product. However, each element is

added with a positive integer before computing n-th root [117]. This added positive value

is called shift. The computed n-th root is then subtracted with shift value. Thus, for a shift

s ∈ R+, SGM of n numbers, n1, n2, · · · , nn is calculated as, SGM =
(∏n

i=1(ni + s)
)1/n
− s.

The benefit of using SGM is that it avoids the effects of large outliers, which we see in

case of arithmetic and geometric means [118]. In our experiment we use a shift of 10

seconds to report the mean solving time.

We have additionally reported SGM for instances that take more time to solve in

order to check whether the SimBranch is effective for only ‘easy’ to solve instances.

Based on the time taken to solve by the two solvers, we classify the instances into four

categories: 1) all instances that were solved by at least one solver, 2) instances where at

least one of the solvers took more than 500 seconds and at least one solver solved it, 3)

instances where at least one of the solvers took more than 1000 seconds (and at least one

solver solved it), and 4) instances where at least one solver took more than 2000 seconds

(and at least one solver solved it). In each of the categories we report the number of

instances solved by each solver and also the number of instances solved by both. The

SGM values of time and nodes is computed over the number of instances solved by both.

SGM of total number of nodes explored in B&B is reported with a shift of 50. Also,

SGM of optimality gaps (‘gap’) of those instances that could not be solved by both the

solvers is reported with a shift of 1 (percentage) in the ‘Time Limit’ category. We also

report the mean of SimBranch relative to the mean of Default-Cbc (the column % in the

table). A value below 100 states an improvement over the default.

We observed that SimBranch could solve 79 out 222 instances and hit the time limit

on rest of the instances. Default-Cbc could solve 77 instances in comparison. 71 out

of 222 instances were solved by both the procedures, and SimBranch was 19.28% faster

than Default-Cbc on these. The reduction in nodes processed in case of SimBranch was

observed to be 30.38 %. For ‘harder’ instances the speedup in SimBranch is slightly

higher. Further, the category ‘Time Limit’ reports that the gap closed by SimBranch is

marginally worse (by 0.07%) on instances that hit time limit on both solvers.

Details of the running times, the number of nodes processed and the number of

strong branching iterations required in strong branching operations for the instances are

available in Table A.1 in the Appendix. It lists performance of SimBranch and Default-

2.6 Computational Results and Summary 66

Cbc procedures over all 222 benchmark instances. Table A.2 details node processed,

strong branching iterations and percentage gap of those instances which could not be

solved by both the procedures within 7200 seconds.

In Table 2.4, we list fourteen instances that were solved by one solver and not the

other. We observe that some instances can be easily solved by SimBranch but difficult

for Default-Cbc. Similarly for some instances Default-Cbc outperforms SimBranch. The

column #strong_itrn reports number of strong branching iterations performed for a given

instance under each setting. Rows for ‘danoint’, ‘sp150x300d’ and ’neos5’ in the Table

indicate that fewer and carefully chosen strong branching calls are effective, but it is

opposite for instances ‘trento1’ and ‘neos-916792’.

To highlight the difference in the use of strong branching calls in the branching

procedures we collect information from top few nodes in the B&B for a specific instance,

gmu_35_40. This information is reported for Default-Cbc and SimBranch in Table 2.5

and Table 2.6 respectively. They contain columns ‘brCand’ and ‘strCand’ that list indices

of branching candidates and strong branching candidates respectively. For each node we

show ‘brCand’ and ‘strCand’. We report the information of the top seven nodes of the

B&B tree. Each node is represented by node id and depth of the current processing node.

For instance, take the third column in Table 2.5. It depicts depth = 1 and node id =

node1002. It states that the number of nodes processed so far is 1002 and the current

node is positioned at depth 1. Though the number of processed nodes between the current

node and the adjacent node at the same depth (with node id = node1) is more than 1000,

they are structurally close to each other. Default-Cbc does not capture this and thus,

there are repetitions of strong branching calls. This information is captured and other

candidates are evaluated by SimBranch. Highlighted entries in Table 2.5 list repeated

strong branching calls. We give a summary of repetition of strong branching calls at

the bottom of the Tables. #totalStrong and #repeatedStrong denote number of strong

branching candidates per node and number of those strong branching candidates whose

information can be used from the explored nodes respectively. We can see in the case

of Default-Cbc branching (Table 2.5) there are 45 repeated strong branching calls out of

total 99. Whereas SimBranch (Table 2.6) does not have such repetition.

For all those instances which could be solved by both the branching procedures,

the number of strong branching iterations, the dual simplex iterations required in strong

branching operations in branching decisions in B&B is collected. The ratio of total num-

ber of strong branching iterations in SimBranch (SimBranchStrong) to Default-Cbc (cbc-

Strong) is computed and shown as a scatter plot in Figure 2.5. A point denotes the ratio of

SimBranchStrong to cbcStrong and a horizontal dotted line (at 1.0) represents a reference

2.6 Computational Results and Summary 67

line which divides bubbles into two sections. 68% of the bubbles which are below refer-

ence line indicates that SimBranch on average requires less number of strong branching

iteration. For these instances, geometric mean values of strong branching iterations re-

quired by SimBranch and Default-Cbc are 367759.5 and 1531628.9 respectively. Thus

SimBranch performed about 75% fewer strong branching evaluations.

Figure 2.5: A scatter plot of ratio of number of strong branching iterations (SimBranch-

Strong) when SimBranch is chosen as branching candidate to that of Default-Cbc on 71

solved benchmark instances: 68% of points are below the reference line.

In Figure 2.6, we have summarised the total time spent in computing hash values

in solving a given problem instance. A reference line indicates geometric mean of hash

computation time. We observe that SGM (with a shift of one second) of time taken in

computing hash values is 3.51 seconds over 222 instances which is illustrated in the scatter

plot. This computation time is insignificant against total time taken in solving the problem

instance. However, there are instances in which computing hash values go up to more than

100 seconds. These instances had a huge number of nodes and hit the time limit.

To have a more reliable picture of the effectiveness of SimBranch in Default-Cbc, we

have done similar experiments with three different random seeds on 71 instances. These

are instances that are solved by both the settings (SimBranch and Default-Cbc) within the

given time limit of 7200 seconds. In Figure 2.7 we report a computational summary of

SimBranch over different three seed values. We see a marginal difference in the scatter

plot corresponding to each seed. Geometric means of solving time under three different

2.6 Computational Results and Summary 68

Table 2.3: Computational summary of performance of SimBranch compared to Default-

Cbc.

Category
#instances
solved by

both

solved SGM of solving time SGM of nodes processed SGM of %age gap

#instances
solved by
Default-

Cbc

#instances
solved by

SimBranch

Default-Cbc SimBranch Default-Cbc SimBranch Default-
Cbc SimBranch

t (sec) % t (sec) % n % n %

0 − 7200 71 77 79 450.83 100 363.95 80.72 14055.4 100 9785.98 69.62 - -

500 − 7200 44 44 44 1344.11 100 950.67 70.73 24691.64 100 15732.64 63.72 - -

1000 − 7200 28 28 28 1984.86 100 1663.45 83.81 28943.86 100 20908.37 72.24 - -

2000 − 7200 15 15 15 3733.58 100 2362.59 63.28 51318.65 100 30366.76 59.17 - -

‘Time Limit’ - - - - - - - - - - - 10.21 10.28

settings each with different seed values are 326.92, 330.80 and 339.20. The variance in

mean seems lower than the difference between SimBranch and Default-Cbc.

To conclude, SimBranch, a new variable branching scheme, looks more closely at

the information collected at different nodes and tries to use them selectively. Effectively

calling strong branching speeds up the LP-based B&B for MILP by 20% and results in a

30% node reduction. Carefully tuning the algorithm and the data structures should lead

us to more improvements. The scheme is readily extendable to general integer cases and

possibly other classes of problems like MINLP and CSP. The idea of similarity can also

be tried in the node selection strategy.

Figure 2.6: A scatter plot of time taken in computing hash values in SimBranch procedure:

Shifted geometric mean with a shift of 1 sec is 3.51 sec (horizontal line)

2.6 Computational Results and Summary 69

Table 2.4: Comparison of SimBranch and Default-Cbc on instances where one solve hit

time limit

SimBranch Default-Cbc

Instance t(sec) node #strong_itrn gap t(sec) node #strong_itrn gap

app1-2 7200 12862 3704174 12.12 4140.93 13876 1633646 -

neos-1109824 7200 78468 5175 6.22 4941.3 37686 3192172 -

neos-916792 7200 315484 27282 12.33 1944.75 55134 2845557 -

n3div36 7200 77745 12779475 3.38 7189.3 263950 2997734 -

satellites1-25 7200 26777 18050837 2.91 1189.34 23446 299649 -

satellites2-60-fs 7200 2729 2388503 57.89 3908.15 3526 137085 -

biella1 628.05 1350 1181269 - 7200 83754 1308635 0.09

blp-ic98 4006.47 47156 9096366 - 7200 128681 6411946 1.53

csched010 7007.23 764318 1330629 - 7200 1228224 12031128 8.33

danoint 4997.59 502308 65470 - 7200 687526 17675634 4.02

neos5 1667.73 3502835 18805 - 7200 1596440 8518782 6.67

rocII-4-11 5367.99 45122 2723384 - 7200 32753 1788990 47.5

sp150x300d 208.4 46452 48981 - 7200 2730562 608276 8.69

trento1 1713.32 5682 3493318 - 7200 77721 954160 0.045

Figure 2.7: Scatter plot comparing solving time of 71 ‘solved’ instances by SimBranch

with three different random seeds

2.6 Computational Results and Summary 70

Table 2.5: Branching candidates (brCand) and strong branching candidates (strCand) upto

depth 2 in the B&B for the instance gmu_35_40 solved by Default-Cbc
depth = 0 depth = 1 depth = 1 depth = 2 depth = 2 depth = 2 depth = 2

node0 node1 node1002 node3 node1003 node1442 node5002

Sl no. brCand strCand brCand strCand brCand strCand brCand strCand brCand strCand brCand strCand brCand strCand

1 0 0 0 12 19 42 9 9 0 3 9 103 0

2 2 2 2 41 20 98 12 19 2 42 12 276 2

3 9 9 9 70 37 103 19 20 3 98 19 9

4 12 12 12 97 39 253 20 70 4 253 20 12

5 19 19 19 103 41 254 36 93 9 280 37 110

6 20 20 20 119 42 276 39 97 12 39 114

7 36 36 36 127 69 69 118 19 42 119

8 39 39 39 130 72 70 122 20 69 121

9 41 41 41 156 80 93 124 37 70 127

10 69 69 69 170 82 97 129 39 80 130

11 70 70 70 178 92 110 130 42 82 156

12 93 93 93 180 93 114 152 98 93 158

13 97 97 97 190 97 118 156 110 97 175

14 103 103 103 191 98 119 158 121 103 176

15 110 110 110 194 103 121 170 127 110 178

16 114 114 114 196 110 122 192 130 121 180

17 119 119 119 254 121 124 196 152 127 190

18 121 121 121 262 127 127 198 153 130 191

19 127 127 127 275 130 129 232 156 153 192

20 130 130 130 293 152 130 275 158 156 195

21 152 152 152 321 153 152 321 169 158 196

22 153 153 153 156 156 172 172 203

23 156 156 156 158 158 192 175 204

24 157 157 157 169 170 193 176 232

25 158 158 158 172 191 203 178

26 162 162 162 175 192 204 180

27 163 163 163 176 194 232 182

28 165 165 167 178 196 253 253

29 167 167 168 180 198 262 262

30 168 168 170 192 203 280 275

31 170 170 178 193 204 293 276

32 191 191 180 253 232 321 293

33 192 192 190 254 275 321

34 194 194 191 262 321

35 196 196 192 276

36 198 198 194 293

37 203 203 196 321

38 204 204 198

39 232 232 254

40 254 254 262

41 262 262 275

42 275 275 293

43 293 293 321

44 321 321 Total

fractional-

repetition
0 1.00 0.33 0.81 0.60 1.00 0 0.45

#totalStrong 44 21 6 21 5 2 0 99

#repeated-

Strong
0 21 2 17 3 2 0 45

2.6 Computational Results and Summary 71

Table 2.6: Branching candidates (brCand) and strong branching candidates (strCand) upto

depth 2 in the B&B for the instance gmu_35_40 solved by SimBranch
depth =0 depth=1 depth=1 depth=2 depth=2 depth=2 depth=2

Node0 Node1 Node1002 Node2 Node1003 Node5002 Node11001

Sl no. brCand strCand brCand strCand brCand strCand brCand strCand brCand strCand brCand strCand brCand strCand

1 0 293 0 191 9 70 0 150 0 39 0 155 0 263

2 2 321 2 19 12 176 2 158 2 181 2 2 2 279

3 9 170 9 20 37 175 19 172 19 159 9 0 9

4 12 275 12 262 39 118 20 119 20 12 195 12

5 19 93 19 41 69 190 69 121 37 110 12 19

6 20 97 20 103 70 37 70 156 39 114 20

7 36 194 36 254 110 165 110 180 110 119 69

8 39 130 39 196 114 69 114 178 114 121 70

9 41 127 41 192 118 168 119 119 127 82

10 69 9 69 119 124 121 121 130 83

11 70 70 121 127 127 156 97

12 93 103 122 130 130 158 103

13 97 110 124 150 150 175 110

14 103 114 125 156 153 176 121

15 110 119 127 157 155 178 153

16 114 121 129 158 156 180 156

17 119 127 130 162 157 190 158

18 121 130 156 163 159 191 172

19 127 152 157 167 162 192 175

20 130 156 158 168 163 195 176

21 152 158 162 169 167 196 178

22 153 165 163 172 168 203 180

23 156 168 165 178 170 204 191

24 157 170 167 180 172 232 192

25 158 191 168 191 175 193

26 162 192 169 192 176 194

27 163 194 175 194 178 196

28 165 196 176 196 180 198

29 167 198 178 203 181 203

30 168 203 180 204 191 204

31 170 204 190 232 192 232

32 191 232 191 321 194 262

33 192 254 192 196 263

34 194 262 196 203 279

35 196 293 198 204 293

36 198 321 203 232 307

37 203 204 293 321

38 204 232 321

39 232 318

40 254 321

41 262

42 275

43 293

44 321 Total

fractional

repetition
0 0.0 0.0 0.0 0.0 0.0 0.0 0.00

#totalStrong 10 9 10 8 3 5 2 47

#repeated-

Strong
0 0 0 0 0 0 0 0

Chapter 3

Similarity-based Method for
Hierarchical Multiobjective Linear
Program

3.1 Introduction

A hierarchical multiobjective linear program (h-MOLP) is a linear problem (LP) with

more than one objective function, and the order of priorities among those objectives is

known to the decision-maker. We recall problem 1.4, a h-MOLP we are interested in

solving:

lexmin c1Tx, c2Tx, . . . , ctTx

subject to Ax = b,

l ≤ x ≤ u. (3.1)

As discussed previously, the term lexmin denotes lexicographic minimum. It signifies that

first objective (c1Tx) is much more important than the second objective (c2Tx) which is, on

its turn, much more important than the third one (c3Tx), and so on and, the last objective

(ctTx) is of least importance. We also recall two popular methods described in Chapter 1

that solve a sequence of LPs to obtain the solution of the h-MOLP. They are defined as

follows:

72

3.2 Issues with Constraint-addition Rule 73

LPk := min ckx

s.t. Ax = b,

cix = yi, ∀ i ∈ [k − 1],

l ≤ x ≤ u. (3.2)

modLPk := min ckx

s.t. Ax = b,

x j = f j ∀ j ∈ Jk ⊆ [n],

l ≤ x ≤ u. (3.3)

We first obtain the solution of the highest ordered objective in both methods. If it is

unique, we stop, and the obtained solution is optimal to the h-MOLP. Otherwise, we pick

the next highest important objective and compute its solution without deteriorating the

previously obtained optimal objective value. If we find the solution unique, we stop.

Otherwise, we continue solving the next highest objective as above. We assume that the

h-MOLP (3.1) is nontrivial - we obtain alternative optimal solutions while solving the

underlying LPs hierarchically, and objectives to those LPs conflict with each other.

In this chapter, we study the challenges in methods 3.2 and 3.3. We describe the

reasons for preferring method 3.3, the variable-fixing rule over method 3.2, and the

constraint-addition rule in Section 3.2. In Section 3.3, we discuss some results on fixing

of variables and provide a theoretical justification of equivalence of these lexicographic

rules in their solving process. In Section 3.4, we highlight the issue of using reoptimiza-

tion in both the lexicographic rules in their sequence of LP solves. Further, to address

this, we introduce a concept of ‘similarity’ between LPs. This idea of similarity devel-

ops into a new lexicographic technique, which we call SimLex. We discuss the algorithm

and the implementation procedures in Section 3.5. We conclude the chapter with some

computational results and the summary in Section 3.6.

3.2 Issues with Constraint-addition Rule

The constraint-addition rule, defined in method 3.2, a popular lexicographic method,

follows the following steps: We start with computing the optimal value of the first LP,

y1 = {min c1x | Ax = b, l ≤ x ≤ u}. To preserve the solution of the previously obtained

solution, we solve the next immediate linear program with a newly added constraint,

c1x = y1. Each new problem adds one new constraint as iteration k goes from 1 to t. t

is the last index of the LP, LPt, we solve. We solve them in sequence until 1) we get a

unique solution to the LP or 2) we solve LP with the last objective.

One major problem with this method is that it can require the solution of many linear

programs to obtain just one optimal solution to the h-MOLP. There are industry problems

with more than hundreds of business objectives. In such cases, it is computationally ex-

pensive. Another disadvantage is in the underlying sequence of LPs it solves. After every

3.2 Issues with Constraint-addition Rule 74

LP solve, it requires modification in the problem by imposing an additional constraint to

the constraint set. It led to modification in both the rhs and the interaction matrix. Since

successive solutions of LPs in the lexicographic method update the interaction matrix, rhs

vector, and cost vector, a careful measure is required to exploit reoptimization between

the LPs. Many solvers allow us to save the solution basis to use it for providing a start-

ing solution for solving the other similar problem. Hot-start, one of the reoptimization

(discussed in Chapter 1), may not always help due to such modifications in the explicit

constraint-set between LPs. It makes the method overall computationally expensive and

numerically sensitive than the variable-fixing rule. In the variable-fixing rule, changes

between LPs are not the explicit constraint-set but bounds on variables. We ran some

experiments and noticed this issue. We will describe the experiments and report the result

in Section 3.6.

Now we provide an example to show that adding constraints generally makes the

problem more sensitive and ill-posed than updating the variable bounds.Let us consider

a toy example (3.4) with two objective vectors, c1 := (−0.333333,−0.666667) and c2 :=

(1, 1), with c1 being more important than c2.

lexmin − 0.333333 x1 − 0.666667 x2, x1 + x2

c1 : x1 + 2x2 = 3,

Bounds

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 2. (3.4)

For comparison purposes, we solve the problem using constraint-addition and variable-

fixing methods. For both the methods, we start with solving LP1, an LP with objective

vector c1. The objective function value of LP1 we get is - 1.000000006. The constraint-

addition rule then solve the next LP, LP2, after adding −0.333333 x1 − 0.666667 x2 =

−1.000000006 to LP1.

LP1 := min (−0.333333 x1 − 0.666667 x2)

Subject to

c1 : x1 + 2x2 = 3,

Bounds

0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

Similarly, variable-fixing rule checks the solution of LP1 and update the bounds of the

variables with nonzero reduced cost. We find a positive reduced cost with value 0 of the

3.2 Issues with Constraint-addition Rule 75

variable x1. The next LP we solve after setting x1 to 0 is modLP2. The optimal objective

value for both the LP2 and modLP2 we obtained is 1.5.

LP2 := min (x1 + x2)

Subject to

c1 : x1 + 2x2 = 3

c2 : −0.333333 x1−0.666667 x2 = −1.000000006

Bounds

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 2.

modLP2 := min (x1 + x2)

Subject to

c1 : x1 + 2x2 = 3,

Bounds

0 ≤ x1 ≤ 0,

0 ≤ x2 ≤ 2.

In LP2, changing the rhs of constraint c2 from -1.000000006 to -1.0 leads to a change

in the optimal objective value from 1.5 to 2. It indicates that a slight change in the input

can result in a significant change in the computed solution of the model. The degree to

which an LP is ill-posed is generally decided by condition number. Renegar derived the

expression for the condition number and introduced the term ill-posedness[119, 120]. An

LP is ill-posed if it can be made both feasible and infeasible by arbitrarily small changes

to its data of a linear program. In our case, the CPLEX solver returns the condition

numbers (also called kappa value) 6.7e+8 and 1.0e+0 for LP2 and modLP2, respectively.

This high kappa value can cause numerical issues in the quality of the solution, such as 1)

inconsistent results when presolving and input parameters are tuned 2) inaccuracy in the

computed solution that contradicts the constraints in the model. [121].

The following two main reasons that motivated us to analyze the variable fixing rule

further are: 1) The ill-posed behavior in the constraint-addition rule and a low kappa

value in the example of the variable-fixing rule. 2) In general, no change in the basis

matrix in two consecutive LPs in the variable-fixing rule. In the next section, we study

linear programs with bounded variables and analyze some results for optimality using

reduced cost information. The results help further to prove the equivalence between the

variable-fixing rule and constraint-addition rule.

3.3 Linear Program with Bounded Variables and Fixing of Variables 76

3.3 Linear Program with Bounded Variables and Fixing

of Variables

Let us consider the following linear programming problem such that each decision vari-

able is bounded below by a finite number:

LPP := min x∈Rn{cT x : x ∈ S }, (3.5)

where

S := {x ∈ Rn : Ax = b, l ≤ x ≤ u}. (3.6)

Here, we assume that the real matrix A ∈ Rm×n is of rank m. Moreover, li < ui for

each i ∈ [n]. Now we define the basic solution and basic feasible solution of S .

Definition 3.1. Let S := {x ∈ Rn : Ax = b, l ≤ x ≤ u} be a polyhedron as described

above, and let x∗ ∈ Rn.

(a) x∗ is a basic solution if:

(i) all equality constraints are active

(ii) out of the constraints that are active at x∗, there are n of them that are linearly

independent.

(b) if a basic solution satisfies all of the constraints, then it is called a basic feasible

solution

Notice that x∗ ∈ S is a basic feasible solution if and only if it is an extreme point of

S . Now we discuss the necessary condition for a basic solution.

Theorem 3.2. Let S := {x ∈ Rn : Ax = b, l ≤ x ≤ u} be a polyhedron as described in

equation (3.6). x∗ ∈ Rn is a basic solution if and only if Ax∗ = b, and there exist an index

set IB ⊆ [n] of cardinality m such that:

(a) The columns Ai, i ∈ IB are linearly independent.

(b) if i < IB, then either x∗i = li or x∗i = ui.

Proof. Follows from the [24, Definition 2.9 and Exercise 3.25]. □

If x∗ is a basic solution of S , the variables x∗i , i ∈ IB are called the basic variables,

and the remaining variables are called the nonbasic variables. The columns Ai, i ∈ IB are

called the basic columns, and the remaining columns are called the nonbasic columns.

3.3 Linear Program with Bounded Variables and Fixing of Variables 77

The m basic columns written adjacent to each other, form a matrix, and is called the

basis matrix B. Let IN1 := {i ∈ [n] : x∗i = li} be the index set associated with the

nonbasic variables at their lower bounds, and IN2 := {i ∈ [n] : x∗i = ui} be the index

set associated with the nonbasic variables at their upper bounds. The columns Ai, i ∈ IN1

are the nonbasic columns associated with the index set IN1 , and the columns Ai, i ∈ IN2

are the nonbasic columns associated with the index set IN2 . The matrix associated with

the nonbasic columns Ai, i ∈ IN1 is denoted by N1, and the matrix associated with the

nonbasic columns Ai, i ∈ IN2 is denoted by N2.

Let x∗ be a basic solution of S , and let B be an associated basis matrix. By repre-

senting the index set [n] as IB ∪ IN1 ∪ IN2 , one can partition the matrix A into [B,N1,N2],

the decision variable xT into [xT
B, xT

N1
, xT

N2
], the basic solution x∗

T
into [x∗

T

B , x∗
T

N1
, x∗

T

N2
], and

the cost vector cT into [cT
B, cT

N1
, cT

N2
].

Now, we provide a result on conditions for x∗i to be optimal solution of a given

objective function over S . The condition requires reduced cost information of variables.

Let us define the reduced cost in the case of bounded LP.

Definition 3.3. Let x∗ be a basic solution of S . Let B be an associated basis matrix, and

let cB be the vector of costs associated with the basic variables. The reduced cost c̄i for

each i ∈ [n] is defined as:

c̄i := ci − cT
BB−1Ai

Theorem 3.4. Consider the linear programming problem as presented in equation (3.5).

Let x∗ be a basic feasible solution of S . Let B be an associated basis matrix, and let c̄ be

the associated vector of reduced costs. Assume that c̄i ≥ 0 for all i ∈ N1 and c̄i ≤ 0 for all

i ∈ N2. Then, x∗ is an optimal solution.

Proof. We will establish that cT x∗ ≤ cTy for all y ∈ S . Let y ∈ S , and let d := y − x∗.

From Ax∗ = Ay = b we have Ad = 0. As Ad = BdB +
∑

i∈N1∪N2
Aidi, we have

dB = −
∑

i∈N1∪N2

B−1Aidi.

Now,

cT d

= cT
BdB +

∑
i∈N1∪N2

cidi

= cT
B(−

∑
i∈N1∪N2

B−1Aidi) +
∑

i∈N1∪N2

cidi

3.3 Linear Program with Bounded Variables and Fixing of Variables 78

=
∑

i∈N1∪N2

(ci − cT
BB−1Ai)di

=
∑
i∈N1

c̄idi +
∑
i∈N2

c̄idi

For i ∈ N1, we have di = yi − x∗i = yi − li ≥ 0. This implies that c̄idi ≥ 0. For i ∈ N2,

we have di = yi − x∗i = yi − ui ≤ 0, which implies that c̄idi ≥ 0. As a result, cT d ≥ 0,

completing the proof. □

3.3.1 Fixing of Variables Using Reduced Costs

We recall the steps in the variable-fixing rule for solving the h-MOLP. The maximum

number of LP we solve is the number of objective vectors provided in the model - one

LP associated with each objective. After solving each LP, we collect the solution basis

status and associated reduced cost for every variable. Considering y1 = min{c1T x | Ax =

b, l ≤ x ≤ u}, solution of highest ordered linear program (modLP1) in model. For any

variable x j ∈ x, with the available bounds information l j ≤ x j ≤ u j. Suppose we have

its basis status information and reduced cost, c j available in the solution. If we find that

x j is nonbasic and at its lower bound and, its reduced cost is positive then we fix x j with

the value l j by making the modification of the upper bound of x j ≤ u j to x j ≤ l j in the

solution of the LP with second highest ordered objective (LP2). Similarly, if we find that

x j is nonbasic and at its upper bound with a negative reduced cost, we fix x j with the

value u j by making a modification in the lower bound of l j ≤ x j to u j ≤ x j in modLP2. We

follow a similar procedure in solving a sequence of LPs.

The above steps follow the result discussed below. It also gives a theoretical justifi-

cation of variable fixing and the equivalent rule of constraint-addition.

Definition 3.5. A basis matrix is said to be optimal if c̄i ≥ 0 for all i ∈ N1 and c̄i ≤ 0 for

all i ∈ N2.

Theorem 3.6. Let LP := min x∈Rn{cT x : Ax = b, l ≤ x ≤ u} be a linear programming

problem, where A ∈ Rm×n is a real matrix of rank m, and li < ui for each i ∈ [n]. We

assume that the feasible set S := {x ∈ Rn : Ax = b, l ≤ x ≤ u} is non-empty. Let B be

an optimal basis for problem LP. Let x∗ and c̄ := cT
BB−1A be the optimal solution and the

reduced cost vector associated with B. Then the following are true.

(i) F := {x ∈ S : cT x = cT x∗}, the set of optimal solutions of LP, is a face of S .

(ii) F can be represented as

S ∩ {x ∈ Rn : xi = li ∀i ∈ [n] : c̄i > 0} ∩ {x ∈ Rn : xi = ui ∀i ∈ [n] : c̄i < 0}

3.3 Linear Program with Bounded Variables and Fixing of Variables 79

(iii) In particular, F = {x ∈ Rn : Ax = b, l̃ ≤ x ≤ ũ},

where l̃i, ũi for i ∈ [n] is defined as:

l̃i :=

ui, if c̄i < 0

li, otherwise,

and

ũi :=

li, if c̄i > 0

ui, otherwise.

Proof. (i) Note that x∗ is an optimal solution of LP. This means that

F = arg min x∈S c
′

x

In other words, F is the set of optimal solutions of LP. Moreover, it is straightfor-

ward to verify that F is a face of S .

(ii) As B is an optimal basis for problem LP and x∗ is the optimal solution of LP asso-

ciated with B, we have x∗N1
= lN1 , x∗N2

= uN2 , and x∗B = B−1b− B−1N1lN1 − B−1N2uN2 .

Now,

cT x∗ = cT
B x∗B + cT

N1
x∗N1
+ cT

N2
x∗N2

,

⇒ cT x∗ = cT
B

(
B−1b − B−1N1lN1 − B−1N2uN2

)
+ cT

N1
lN1 + cT

N2
uN2

⇒ c
′

x∗ = cT
BB−1b + c̄T

N1
lN1 + c̄T

N2
uN2

Let

R := {x ∈ Rn : l ≤ x ≤ u}

E := {x ∈ Rn : Ax = b, cT x = cx∗}.

So,

F = E ∩ R

By applying a suitable row operation on E we have

E = {x ∈ Rn : Ax = b, (cT − cT
BB−1A)x = cT x∗ − cT

BB−1b}.

3.3 Linear Program with Bounded Variables and Fixing of Variables 80

Substituting the value of cT x∗ we have

E = {x ∈ Rn : Ax = b, c̄T x = c̄T
N1

lN1 + c̄T
N2

uN2}.

Recall that c̄B = 0m×1. Hence,

E = {x ∈ Rn : Ax = b, c̄T
N1

xN1 + c̄T
N2

xN2 = c̄T
N1

lN1 + c̄T
N2

uN2}.

As F = E ∩ R, we have

F = {x ∈ S : c̄T
N1

xN1 + c̄T
N2

xN2 = c̄T
N1

lN1 + c̄T
N2

uN2} (3.7)

Now, we will complete Theorem 3.6(ii) by using six logical equivalent steps. Let

y ∈ F. The first equivalence follows from equation (3.7). Recall that c̄i ≥ 0 for

all i ∈ IN1 and c̄i ≤ 0 for all i ∈ IN2 . This implies the second equivalence. As

c̄i = 0 for i ∈ IB, we have {i ∈ N1 : c̄i > 0} = {i ∈ [n] : c̄i > 0} and

{i ∈ N2 : c̄i < 0} = {i ∈ [n] : c̄i < 0}. As a result, the third equivalence follows.

Let αi := yi − li for all i ∈ [n] : c̄i > 0, and βi := yi − ui for all i ∈ [n] : c̄i > 0. The

fourth equivalence follows from the definition of αi and βi. After simplification, we

obtain the fifth equivalence. Recall that li ≤ yi ≤ ui for all i ∈ [n]. This means that

αi ≥ 0 for all i ∈ [n] : c̄i > 0, and βi ≤ 0 for all i ∈ [n] : c̄i < 0.

y ∈ F

⇔ y ∈ S and
∑
i∈IN1

c̄iyi +
∑
i∈IN2

c̄iyi =
∑
i∈IN1

c̄ili +
∑
i∈IN2

c̄iui

⇔ y ∈ S and
∑

i∈IN1 : c̄i>0

c̄iyi +
∑

i∈IN2 : c̄i<0

c̄iyi =
∑

i∈IN1 : c̄i>0

c̄ili +
∑

i∈IN2 : c̄i<0

c̄iui

⇔ y ∈ S and
∑

i∈[n] : c̄i>0

c̄iyi +
∑

i∈[n] : c̄i<0

c̄iyi =
∑

i∈[n] : c̄i>0

c̄ili +
∑

i∈[n] : c̄i<0

c̄iui

⇔ y ∈ S and
∑

i∈[n] : c̄i>0

c̄i(li + αi) +
∑

i∈[n] : c̄i<0

c̄i(ui + βi) =
∑

i∈[n] : c̄i>0

c̄ili +
∑

i∈[n] : c̄i<0

c̄iui

⇔ y ∈ S and
∑

i∈[n] : c̄i>0

c̄iαi +
∑

i∈[n] : c̄i<0

c̄iβi = 0

⇔ y ∈ S∩{x ∈ Rn : xi = li ∀i ∈ [n] : c̄i > 0}∩{x ∈ Rn : xi = ui ∀i ∈ [n] : c̄i < 0}

3.4 Notion of Similarity and SimLex 81

(iii) From the definition of l̃ and ũ Theorem 3.6(iii) is true.

□

The constraint-addition rule always offers Pareto optimal solutions [14]. From the

equivalence result in Theorem 3.6, we can infer that the variable-fixing rule will also pro-

vide Pareto optimal solution. However, likewise constraint-addition rule, variable-fixing

rule can also require the solution of many single objective problems to obtain just one so-

lution point. For relatively large h-MOLPs, for example, the master production schedule

(MPS) in the manufacturing industries with a large-sized constraint set and many business

objectives, it becomes a challenge. To speed it up, many solvers [27, 122] provide a fea-

ture of using the solution of high priority objectives as a starting solution to solve the low

priority objectives. We call it reoptimization [46]. We have discussed reoptimization and

Pareto optimality in Chapter 1. It is used to solve a new mathematical model by applying

the available solution of a similar model with slight modification to the new model. This

modification can be in rhs vector, cost vector, bounds of variables or coefficient matrix.

Consider any two consecutive linear problems solved in the variable-fixing method (3.3):

min cpTx

s.t. Ax = b,

x j = f j ∀ j ∈ Jp ⊆ [n],

l ≤ x ≤u.

(modLPp)

and

min cqTx

s.t. Ax = b,

x j = f j ∀ j ∈ Jq ⊆ [n],

l ≤x ≤ u.

(modLPq)

Where x j = f j indicate the variable is fixed with some value using the variable-fixing rule

(See Theorem 3.6). Also, Jp ⊂ Jq and optimal solution of the problem (modLPp) is a

basic feasible to the problem (modLPq) (see Theorem 3.6(i)). Though we can use optimal

basis of problem (modLPp) as starting feasible basis for solving the problem (modLPq),

sometimes it is better to avoid this available starting solution and start afresh. We can

provide a motivating example in the next section and introduce the modification in the

variable-fixing method by using the concept of similarity. This similarity will help us in

selectively calling the reoptimization.

3.4 Notion of Similarity and SimLex

Reoptimization does not always help. There are instances where it is better to avoid the

available starting solution and start afresh. As a motivation, we provide the following

example:

3.4 Notion of Similarity and SimLex 82

LP1 := min
x∈R2

x2

subject to

3 ≤ x1 + x2 ≤ 9,

−3 ≤ x1 − x2 ≤ 3,

x1 + 2x2 ≤ 13,

x1 − 2x2 ≥ −7.

and

LP2 := min
x∈R2

− x2

subject to

3 ≤ x1 + x2 ≤ 9,

−3 ≤ x1 − x2 ≤ 3,

x1 + 2x2 ≤ 13,

x1 − 2x2 ≥ −7.

The problem LP1 and LP2 have unique optimal solutions at p∗ = (3, 0) and q∗ = (3, 5) re-

spectively. Moreover, to solve the problem LP2 by simplex method, if we use the starting

basic feasible solution as p∗, it will take more iterations to reach q∗ than we start with any

other basic feasible solution of LP2. We see the benefit of solving LP2 from scratch using

both the primal and dual simplex methods.

A similar example mentioned in Appendix B consists of a h-MOLP and two consec-

utive LPs, LPa and LPb, generated while solving the h-MOLP using the constraint-addition

rule. The total number of iterations in solving LPa is 5. The number of iterations in solv-

ing LPb with and without using the solution basis information of LPa is 9 and 2. Here

also, solving LPb with the available solution basis of LPa is more expensive in terms of

the number of iterations than solving LPb from scratch. Section 3.6 will report the results

of an experiment where the available optimal basis helps speed up the overall solving

time in some cases. However, in other cases, solving from scratch is helpful. We need

to have a rule that selectively chooses the solution basis. In the next Section, we devise

a strategy that exploits the structure of the underlying hierarchical model by monitoring

the input parameter changes and leveraging reoptimization. Towards this end, we define

a similarity measure between intermediate LPs appearing while solving the model.

3.4.1 Notion of Similarity between Linear Programs

We ideally call an LP, say LP1 is similar to another LP, say LP2, if the solution

information of LP1 helps solve LP2 faster than just solving it from scratch. Alternatively,

we can say two LPs are similar if reoptimization between them is helpful. This section

uses some criteria to check whether the two LPs are similar. For this, we consider they

differ only by the cost vector, c, and bound vectors, l, u. We formally define the notion of

similarity as follows:

Definition 3.7. Let LP1 := min{c1x | Ax = b, l1 ≤ x ≤ u1} and LP2 := min{c2x | Ax =

b, l2 ≤ x ≤ u2} are two linear programs. We are assuming that the feasible sets of both

LP1 and LP2 are non-empty.

3.4 Notion of Similarity and SimLex 83

1. Let p be the optimal solution of problem LP1, and let B be the optimal basis asso-

ciated with p. So, the reduced cost c1 := c1 − c1
BB−1A satisfies three properties:

(a) c1
i = 0, i ∈ B(1), · · · , B(m),

(b) c1
i ≥ 0, i ∈ L and,

(c) c1
i ≤ 0, i ∈ U.

Here, c1
B := (c1

B(1), . . . , c
1
B(m)) and L and U are two disjoint index sets that partition

the set of all j , B(1), · · · , B(m) such that p j = l j, j ∈ L and p j = u j, j ∈ U.

2. Let e := c2 − c2
BB−1A. We refer e as the estimated reduced cost of LP2.

We wish to solve LP2 using p and B−1, solution information of LP1. We say LP1 and

LP2 are “similar” if the following conditions are satisfied:

i. LP1 and LP2 have “similar-objective", i.e.,

[
1 −
(∑n

j=1 Ip j |c
2
j − c1

j |∑n
j=1 |c

2
j − c1

j |

)]
≥ κ1,

where 0 ≤ κ1 ≤ 1 is the given parameter. Here Ip j , an indicator function, is defined

as follows:

Ip j =

1, if e j ≤ 0 and c1
j > 0,

1, if e j ≥ 0 and c1
j < 0,

1, if e j , 0 and c1
j = 0,

0, Otherwise.

ii. LP1 and LP2 have “similar-bounds", i.e.,[
1 −
(∑n

i=1 Ĩpimin(|l2
i − p j|, |u2

i − p j|)∑n
i=1 min(|l2

i − p j|, |u2
i − p j|)

)]
≥ κ2,

where 0 ≤ κ2 < 1 is the given parameter. Here Ĩpi , the indicator function, is equal

to 1 if the ith component of p is outside the variable bound [l2
i , u

2
i], else is set to 0.

If the above conditions are satisfied, we use p as the starting basic feasible solution

for solving LP2. Otherwise, we will start solving from scratch. To avoid the difficulty

of considering objective functions and variable bounds for the similarity computation

simultaneously, we study the conditions i. and ii. separately. In condition i., we assume

l1 = l2 and u1 = u2 when computing the similarity of objectives. Similarly, in condition

ii., we define the similarity measure between bounds assuming c1 = c2.

3.5 Implementation 84

Parameters κ1 and κ2 play a key role in similarity computation. Their values range

from zero to one. A value near one assumes two LPs to be dissimilar. A low value, near

zero, always leads to reoptimization. Threshold parameters are sensitive, and their ideal

values are the one that helps in solving LP2 faster by providing an appropriate decision of

whether the solution basis obtained from LP1 helps.

Now we provide the logical explanation for “similar-objective” and “similar-

bounds”, conditions used for obtaining “similarity” between LP1 and LP2 given the opti-

mal solution p of LP1. At optimality, solution basis B, and reduced cost c1 = c1 − c1
BB−1A

obtained after solving LP1, hold the following optimality conditions

1. c1
j − c1

BB−1A j ≥ 0 for all nonbasic indices j ∈ L and,

2. c1
j − c1T

BB−1A j ≤ 0 for all nonbasic indices j ∈ U.

p and B can also be feasible for LP2 if the indicator function Ĩpi is zero for all i ∈ {1, . . . , n}.

This forms the “similar-bounds" condition between LP1 and LP2 for the given solution

p. Similarly for optimality conditions to hold true for LP2 given p , the following result

forms the “similar-objective” condition:

Proposition 3.8. Suppose LP1 = min{c1x | Ax = b, l1 ≤ x ≤ u1} is a linear program.

Consider p, B and c1 are the optimal solution, solution basis and reduced costs informa-

tion respectively of LP1. Consider a perturbed cost vector c2 = c1 + δ where δ , 0 is

given. Let e = c2 − c2
BB−1A. For any component pi, i ∈ {1, . . . , n}, if c1

i · ei ≤ 0 and, c1
i and

ei both can not together be zero, the basis B of LP1 is not the optimal basis of LP1 with

perturbed cost vector c2.

Proof. Assume that the set of all i < B(1), . . . , B(m), is partitioned into two disjoint sub-

sets L and U such that x j = l j for all j ∈ L and x j = u j for all j ∈ U. Clearly, for B be

the optimal basis of LP1, 1) c1
j ≥ 0, j ∈ L and 2) c1

j ≤ 0, j ∈ U (see 3.4). If for any

j ∈ L, reduced cost of x j with perturbed cost coefficient c2
j , e j ≤ 0 then increasing x j will

help improving the objective function value, making it a potential candidate to enter the

basis, leading B no longer be optimal. Similarly, if for any j ∈ U e j ≥ 0 then decreasing

x j may help improving the objective function value, x j can become a potential candidate

to enter the basis, leading B no longer be optimal basis. It implies that for any variable

xi, i = 1, 2, · · · n, if e j · c1
j ≤ 0, the basis B of LP1 is not the optimal basis of LP2. □

3.5 Implementation

We now adopt the concept of similarity for solving the hierarchical model (3.1). This

idea provides us an improved version of variable-fixing rule. We call it SimLex Recall

3.5 Implementation 85

the variable-fixing rule mentioned in Section 3.3.1, where the consecutive LPs solved

only differ by the objective cost and the variable bound vectors. The solution obtained

from the previous LP is always feasible for the current LP. It simplifies the definition of

similarity as follows:

Definition 3.9. Let LP1 := min{c1x | Ax = b, l1 ≤ x ≤ u1} and LP2 := min{c2x | Ax =

b, l2 ≤ x ≤ u2} are two linear programs. We assume that the feasible sets of both LP1 and

LP2 are non-empty. With respect to p and B, the optimal solution and the optimal basis

of LP1, we say LP1 and LP2 are “similar” if

[
1 −
(∑n

j=1 Ip j | c
2
j − c1

j |∑n
j=1 | c

2
j − c1

j |

)]
≥ κ,

where 0 ≤ κ ≤ 1 is the given parameter. Ip j the indicator function is equal to 1 if

e j , 0 and c1
j = 0, else is set to 0.

If the above condition is satisfied, we use p as the starting basic feasible solution for

solving LP2. Otherwise, we will start from scratch.

Simplex procedure uses Definition 3.9 for selectively invoking reoptimization. Al-

gorithm 5 briefs the procedures of as follows: We start with a feasible set and a list of

objectives. We solve them hierarchically with the highest priority objective first. After

solving each LP, we do a similarity check. We use the solution basis of the previous LP as

starting basic feasible solution to the current LP if it is similar to the previously solved LP.

Otherwise, we solve it from scratch. We update the current feasible set using the obtained

solution similar to the variable-fixing rule.

Other than the information already present in memory while solving the current LP,

the additional previous LP information consists of:

• an array of size n to store the cost coefficient,

• m arrays each of size m, for storing columns of B−1, and

• an array of size n to store reduced cost information.

The first two pieces of information compute the estimated reduced cost, e of the current

LP. Using e with the third information c, we evaluate the similarity score. If B−1 is large,

storing all the m arrays is expensive. However, we do not need all the columns to be

stored. We only require b columns. It is the maximum number of non-zeros entries in any

A j, j = 1, . . . ,m in A. Let us consider the following steps to compute e for LPk:

e j = ck
j − ck−1

B [B−1(1), . . . , B−1(m)]Ak
j = ck

j − ck−1
B

m∑
i=1

B−1(i)Ak
i j

3.6 Computational Result and Summary of the Work 86

= ck
j − ck−1

B

∑
i=1,..., m| Ak

i j!=0

B−1(i)Ak
i j,

where B−1(1), . . . , B−1(m) are m columns of B−1 and ck−1
B (1), ldots, ck−1

B (m) are the asso-

ciated basic cost coefficients of LPk−1. Ak
j and ck

j are the corresponding jth column and

the associated cost coefficient of LPk. In practice, LPs are generally sparse and, for such

problems, b << m make the implementation practical.

Algorithm 5: SimLex
Input: Feasible set F := {x | Ax = b, l ≤ x ≤ u}; List of k objective vectors

[c1, . . . , ck].

Output: List of k solutions for each objectives, S := [y1, . . . , yk]:

Solve LP1 := min{c1x | x ∈ F} and store the its solution y1 to S .

Update F using the solution obtained from LP1.

for t = 2, . . . , k do
if LPt := min{ctx | x ∈ F} and LPt−1 are similar (w.r.t yt−1) then

Solve LPt with starting solution information yt−1 ;

else
Solve LPt from scratch. ;

Save the current solution yt in S ;

Return S as the final solution to the given input problem.

3.6 Computational Result and Summary of the Work

In this section, we give empirical evidence of the effectiveness of our similarity-based

method (SimLex) on h-MOLP instances and provide computational details of them. We

compare the performance of SimLex with that of the standard lexicographic scheme in

CPLEX (Default-CPLEX) from CPLEX-12.10.0, and two well-known rules, variable-

fixing and constraint-addition. For all the experiments, we use Primal simplex method.All

other settings, including presolves, heuristics, etc., were left undisturbed. Our subroutines

are written in Python 3.7 and, for solving LPs, use python CPLEX API, a python package

in CPLEX that allows the callable library to be accessed from the python language. The

hardware used for the computation is a 64 bit Intel(R) Xeon (R) E5-2673 v4 at 2.30GHz

CPUs with 20 cores and 64 GB RAM. To avoid multiple processes sharing common

resources, we run one job at a time with the default settings of CPLEX.

Our experiment does not report objective values, as every test instance is solved

within the given time limit from each hierarchical procedure. Problem instances for

3.6 Computational Result and Summary of the Work 87

Table 3.1: Performance summary of SimLex compared to other rules over various κ
simlex

instance def-cplex const-add var-fix 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

molp_3_100_20_assignment 14 34 14 14 14 14 14 14 14 14 14 13 13
molp_4_729_729_bensolvehedron 40 46 143 143 143 143 143 143 143 143 143 143 143

molp_4_900_60_assignment 99 212 99 99 99 99 99 99 99 99 97 97 97
molp_9_100_60_mpp 65 81 77 77 77 77 77 77 77 81 84 90 99

molp_10_779_10174_entropy 42763 9300 6527 6527 6527 6527 6527 6527 6527 6527 23731 21902 21902

molp_10_900_60_assignment 99 441 99 99 99 99 99 99 99 99 97 97 97
molp_12_21_30_dc 8 18 8 8 8 8 8 8 8 8 8 8 8
molp_21_31_138_entropy 52 128 35 35 35 35 35 35 86 86 158 158 158

molp_22_43_213_entropy 113 160 97 97 97 97 97 97 100 100 219 219 219

molp_23_28_218_entropy 2 2313 3 3 3 3 3 3 1 4 0 0 0
molp_27_28_218_entropy 1 151 1 1 1 1 1 1 1 0 0 0 0

no. of times it performs better than others 4 1 4 4 4 4 4 4 2 3 5 6 6

our comparison consist of two different sets of h-MOLPs. In one experiment, we select

the first set from MOPLIB, a problem library for multi-objective linear, multi-objective

(mixed) integer and vector linear programs [123], where we choose 11 out of 15 available

instances and exclude the trivial instances. The selected MOLPs instances are summa-

rized in Table B.1.

We ran the Default-CPLEX, variables-fixing, and constraint-addition rules with

SimLex on them. Instead of solving time, we report the total iterations taken to reach the

optimal solution, as each instance takes a few seconds to solve using any lexicographic

rules. Table 3.1 lists the total iterations taken by each procedure. The last row reports

the winning count of SimLex with high κ values over others, concluding that solving LPs

from scratch leads to a faster solving time.

The other set of instances is the h-MOLPs of master production schedules (MPS)

specific to supply chain scenarios for some consumer products and goods (CPG) indus-

tries. We have discussed MPS in Chapter 1. Modeling of MPS is described in detail in

the next Chapter 4. Table 3.2 summarizes 13 h-MOLPs modeled for MPS of 4 different

supply chain scenarios. For each model, we set the time limit to 7200 seconds.

To compute an ideal κ value, we do the following experiment: We ran one MPS

model from each supply chain scenario over the entire range of κ values. With κ = 0.6,

we obtained the best mean solving time and set it as a default threshold value. Table

3.3 reports the solving time for four instances chosen from different supply chains. In

the last column, SGM -50 shows the mean solving time. It uses shifted geometric mean

(SGM)[117] with a shift of 50 seconds.

Table 3.4 compares the overall performance of our strategy to other procedures. The

columns ‘def-cplex’, ‘const-add’, ‘var-fix’, and ‘simlex’ denote the Default-CPLEX rule,

constraint-addition rule, variable-fixing rule, and SimLex procedure, respectively. We

report the time taken to run the given model by all the rules. We also report the mean of

3.6 Computational Result and Summary of the Work 88

Table 3.2: Problem summary of h-MOLPs selected for the computational experiment

supply chain scenario instance
no. of linear

constraints

no. of

variables

no. of nonzeros

in linear constraints

no. of business

objectives

no. of nonzeros

in objective function

1 1218126 3406752 14987279 33 16322

1 2 1342622 3909913 16442083 33 17117

3 1340445 3897873 16431281 33 17136

4 1360885 3428617 33139223 40 981

2 5 1356679 3429441 33652942 40 845

6 1357075 3425452 33990980 40 871

7 717200 3992746 8728732 17 521

3 8 680525 3808447 8313350 17 452

9 536716 3198612 6921596 15 208

10 1166983 6682634 10941441 17 7735

11 1252716 7195176 11750289 17 8689

4 12 1212667 6940401 11348793 17 8839

13 1329219 7128846 11994006 17 7585

Table 3.3: Solving times (in seconds) of selected MPS models for an ideal κ for SimLex

instance κ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 4253 4184 4264 4209 4179 3501 4483 6690 6507

5 5222 5163 5103 5142 5142 1687 1639 1497 1519

8 148 147 148 149 145 284 273 268 277

12 422 423 417 429 438 418 402 310 310

SGM-50 1157 1147 1147 1154 1153 941 978 995 999

3.6 Computational Result and Summary of the Work 89

Table 3.4: Result summary of solving times (in sec) of SimLex over other rules

supply chain scenario instance def-cplex const-add var-fix simlex
%age simlex benefit

over the other best rule

1 4381 timeout 4136 3501 15

1 2 4999 timeout 4659 3456 26

3 6605 timeout 4770 4025 16

4 5488 timeout 5207 1687 68

2 5 6441 timeout 6068 1595 74

6 5759 timeout 6626 1618 72

7 147 505 143 284 -50

3 8 153 656 125 255 -51

9 93 timeout 94 161 -42

10 388 492 376 379 -1

4 11 425 691 425 418 2

12 430 856 411 421 -2

13 502 636 473 533 -11

SGM-50 1143 2380 1079 858

% 100 94 75

no. of times performs better than others 2 0 5 7

SimLex relative to the mean of def-cplex (the row % in the table). A value below 100

states an improvement over the default. We observed that 7 out of 13 instances, solved

by SimLex, are faster than any other procedures (reporting in the bottom row). We also

observed that Default-CPLEX performs equally well with the variable-fixing rule. The

last column reports the performance of SimLex over other procedures in percentage. For

each MOLP instance, a positive score indicates the percentage score by which SimLex

solves faster than its best competing procedure. Similarly, a negative score indicates the

percentage score by which SimLex performs slower than its best competing procedure.

The row SGM-50 in the table shows that SimLex is the fastest for the given MPS models

overall. We can also conclude the competitiveness of Default-CPLEX and variable-fixing

rule over SimLex. For problem instance number 9, the Default-CPLEX rule beats SimLex

by 42%. In some cases, SimLex gives a more than 70% percentage benefit.

To highlight the impact of selectively using available feasible solutions (with hot-

start enabled) in the lexicographic solving procedures, we collect information for two

specific instances, instance-2 from the supply chain scenario-1 and instance-5 from the

supply chain scenario-2. Figure 3.1 reports it for both the variable-fixing-based rule and

our SimLex procedure. It contains two sub-images, one for instance-2 and the other for

3.6 Computational Result and Summary of the Work 90

Figure 3.1: Instance -2 (left) and Instances -5 (right). Objective wise performance com-

parison of SimLex with variable-fixing. Blue points at level 1 indicate solving with hot-

start and at level 0 indicate solving from scratch

3.6 Computational Result and Summary of the Work 91

instance 5. Each shows blue points positioned at level 0 or 1 for the objectives. At level

0, it indicates the respective objective function does not use hot-start and solves from

scratch when solving using the SimLex rule. If the point is at level 1, it implies that the

current object uses the solution information (with hot-start enabled) obtained from the

last objective. Along with the blue point, we include 2 column bars that mention the

time taken (in seconds) to solve the instance using the variable-fixing rule and SimLex.

We observed that the selective hot-start approach in SimLex over the variable-fixing rule

computationally helps.

In summary, we provide a new lexicographic method for hierarchical multiobjective

linear programs. It uses input parameters in the model to decide whether the current LP

should use the available feasible solution obtained from the previous LP. We apply this

idea with two different sets of MOLPs - the first set of instances is chosen from MOPLIB,

a library of benchmark multi objectives programs, and the second is the mathematical

model of the master production schedules. We did not emphasize an ideal parameter

selection procedure for similarity computation. The current selection procedure is specific

to the given supply chain scenarios. An ideal parameter selection for the general h-MOLP

and incorporation of the simultaneous sensitivity analysis with the concept of similarity

are the two main works that need to be done.

Chapter 4

Master Production Schedule as
h-MOLP

Master production schedule (MPS) is one of the main components of master planning in

the study of supply chain planning. It prepares a detailed ‘rough-cut’ plan for individ-

ual products produced in each period on the planning horizon. We have discussed MPS

in detail in Chapter 1, which provides a simple MPS example and approach to model

it mathematically. It studies the basic supply chain restrictions, such as material flow

from the manufacturing end to the ultimate customer, resource capacity and load con-

straints, and the essential demand-based objective of minimizing the unmet demand in

the “multi-echelon” supply chain planning process. We recall the model (1.12) formu-

lated as follows:

LP1: obj1:= min−xd1
t1 − xd2

t2 − xd3
t3

subject to
∑
i∈O1

opi
1,t − c1

t ≤ 0, t = 1, 2, · · · ,T,

opi
1,1 − bi

1,1 = 0, i = 1, 2, 3,

opi
1,2 + bi

1,1 − bi
1,2 = 0, i = 1, 2, 3,

...

opi
1,ti + bi

1,ti−1 − bi
1,ti − xdi

ti = 0, i = 1, 2, 3,

bound: 0 ≤ xdi
ti ≤ d̃i

ti, i = 1, 2, 3,

0 ≤ c1
t ≤ max_c1

t , t = 1, 2, 3, · · · ,T,

opi
1,t, bi

1,t ≥ 0 i = 1, 2, 3, and t = 1, 2, 3 · · · ,T. (4.1)

For the parameters and decision variables used, we refer to the Section 1.4.1 of Chapter

1. Throughout the chapter, we follow this model to explain the various objectives consid-

ered in MPS. MPS applies many business objectives, and most conflict with each other. It

92

4.1 Popular Objectives used in MPS 93

becomes even more challenging to model MPS considering all the objectives simultane-

ously. Some industries set priorities among the objectives. It helps the planner to obtain

an acceptable Pareto solution by posing it to a lexicographic model. However, for many

objectives solving the MPS lexicographically is computationally expensive. In Chapter 3,

we have discussed such challenges and one technique to improve the computation effort.

Section 3.1 discusses the literature on h-MOLP. The related literature on MPS is discussed

in Section 1.4.1 of the Chapter 1.

This chapter will be more toward modeling MPS in detail, formulating various ob-

jectives used, and exploiting customers’ input in MPS to improve the performance of the

lexicographic technique for MPS. Mostly, satisfying a customer’s demand is the highest

priority objective in industries. We explore demand-based objectives created by priori-

tizing the given demand requirements or delivering the requested items in fractions. We

call delivering the requested demand in fractions as a fair-shared demand. We will study

such demand-based objectives most customers may prefer for MPS in Section 4.1. Com-

bining objectives with a weighted-sum approach is a basic way to solve multiobjective

programs (MOP). Unlike the lexicographic rule, the weighted-sum method avoids solv-

ing several single objective linear programs but faces challenges in obtaining a Pareto

optimal solution. We discuss a technique to combine the objectives in the lexicographic

method for MOPs. Under certain specific conditions, we find that the method works well

with MPS. Further, we find that the fair-shared demand objectives can be combined while

solving the MPS using lexicographic method. We discuss them in Section 4.2. Besides

fair-shared demands, this section discusses combining the objective of minimizing the

unmet demand (or maximizing the required demand) followed by minimizing backlog.

This backlog (or lateness) objective aims to reduce the delay of those demand items that

could not meet their due date. On the computational front, in Section 4.3, we discuss the

benefit of our idea by implementing and running it for some industry datasets, comparing

it with the standard lexicographic method, and concluding our contribution with some fu-

ture directions. Finally, in Section 4.4, we explain the steps to model an MPS of a dummy

manufacturing industry with a toy example, a potato chip model.

4.1 Popular Objectives used in MPS

4.1.1 Maximizing Meeting of Demand

An essential objective of any firm is to keep its customer happy. The demand for final

item products is the customer’s direct order and forecasted order from previous customers’

orders and sales. MPS takes this demand order pictures as input and plans to meet the

4.1 Popular Objectives used in MPS 94

demands required on the due date with the highest priority. A planner defines the demand-

based objective as per the input demand requirements. We can study some of them.

• The demand required for one type of product on a single due date: Such demand

request is the simplest in terms of its modeling. Suppose the requirement for the

finished product item d1 is d̃1
t1 on the due date t = t1 day. We define the objective

function as

min−xd1
t1,

where xd1
t1 is the decision variable, defined as the total unit of item d1 a planner

can satisfy the customer by due date t = t1. The range of xd1
t1 must be defined as

0 ≤ xd1
t1 ≤ d̃1

t1 as a trivial bound constraint. The material flow balance and resource

load constraints will be similar to model 4.1.

• A customer requires one type of item on different dues dates: If the demand request

of the finished product item d1, requested on t = t1 and t2 days, are d̃1
t1 and d̃1

t2, we

can define the objective function as

min−w1 xd1
t1 − w2 xd1

t2

where xd1
t1 and xd1

t2 are the decision variables, defined as the unit of item d1 a plan-

ner can satisfy to the customer by due dates t1 and t2, respectively. The ranges of

xd1
t1 and xd1

t2 are 0 ≤ xd1
t1 ≤ d̃1

t1 and 0 ≤ xd1
t2 ≤ d̃1

t2 as trivial bound constraints. The

objective coefficients w1 and w2, positive real numbers, are set as per the required

priority on due dates. If the demand requested on t1 is more important than that of

t2, w2 < w1. In case both are of equal importance, we set w1 = w2.

• Demand requests are divided into several levels: There could be a situation where

the planner cannot fully satisfy the requests. One problem may occur when cus-

tomers request more than one type of item, and all those items are essential. Due

to limited input capacity, the planner can only meet some of the requirements. The

planner might meet all the requests of one type of item but could not another item at

all. It is not a fair share. To meet this requirement, the planner must meet one level

of a fraction of the request. After planning with this partial demand, the planner

can similarly plan for the remaining demand request. Consider d̃1
t1 and d̃2

t2 are the

demand request of item types d1 and d2 at due dates t1 and t2 days, respectively.

To have a fair share of demand fulfillment, we can plan in more than one stage. At

stage one, we try to meet the α fraction of the total items demanded of each item

types. The objective function, in this case, will be

min−w1 xd11
t1 − w2 xd21

t2 ,

4.1 Popular Objectives used in MPS 95

where xd11
t1 is a decision variable, defined as the total items of type d1 a planner can

satisfy the customer by due date t = t1. Similarly, we define xd21
t2 for item d2 at due

date t = t2. w1, w2 are the weights associated with the demands variable, decided

as per the importance of the demand variables. The bounds of xd11
t1 and xd21

t2 are

0 ≤ xd11
t1 ≤ α d̃1

t1 and 0 ≤ xd11
t2 ≤ α d̃1

t2 as a trivial bound constraints. We model

the objective function for the other stage. For example, for stage two, the objective

function

min−w1 xd12
t1 − w2 xd22

t2 ,

with new decision variables, xd12
t1 and xd22

t1 , is defined similarly to xd11
t1 and xd21

t1 .

The bounds of xd1
t1 and xd1

t2 are 0 ≤ xd11
t1 ≤ (1− α)β d̃1

t1 and 0 ≤ xd11
t2 ≤ (1− α)β d̃1

t2

as a trivial bound constraints. Here β ∈ [0, 1] is the fraction item unit requested to

be fulfilled at stage 2. If β = 1, we solve the fair share of demand requested in two

stages. Otherwise, we can continue solving a partial demand satisfaction problem.

Note that the weight vector is the same at each stage for each fair-shared objective

function as the delivery (due) dates remain intact over the demand request.

If we implement a k-stage demand satisfaction objective with fair share demand

fulfillment, model 4.1 reformulates to the following lexicographic objective.

k-DemandsMPS: lexmin ((−w1 xd11
t1 − w2 xd21

t2 − w3 xd31
t3),

(−w1 xd12
t1 − w2 xd22

t2 − w3 xd32
t3),

. . . , (−w1 xd1k
t1 − w2 xd2k

t2 − w3 xd3k
t3))

subject to
∑
i∈O1

opi
1,t − c1

t ≤ 0, t = 1, 2, 3, · · · ,T,

opi
1,1 − bi

1,1 = 0, i = 1, 2, 3,

opi
1,2 + bi

1,1 − bi
1,2 = 0, i = 1, 2, 3,

...

opi
1,ti + bi

1,ti−1 − bi
1,ti − xdi

ti = 0, i = 1, 2, 3,

− xdi
ti + xdi1

ti + xdi2
ti + · · · + xdik

ti = 0, i = 1, 2, 3,

(4.2)

bound: 0 ≤ xdi1
ti ≤ d̃i1

ti , i = 1, 2, 3,

0 ≤ xdi2
ti ≤ d̃i2

ti , i = 1, 2, 3,
...

0 ≤ xdik
ti ≤ d̃ik

ti , i = 1, 2, 3,

0 ≤ c1
t ≤ max_c1

t , t = 1, 2, 3, · · · ,T,

4.1 Popular Objectives used in MPS 96

opi
1,t, b

i
1,t ≥ 0, i = 1, 2, 3, and t = 1, 2, 3 · · · ,T.

(4.3)

Here d̃i1
ti , d̃i2

ti , . . . , d̃
ik
ti are k proportion of demand requirement of d̃i

ti unit of item type

di on due date ti, for all i = 1, 2, 3., such that d̃i1
ti + d̃i2

ti + · · · , d̃
ik
ti = d̃i

ti.

• Solve separate objectives, each with the demand requests of items with different

priorities: If the customer provides the importance among the requested items, the

weighted sum-based approach may lead to scaling issues if the measuring units

have different scales. An ideal option would be to solve them separately, which

guarantees Pareto optimality. We first meet the high priority demand, and then with

the remaining availability, we try to meet the low priority demand required. The

lexicographic objective function, in this case, will be as follows:

lexmin (−w11 xd1
t1 − w12 xd1

t2,−w21 xd2
t3 − w22 xd2

t4).

Here xd1
t1 and xd1

t2 are the demand decision variables associated with item d1 with

the respective due dates t1 and t2. Similarly, decision variables xd2
t3 and xd2

t4 are

defined for item d2 with due dates t3 and t4, respectively. These variables are non-

negative and are upper bounded by the customer’s associated demand for requested

items. Other, constraints will be similar to the model (4.1).

4.1.2 Avoiding Lateness

The last section that dealt with modeling aspects of meeting the demand requests

did not consider the backlogging or lateness. If customers agree with some lateness in

receiving the items they demanded, the planner tries first to meet the demand on the given

due date, and if it is not possible to meet all of them on that date, it replenishes to the

customer on the late date. In such scenarios, planners target to meet the unmet demand as

close to the due date as possible to reduce tardiness.

We consider decision variables based on lateness concerning each demand require-

ment. For instance, f 1
t1, f 1

t1+1, . . . , f 1
T are the decision variables that indicate the produc-

tion unit of item d1 at t1, t1 + 1, to T associated with the demand-based decision variable

d̃1
t1. Similarly, we define lateness variables f 2

t2, f 2
t2+1, . . . , f 2

T associated with item d2, and

f 3
t3, f 3

t3+1, · · · , f 3
T associated with item d3, respectively. We define the lateness objective,

a linear objective function, as (1 f 1
t1 + 2 f 1

t1+1 + · · · ,+T f 1
T) + (1 f 2

t2 + 2 f 2
t2+1 + · · · ,+T f 2

T) +

(1 f 3
t3 + 2 f 3

t3+1 + · · · ,+T f 3
T). We assign weights as per the lateness from the target date - at

T , weights are maximum and are set to a minimum at the due date. Since demand-based

4.1 Popular Objectives used in MPS 97

decision variables are associated with the lateness variables, we add them into the con-

straint set as follows: For demand item d1, d̃1
t1 = f 1

t1 + f 1
t1+1 + · · · + f 1

T . Similarly, we have

d̃2
t2 = f 2

t2 + f 2
t2+1 + · · · + f 2

T , and d̃3
t3 = f 3

t3 + f 3
t3+1 + · · · + f 3

T . for d2 and d3 respectively. The

minimum and maximum values of lateness variables f 1
t1, f 1

t1+1, . . . , f 1
T will be the same as

d̃1
t1. Similarly, we update the bounds of other lateness variables. Considering both the ob-

jectives, 1) minimizing unmet demand and 2) minimizing lateness, we have the following

h-MOLP model :

MPS: lexmin (−xd1
t1 − xd2

t2 − xd3
t3), ((1 f 1

t1 + 2 f 1
t1+1 + · · · ,+T f 1

T) (4.4)

+ (1 f 2
t2 + 2 f 2

t2+1 + · · · ,+T f 2
T) + (1 f 3

t3 + 2 f 3
t3+1 + · · · ,+T f 3

T))

s.t.
∑
i∈O1

opi
1,t − c1

t ≤ 0, t = 1, · · · ,T,

opi
1,1 − bi

1,1 = 0, i = 1, 2, 3,

opi
1,2 + bi

1,1 − bi
12 = 0, i = 1, 2, 3,

...

opi
1,ti + bi

1,ti−1 − bi
1,ti − xdi

ti = 0, i = 1, 2, 3,

− xdi
ti + f i

ti + f i
ti+1 + · · · ,+ f 1

T = 0, i = 1, 2, 3,

bound: 0 ≤ xdi
ti ≤ d̃i

ti, i = 1, 2, 3,

0 ≤ f i
ti ≤ d̃i

ti, i = 1, 2, 3,

0 ≤ f i
ti+1 ≤ d̃i

ti+1, i = 1, 2, 3,
...

0 ≤ f i
ti+T ≤ d̃i

ti+T , i = 1, 2, 3,

0 ≤ c1
t ≤ max_c1

t , t = 1, 2, 3, · · · ,T,

opi
1,t, b

i
1,t ≥ 0, i = 1, 2, 3, and t = 1, . . . ,T . (4.5)

4.1.3 Other Important Business Objectives

Apart from demand-related objectives, there are many business requirements cus-

tomers expect to consider in the MPS computation under supply chain planning. Some of

them we discuss in brief:

Minimizing the alternate operations to prefer primary operations

Unexpected demand requests from customers and limitations in manufacturing them tar-

geted to be available on the specified due date require alternatives in many industries.

An alternative in the industry is a backup, such as performing the alternate operation

4.1 Popular Objectives used in MPS 98

of bringing items far from the warehouse or producing at a higher cost than the regular

production cost per item. The planner does not want to utilize items from alternatives

unless necessary. The main reason to keep it a second priority is to avoid unnecessary

expenses. An objective of minimizing alternate operations in MPS helps properly utilize

material and resources in the industry and avoid alternate operations. Suppose there is a

customer demand of 100 units of an item. A mathematical model for MPS runs to maxi-

mize the demand satisfaction (or minimize the unmet demand) and meet all the 100 units

of demand requests on time. The second objective is to obtain a plan for minimizing the

alternative operations in case 100 units of demand request could not meet. The objective

will try to push as much as the demand requested meets from the primary source and then

provide the demand from the alternatives. Like, alternate operations, other components,

like alternate flow set, alternate BOM (bill of materials) and alternate resource, can be

modeled.

Minimize the violation in minimum and maximum safety stocks

The minimum and maximum safety stock requirements are the input information provided

for MPS that specify the corresponding lowest and highest quantity of a buffer item at a

location. In the MPS plan, we aim to avoid violating those buffer items to not dip below

or above the specified safety stock range at any planning period.

We can reformulate model (4.1) with minimum safety stock by adding the objective

function as follows:

min smin3
1 + smin3

2 + · · · ,+smin3
t3. (4.6)

Other than the given flow balance and resource load constraints, the additional safety

stock constraints will be the following:

op3
1,1 − b3

1,1 − smin3
1 = 0,

op3
1,2 + b3

1,1 + smin3
1 − b3

1,2 − smin3
2 = 0,

...

op3
1,ti + bi

1,t3−1 + smin3
t3−1 − b3

1,t3 − smin3
t3 − xdi

t3= 0. (4.7)

Here smin3
t is the decision variable at period t = 1, . . . , t3 used to control the safety

stock violations not to exceed the stock b3 more than s̃min3 at any planning horizon.

The trivial bounds on safety stock violation variables will be: 0 ≤ smin3
t ≤ s̃min3, t =

1, 2, . . . , t3. Likewise, we can formulate the maximum safety stock violation where the

defined decision variable in the model form constraints of not going below the specified

safety stock level.

4.2 Combining Objectives 99

Minimize violation of raw material

All the MPS models discussed above consider no restriction in most upstream raw ma-

terial availability. If the customer provides the raw material availability information and

expects the planner not to go beyond this specified material capacity, minimizing the

violation of raw material is the objective to push raw material consumption as near as

available. We define the violations variables rmv1
t , t = 1, . . . ,T and add the raw material

flow balance constraints as:

rmv1
t − op1

1,t − b1
1,t = −

˜rmv1
t for allt = 1, . . . ,T.

The objective function will be to minimize the weighted-sum of violation variables:

T∑
t=1

wirmv1
t .

Here wi is set as per the priority.

Minimizing Operations associated with the Initial period

To minimize the build ahead, the planner penalizes earlier operations more than later

operations. The objective function of this aim is to minimize the weighted objectives as

follows:

min
T∑

t=1

(T − 1 + t){w1op1
1,t + w2op2

1,t + w3op3
1,t}.

Here, three different operations, op1, op2, and op3, each loading to resource type r = 1,

are weighted by positive parameters wi = 1, 2, 3 as per the priority among the operations.

4.2 Combining Objectives

Suppose customers provide the information of priorities among objectives to the planner

in the computation of MPS. In that case, the lexicographic method should be the most

preferred solving technique by modeling it to an h-MOP. The reasons for selecting this

method are that 1) it will always provide a Pareto optimal solution. 2) There is no re-

quirement for normalizing the objective functions. Moreover, 3) it does not suffer from

the problem of an ideal weight computation when obtaining one solution point. We recall

Chapter 3 for the lexicographic technique. Other than the advantages of preferring the

lexicographic method over the weighted-sum for MPS, the difficulty is that it requires the

solution of many single objective functions to obtain just one solution point. We do not

see this in the weighted-sum method [23]. We can study various weighted-sum methods

4.2 Combining Objectives 100

in [14] that give different ways to combine objectives. However, there are difficulties with

almost all of them [124, 125], - 1) they do not guarantee a Pareto optimal solution, 2)

when only one solution point is needed, selecting weights is challenging, and 3) MPS

with conflicting objectives with varied unit scales is unsuitable. This tradeoff motivates

us to combine weight-sum techniques with the lexicographic method for h-MOP.

For h-MOP, we introduce a technique that 1) reduces the number of single objective

runs we usually solve in the lexicographic method and 2) the resulting solution adheres

to Pareto optimality even after combining some objectives. The idea works as follows:

Before calling the lexicographic method on the MPS model, we check how many of the

objectives can be combined using a simple weighted-sum approach and what should be

the suitable weights. Consider we have two consecutive objectives, obj1, and obj2, in the

model, defined as follows:

obj1 := a11 x1 + a12 x2 + · · · + a1n xn and obj2 := a21 x1 + a22x2 + . . . + a2nxn.

We are given that obj1 is a high priority objective than obj2. If we have to decide whether

obj1 and obj2 can be combined and solved as a weighted-sum approach, they must satisfy

the following conditions:

1. Priority-condition: The minimum possible absolute value among the pairs (a pair

of decision variable and the associated coefficient), a11x1, a12x2, . . . , a1nxn should

be more than the maximum absolute value among the pairs a21x1, a22x2, . . . , a2n xn,

i.e.,
α min{| a11x1 |, | a12x2 |, · · · , | a1nxn |}

max{| a21x1 |, | a22x2 |, · · · , | a2nxn |}
≥ βm, (4.8)

here βm is a positive threshold to ensure that the positive multiplier α should always

pertain to giving high priority to obj1. We assume that the minimum chosen absolute

value among the pairs in the objective function is nonzero.

2. Stability-condition: The multiplier should not exceed the maximum tolerance

value. We can limit it by a positive threshold value βM.

α max{a11x1, a12x2, . . . , a1nxn} ≤ β
M (4.9)

We name it ObCrunch. The steps to solve the model using ObCrunch that applies the

above conditions are mentioned in Algorithm 6. We start with the vector of the objective

function C indexed with their priority orders. We start with the first objective as the

current processing objective function and check whether it satisfies priority-condition and

stability-conditions with the next objective. If both conditions are satisfied, we combine

4.2 Combining Objectives 101

them, and the combined objective functions check the conditions to combine the third

objective. Otherwise, we do not combine them, leave the current objective as is and

follow the same process by considering the second objective as the current processing

objective function. We follow a similar procedure unless we complete all the objectives

in C.

Algorithm 6: ObCrunch: Combining Objectives in Lexicographic Method
Input: An MPS model with objective functions vector C := [obj1 , . . . , objK].

Output: List of K solutions for each objectives, S := [y1, . . . , yK].

Initialize: Set n = 1, cur_obj = objn, next_obj = objn+1 and N = ∅.

Step I: if ∃tn ∈ R+ : cur_obj and next_obj satisfy equations (4.8) and (4.9)

then
Update cur_obj = tn objn + objn+1 ;

else
Store cur_obj to N and update cur_obj = objn+1;

Step II: Update n = n+1;

if n == K then
Solve the model with N as objective functions and compute its solution x∗;

For each objk in C compute yk =
∑n

i=1 aki x∗i and store in S ;

else
Update next_obj = objn+1 and go to Step I;

Step III: Return S as the final solution to the given input problem.

The advantage of this idea is that we always get a Pareto optimal solution and re-

duce the requirements of the solution of many single objective programs. Even deciding

suitable values of the parameters used is not that problematic.

The major challenge is the availability of the bounds information of the coefficient

and variable product components in the objective functions. For ObCrunch to work, we

must know them before calling the solver. However, the MPS models can leverage the

idea of the weighted sum with the lexicographic rule as the planner can obtain the bounds

information from the supply chain input to the MPS. The inputs come from the demand

details and the output of S&OP. We now discuss some of the objectives that the planner

can combine them.

Combining fair-shared demand objectives (ANS-ANS): Recall from the above Sec-

tion 4.1.1 that components in demand-based objective functions are the pair of weight

coefficient and the demand-based decision variable. The total demand requests will be

the bounds for these decision variables. A fair-shared demand is the demand request

4.2 Combining Objectives 102

that meet in stages. From the fair-shared model (4.3), the k objective functions can be

combined as the upper bound of any decision variable will be easily obtained from the

requested demands. We consider the minimum nonzero absolute value of the coefficient

variable pairs is unity. For k = 2, the combined objective function will be

α(−w1 xd11
t1 − w2 xd21

t2 − w3 xd31
t3) + (−w1 xd12

t1 − w2 xd22
t2 − w3 xd32

t3).

The value of α > max xd12
t1 , xd22

t2 , xd32
t3 ≤ max d̃12

t1 , d̃22
t2 , d̃23

t3 . Here α should also respect

stability-condition. Combining demand objective followed by lateness objective func-

tions (ANS-BL) is also possible. Recall the equation xd1
t1 + f 1

t1 + f 1
t1+1 + · · · ,+ f 1

T = 0, in

Section 4.1.2, which implies the available upper bound information of the decision vari-

able of demand objective function must be an upper bound to the corresponding decision

variables in lateness. Similarly, we can combine demand objectives of different priority

levels (ANS1-ANS2) as the upper bounds of their respective decision variables are known

to us.

Though the availability of upper bounds of the components in the objective functions

can help combine two or more consecutive objectives, it fails to respect the stability con-

dition. Due to varied demands, the multiplier coefficient, α, will sometimes go very large.

Coefficients with huge values or significant variations in the objective function can cause

trouble in various solving processes, especially pre-solving and optimizing steps. An op-

timization CPLEX highlights the numerical difficulty in its user manual [126]. Drawback

under such weighted-sum is studied in [125].

In demand fair-shared requested demand objective, which we name ANS-ANS, we

tightened the upper and lower bounds of the demand decision variables. Consider the

two fair-shared objectives from the model k-DemandsMPS, named ANSa and ANSb, are

combined as follows:

combined_ANS_ANS = −w1(α xd11
t1 + xd12

t1) − w2(α xd21
t2 + xd22

t2) − w3(α xd31
t3 + xd32

t2)

(4.10)

Now to find the minimum value of α that holds both the priority and feasibility condition,

we consider a two-level fair-shared demand request of 2 unit. Figure 4.1 illustrates it,

where the maximum demand in the first level is denoted by a decision variable x and

in the next level is by y. We have provided two types of requests 1) At level 1, the

demand of 1 unit followed by 1 unit, and 2) At level 2, the demand request of 1.5 units

followed by 0.5 units. If we solve this problem lexicographically, the model will first

try to meet the demand requirement at level one. If it can not meet all the demand at

level one, it will not meet the demand required at the next level. So from the combined

objective combined_ANS_ANS, we will obtain the same solution with any positive value

4.3 Implementation of Combining Objectives: Benefits and Challenges 103

−4 −3 −2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

xs1

ys1

f 1

f 2

ys2

xs2

demand

x-axis

y-axis

(0, 0)

Figure 4.1: Fair-Shared Demand Allocation

of the multiplier, α. Now, due to the input material’s availability, we can meet more

than the demand requested at level 1. For the first type of request, we meet the demand

requests of 1 unit to the customer, followed by the remaining amount. In the second type

of request, we provide all the 1.5 units, and the remaining we meet in the second level.

Two vertical lines show the Pareto optimal solutions after solving the first objectives in

both types of fair-shared demands. The single acceptable point in the Pareto set is the

accepted answer. We have also drew the lines f 1 : 2x + y = 3 and f 2 : 2x + y = 3.5 that

represent the weighted-sum objective functions. Both pass from the respective selected

Pareto optimal points. In fact, the weighted-sum objective function αx + y ≥ x + y for

any positive value of α. Likewise, the combined objective 4.10 with any positive α will

provide the same optimal point that we get from the lexicographical objective in the model

k-DemandsMPS. We discuss its computational effectiveness over standard lexicographic

methods in the next section, Section 4.3.

4.3 Implementation of Combining Objectives: Benefits

and Challenges

To provide the benefits of reducing overall time in the computation of the MPS, we im-

plement it into a commercial supply chain master-planning software using the idea of

combining objectives. The implementation is done and offered to the customer at dif-

ferent flags. At flag 1, we combine demand objectives under fair-share categories. The

customer accepts a fair share of demand requests at, say, k stages. Usually, k is set to 3 to

4.3 Implementation of Combining Objectives: Benefits and Challenges 104

5. In other words, customers want a planner first to meet their assumed α1 fraction of the

total requests. Then they ask α2 fraction of the remaining demand requests. It continues

to meet the demand requests. The remaining items are requested at the last stage, αk frac-

tion. Note that α1+α2+ . . . , αk = 1. So, flag1 can combine the k sequence of objectives.

With flag 2, we combine demand objectives with backlog objectives. It can combine two

sequences of objectives in the lexicographic solve. Enabling flag 3 switches flags 1 and 2

on. Whichever combination, a fair share of demand requirements or demand backlog pair,

is possible, it combines sequentially. The last flag, flag 4, allows the general combination

using the procedure mentioned in Algorithm 6 with the appropriate selection of parame-

ters used in the procedures. MPS solver accepts these flags as input. Before triggering the

lexicographic solve in the MPS solver and without changing the formulation, the overall

number of objectives by combining some of them as per the flag values is often reduced,

providing the benefit in run time.

Since customers always set demand and backlog objectives as the highest among

all business key performance indices, the proposed plan of combining the objectives over

flag numbers 1, 2, and 3 was quite logical. Moreover, the Lexicographic method does

not violate plan quality by utilizing a weighted-sum with some sequence of objectives.

We implemented the variable-fixing technique, a standard lexicographic technique (see

Chapter 3 for detail) with the weighted-sum, which we call ObCrunch, in Python 3.7 and

used python CPLE API for modeling and CPLEX-12.0.0.0 for the linear program solves.

We compare our method of ObCrunch with the default lexicographic scheme available

in CPLEX. For all the experiments, we use the Primal simplex method. All the other

settings, including presolves, heuristics, etc., were left as is. The machine we used is

64-bit Intel (R) Core(TM) i7-6820HQ at 2.7GHz CPUs with 16 GB RAM.

We ran the idea with various data sets over five different CPG customers. Table

4.1 reports the resulting summary of the experiments. Column two lists 19 datasets, and

column three reports the flag number chosen for combining the objectives. For each

customer dataset, we run our experiment with different flags depending upon the presence

of demand fair-share and demand objective followed by backlog objectives. We see a

consistent benefit to customers. We find that the idea helps 18% on average improvement

in run time than the default CPLEX method. Plan quality for all the datasets for both the

solving methods is the same since the combination technique does not violate the quality

of the solution.

For general combination, enabling flag 4 covers flags 1, 2, and 3 if the underly-

ing objectives appear in the dataset. Besides demand-based and backlog-based objective

functions of these flags, flag4 also combines demands and backlog objectives of different

4.3 Implementation of Combining Objectives: Benefits and Challenges 105

Table 4.1: Solving time using Default Lexicographic in Cplex and ObCrunch for the data

sets from CPG customers

Sr. no. Dataset
Total no.

of objectives

Objectives

combined

Flag

number

Existing

Lexicographic run

(CPLEX 12.10 default)

time (in sec)

ObCrunch

(Variable fixing +

Weighed sum)

time (in sec)

ObCrunch

%age

Improvement

1 CPG11 75 24 2 3055 1666 45.47

2 CPG12 75 24 3 3055 2290 25.04

3 CPG21 208 34 1 2390 1993 16.61

4 CPG22 208 34 2 2390 1960 17.99

5 CPG23 208 34 3 2390 1932 19.16

6 CPG31 26 6 2 1213 1036 14.59

7 CPG32 26 6 3 1213 1051 13.36

8 CPG33 26 6 2 1099 967 12.01

9 CPG34 26 6 3 1099 953 13.28

10 CPG35 26 6 2 777 628 19.18

11 CPG36 26 6 3 777 649 16.47

12 CPG41 24 6 2 2640 2182 17.35

13 CPG42 24 6 3 2640 2099 20.49

14 CPG43 24 6 2 2815 2320 17.58

15 CPG44 24 6 3 2815 2378 15.52

16 CPG45 24 6 2 2751 2219 19.34

17 CPG46 24 6 3 2751 2352 14.50

18 CPG51 60 46 2 4143 3608 12.91

19 CPG52 60 46 3 4143 3450 16.73

4.4 MPS in Potato Chip Manufacturing Model 106

priorities and consecutive objectives of safety stock violations. The experiment with flag

4 is done with the same settings as above. For most of the datasets, the run time perfor-

mance with the experiment is similar to the experiment reported in Table 4.1, as demand

and backlog base objectives are already covered with the flag = 1,2,3. We do not cover

safety stock further in the experiment because the objective of safety stock violation is

far less important than the demand and backlog-based objective for the customers we tar-

geted. Instead of combining the safety stock or low priority objectives, the customer is

okay with the suboptimal plan, so requests for an early LP solver are stopped.

In summary, we explained, for example, the method to model the MPS and dis-

cussed the essential objectives for the customer. We found that consecutive objective

functions in the sequence of objective functions in MPS can be combined. We discussed

how to combine them. We devised a general rule to combine the objectives in the lexico-

graphic method and named it ObCrunch. Further, we found that the idea of combining the

weighted-sum rule with the lexicographic method benefited some consumer and goods in-

dustries. We did not explore much on ObCrunch can be a future direction of the work on

this front.

4.4 MPS in Potato Chip Manufacturing Model

To study MPS, we introduce a potato chip manufacturing company, a dummy example.

The company produces two products, 1) Italian spicy and 2) Indian masala potato chip.

The MPS computation plans for each commodity in the supply chain with the following

input information and output requirements:

• Output business objectives: We consider three business objectives in the model:

1) minimize the unmet demand as the highest priority objective, 2) minimize the

backlog, and 3) minimize the operation earliness as the lowest priority objective.

• Planning horizon: We plan for potato chip production planning over a week (seven

days) of the planning horizon.

• Resource units: Two resources are needed in the manufacturing process - 1) R1,

a resource unit, is required to slice the raw potatoes. The maximum capacity of

the machine is 12 hours per day. Its production rate is 500 - each resource unit,

R1, can process 500 units of slicing operations per day. 2) R2, a resource unit,

is required to fry the sliced raw potato and pack the two potato chip flavors. The

maximum capacity of the resource is 12 hours per day. Each resource unit of type

4.4 MPS in Potato Chip Manufacturing Model 107

R2 can process 50 units of frying and packing operations per day for each potato

chip flavor.

• Processing units are the operations that load the resource and convert the input

items to output items. 1) OP1 is the operation that utilizes R1 resources and loads

raw potatoes to convert them to slices of potatoes. The rate of consumption of raw

potatoes at any period by OP1 is unity. Similarly, the rate at which it produces

sliced potatoes at any period is unity. OP1 performs just in time (JIT) production.

That is, there is no delay in processing - On the same day, it loads the input and

produces the output. 2) OP2 and OP3 are the operations that utilize R2 resources

and load sliced raw potatoes to convert them to final products, Indian masala (F1)

and Italian spicy (F2), respectively. The consumption rate of sliced potatoes at any

period by OP2 and OP3 are unity. Similarly, the rate at which it produces F1 and

F2 at any period is unity. Like OP1, OP2 and OP3 also have JIT productions.

• There is no delay in transportation operation to pick up the final product and deliver

it to the customers.

• The production start date is March 1, and the end date is March 7.

• Demand requirements of item D1, the Indian masala, and D2, the Italian spicy chip,

are 1800 packets each. The demand for Italian spicy chips has been forecasted

higher than for Indian masala. So D2 is given more priority than D1. Both have due

dates of March 3.

We illustrate its supply chain diagram in Figure 4.2. Input and output units are denoted

with green color. The input item is labeled with the term “Infinite,” which means that

the firm’s supply of raw potatoes is unrestricted. The buffer item I (Sliced potatoes) and

buffer items F1 and F2 are colored in gray. The item I is labeled with “intermediate",

which indicates the item is of intermediate type and will be input to other operations to

be processed. Resources are colored in blue and are labeled by their resource capacities.

To meet the requirements of 1800 units with the due date, March 3, for each, we

need to see the material and resource capacities available within this date. The flow of

materials from start to end on the horizon and from raw potatoes to ultimate customer

demands of potato chips are depicted in a network flow diagram in Figure 4.3. The top

horizontal line represents the horizon. The network structure consists of nodes and edges.

Nodes represent the material at a given period, and the vertical line connecting two nodes

represents the process, an operation needed to consume one material item and produce

another. The vertical edge indicates it is same-day (JIT) production. A horizontal edge

4.4 MPS in Potato Chip Manufacturing Model 108

between two material nodes of the same types indicates the amount of material carried

over from one period to the next. Nodes labeled with r1, r2, . . . , r7 denote raw mate-

rial available at t = 1, . . . , 7. Similarly, i1, i2, . . . , i7 denote intermediate buffers, and

f 1, f 2, . . . , f 7 denote finished products.

Now we come to modeling front - Slicing operations are OP1T1, · · · , OP1T7 for day

t = 1, . . . , 7. Frying and Packing operations to produce the finished products of two fla-

vors, F1 and F2, are denoted by OP2T1, · · · , OP2T7 and OP3T1, · · · , OP3T7, respectively,

for day t = 1, . . . , 7. CBAL1T1, CBAL1T2, . . . , CBAL1T7 denote inventory carryover over

sliced products. Similarly, carrying over the inventory of final products, F1 and F2 are

CBAL2T1, CBAL2T2, . . . , CBAL2T7 and CBAL3T1, CBAL3T2, . . . , CBAL3T7, respectively.

If the demand requirement can not meet on the due date, the late production will meet the

requirement from day t = 4, · · · , 7. The operations to meet the demand on and after the

due date are denoted by F1T3, . . . , F1T7 for demand items D1. Similarly, F2T3, . . . , F2T7

are for demand item D2. This network structure helps in forming the following flow

balance and backlog-based demand constraints:

At buffer node r1, r2, . . . , r7, there will not be any constraints due to available sup-

ply. At i1, i2, . . . , i7, we have:

BAL1T1 : −OP2T1 + OP1T1 − OP3T1 −CBAL1T1 = 0

BAL1T2 : −OP2T2 + OP1T2 − OP3T2 +CBAL1T1 −CBAL1T2 = 0
...

BAL1T7 : −OP2T7 + OP1T7 − OP3T7 +CBAL1T6 −CBAL1T7 = 0

The material flow balance constraint, for example, at i2, which we name as BAL1T2,

equates the total flow-in material produced by the upstream operation OP1T2 and carried

over inventory CBAL1T1 from the previous period with total flow-out material consumed

by downstream operations OP2T2 and OP3T2. The inventory remains left at CBAL1T2

for the next period. Similarly, we write the constraints for material items f 2 for both

chip types. Note that the balance constraints generated at nodes f 3, f 4, f 5, f 6, and

f 7 contain extra backlog variables used to meet customers’ demands after the due date

assigned to the planner.

BAL3T1 : OP3T1 −CBAL3T1 = 0

BAL3T2 : OP3T2 +CBAL3T1 −CBAL3T2 = 0

BAL3T3 : OP3T3 +CBAL3T2 −CBAL3T3 − F2T3 = 0
...

BAL3T7 : OP3T7 +CBAL3T6 −CBAL3T7 − F2T7 = 0

4.4 MPS in Potato Chip Manufacturing Model 109

and

BAL2T1 : OP2T1 −CBAL2T1 = 0

BAL2T2 : OP2T2 +CBAL2T1 −CBAL2T2 = 0

BAL2T3 : OP2T3 +CBAL2T2 −CBAL2T3 − F1T3 = 0
...

BAL2T7 : OP2T7 +CBAL2T6 −CBAL2T7 − F1T7 = 0

The other constraint from the network structure is to balance the total demand needed by

the customer. Here AMT1 and AMT2 are the demand fulfilled to the customers of types D1

and D2, respectively. The balance constraints for D1 and D2 are as follows:

D1BAL : −AMT1 + F1T3 + F1T4 + F1T5 + F1T6 + F1T7 = 0

D2BAL : −AMT2 + F2T3 + F2T4 + F2T5 + F2T6 + F2T7 = 0

Limitations in the capacities of resources form constraints other than flow balance con-

straints, called “resource load constraints”. Constraints on R1 and R2 at period t =

1, · · · , 7 are as follows:

LOADR11 : 0.002OP1T1 −CAP1BDT1 = 0

LOADR12 : 0.002OP1T2 −CAP1BDT2 = 0
...

LOADR17 : 0.002OP1T7 −CAP1BDT7 = 0

LOADR21 : 0.02OP2T1 + 0.02OP3T1 −CAP2BDT1 = 0

LOADR22 : 0.02OP2T2 + 0.02OP3T2 −CAP2BDT2 = 0
...

LOADR27 : 0.02OP2T7 + 0.02OP3T7 −CAP2BDT7 = 0

We also take care of allowable capacities of resources and the maximum demand the

planner can meet by creating trivial inequalities as follows:

0 ≤ CAP1BDTi ≤ 12, i = 1, · · · , 7,

0 ≤ CAP2BDTi ≤ 12, i = 1, · · · , 7,

0 ≤ AMT1 ≤ 1800,

0 ≤ AMT2 ≤ 1800.

Finally, we obtain objective functions for business objectives considered under MPS. Con-

struction of objective functions is done before solving any of them.

4.4 MPS in Potato Chip Manufacturing Model 110

• Minimize the unmet demands :

minimize − 1 AMT1 − 2 AMT2.

Here the weight assigned to AMT2 is lesser than that of AMT1. It is because

Italian spicy flavored potato chips that AMT2 points to are in higher demand than

the Indian masala flavored chip that AMT1 points to.

• Minimize the demand backlog or reduce the lateness in meeting the demand on the

due date.

minimize 1 F1T3 + 2 F1T4 + 3 F1T5 + 4 F1T6 (4.11)

+ 5 F1T7 + 1.1 F2T3 + 2.1 F2T4 + 3.1 F2T5 (4.12)

+ 4.1 F2T6 + 5.1 F2T7. (4.13)

The backlog variables are time-weighted - we assign less weight to the variables

near the due date to impose a high penalty for more delayed production.

• Minimize the operations earliness or reduce the build of the product ahead of time:

minimize 7OP2T1 + 6OP2T2 + 5OP2T3 + 4OP2T4

+ 3OP2T5 + 2OP2T6 + OP2T7 + 7OP1T1

+ 6OP1T2 + 5OP1T3 + 4OP1T4 + 3OP1T5

+ 2OP1T6 + OP1T7 + 7OP3T1 + 6OP3T2

+ 5OP3T3 + 4OP3T4 + 3OP3T5 + 2OP3T6 + OP3T7

Our target is to minimize the early operation as much as we can. The objective

function sets a high penalty for early operations production as late as possible.

4.4 MPS in Potato Chip Manufacturing Model 111

Figure 4.2: Supply Chain Diagram of a Potato Chip Manufacturing Industry

i1 i2 i3 i4 i5 i6 i7

f 1 f 2 f 3

AMT2,AMT1

f 4 f 5 f 6 f 7

r1

Start

r2 r3 r4 r5 r6 r7

End

March 1 March 2 March 3 March 4 March 5 March 6 March 7

O
P1T

1

O
P1T

2

O
P1T

3

O
P1T

4

O
P1T

5

O
P1T

6

O
P1T

7

CBAL1T1 CBAL1T2 CBAL1T3 CBAL1T4 CBAL1T5 CBAL1T6

O
P2T

1

O
P2T

2

O
P2T

3

O
P2T

4

O
P2T

5

O
P2T

6

O
P2T

7

O
P3T

1

O
P3T

2

O
P3T

3

O
P3T

4

O
P3T

5

O
P3T

6

O
P3T

7

CBAL3T1 CBAL3T2 CBAL3T3 CBAL3T4 CBAL3T5 CBAL3T6

CBAL2T1 CBAL2T2 CBAL2T3 CBAL2T4 CBAL2T5 CBAL2T6

1 2 3 4 5 6

F1T
3

F1T4
F1T5 F1T6 F1T7

F2T
3 F2T4

F2T5 F2T6 F2T7

Figure 4.3: Network Flow of Material Over the Planning Horizon

Chapter 5

Master Production Schedule with
Campaign Planning Restriction

This chapter studies manufacturing planning that considers campaign planning restric-

tions. Campaign planning (CP) plays an essential role in the batch production of varieties

of products from the same assembly line in manufacturing industries. Its goal is to plan

activities to reduce unnecessary production overheads, such as changeover time, inven-

tory, etc., while simultaneously improving demand satisfaction. In chapter 1, we have

described CP in detail and discussed the related literature. Our contribution to CP in this

chapter is twofold.

1. We improve the existing heuristic that considers the campaign constraints as the

changeover and limited resource restrictions. The idea is to model the CP problem

as a sequential decision problem (SDP) and use the Cross-entropy (CE) method,

an evolutionary algorithm used for policy learning to improve the quality of the

existing heuristic, for CP.

2. We provide an exact formulation for master production scheduling (MPS) that re-

spects CP constraints. It is an extension of the work done in the previous chapter

on modeling MPS.

For the background of SDP and CE, we refer to Chapter 1.

Our work on MPS is close to [75] by NB Kamath, et al., which includes CP with

MPS heuristically by imposing campaign constraints locally. We refer to it as a ‘heuristic

method’. At each bucket, there is a restriction on the maximum number of running opera-

tions belonging to a group that produces similar products and a restriction on total changes

of states of operations from the idle state to running from one bucket to another. We re-

call that we partition the production horizon into discrete time units, such as hour, day,

112

113

week, and month (depending on the type of planning problem). We refer to each unit as a

bucket. The steps heuristic method generally follow: Firstly, it does the production plan-

ning (MPS), considering all the business objectives hierarchically without looking into

any violation of campaign planning restriction. This computed planning helps to evaluate

the weighted consumption profile (WCP), a measure used to set the priority values for

each running assembly operation. Then violations in planning are avoided by inspecting

each bucket by turning off/on the assembly operations as per its priorities. This decision

is based on a linear weighted function, a picture of the on-hand inventory, demand, and

safety stock signals in a pre-determined number of future buckets. This process contin-

ues over the entire campaign planning horizon. Figure 5.1 depicts the procedures used

in the heuristic. It uses the knowledge of restriction on several running operations within

and across the buckets (discrete-time intervals in the production horizon). We find some

challenges with this method:

• It is a heuristic approach - it imposes campaign constraints locally, leading to a

suboptimal plan,

• The obtained plan output is parameter sensitive, and

• One output plan requires multiple smaller-sized MPS to solve.

The proposed resolutions to address these issues are:

1. Improving the ‘heuristic method’ by formulating the campaign planning problem

as a sequential decision problem and finding the ideal parameter values using the

CE method. We call it ‘improved heuristic’. Instead of using the ad-hoc rule of

supplying the initial weights for the computation of WCP as in the heuristic method,

it uses an intelligent weight vector, selecting the best possible policy.

2. Reformulate the basic mathematical model of MPS by incorporating campaign con-

straints. We call it ‘exact method’. Though it changes the model from linear to

integer, the benefits we get are 1) the model returns a globally optimal solution by a

single MILP solver call, and 2) it computes other important KPIs without violating

the campaign constraints and avoiding additional modeling effort.

We start with improved heuristic in Section 5.1. The idea of ‘exact method’ that

applies CP constraints on MPS is discussed in detail in Section 5.2. We report some

computational results, summarize our work and highlight future work in Section 5.3. Fi-

nally, we discuss the importance of campaign planning in one of the tire manufacturing

industries in Section 5.4.

5.1 Campaign Planning as SDP 114

Table 5.1: Plan quality dependency on input weight vector

Weight vector

for WCP

Weight vector used

campaign objectives

Total

Demand

Satisfied/max

lateness

1000-1000-1000-1000-1000 1000-1000-1000-1000 12000 9000/1

1523-1483-2089-1758-893 14753-11097-632-703 12000 9000/4

9523-8483-2089-1758-893 14753-11097-632-703 12000 12000/4

5.1 Campaign Planning as SDP

The heuristic method imposes the campaign constraints bucket-wise and then resolves the

MOLP. Thus for every bucket, there is at least one computationally expensive h-MOLP

solver call. In addition, the obtained plan is highly sensitive - it depends upon the weights

chosen as input. We experiment by running the heuristic method for the computation

of MPS of a dummy supply chain, which we will describe in Section 5.2, over different

input weight vectors. We observe that the plan quality of MPS varies with different input

weights. We report it in Table 5.1. Two input weight vectors are used in the run - one

for WCP calculation and the other for objective function calculation reported in columns

one and two, respectively. For the requested total demand reported in column three, the

obtained plan quality in terms of total demand satisfied and total delay from the target

date (lateness) is mentioned in the last column.

We incorporate two constraints to the MPS model to respect the campaign con-

straints in the MPS. They are: 1) bounds on the number of ongoing operations in a given

bucket and for a given group of operations and, 2) a limit on the changes of those active

operations running from one bucket to another.

The heuristic method models the MPS and computes WCP, which helps decide the

campaign selection. Given the campaign constraints, it decides which operations are to be

disabled, enabled, and stopped. It is evaluated from measures such as on-hand inventory,

demand, and safety stock signals in a pre-determined number of future buckets. The

weights associated with the metric is user determined. The consumption profile of an

operation is an effective supply required running in a given bucket. The effective supply

is equal to the difference between the demand required minus starting inventory. A WCP

is the weighted sum of the profile over the first few buckets. The selection of parameters

associated with this metric is highly sensitive.

Selecting weights for consumption profiles is a common rule of thumb, and there

is no standard rule for its construction that would be effective for most CP problems.

Such procedures are myopic and lead to a local solution with poor plan quality and high

computation time. The improved heuristic models are posed as a sequential decision

5.1 Campaign Planning as SDP 115

Campaign start at ini-

tial bucket of the cam-

paign planning hori-

zon, t = 1, · · · ,T

a weight vector,

an MPS model

Run MPS without

campaign restriction

Evaluate priority score

for each operations

Sort them in decreasing

order of the priority scores

Previous

bucket?

Restrict maximum op-

eration running in a

bucket and number of

changeover between pre-

vious and current bucket

Restrict maximum operation

running in a bucket

Is

t = T?
t = t + 1

Stop

no

yes

yes

no

Figure 5.1: Steps followed in the heuristic method

5.1 Campaign Planning as SDP 116

problem (SDP) where input weights are policies. Our objective is to compute the policy

that provides the weight vector that leads to the most improved MPS from the modeled

SDP.

5.1.1 Sequential Decision Problem

In sequential decision problems (SDPs), the utility of actions taken by a decision

maker does not only depend on a recent decision but the whole sequence of the decision

maker’s actions. A policy is a sequence of actions required to determine the utility, ob-

jective, or average reward. When an agent in a given state takes action, it receives an

immediate reward, and the system occupies a new state. The utility depends on the se-

quence of states and state-action pairs. We can consider campaign planning as a campaign

objectives minimization problem (a utility) respecting campaign constraints that can be

formulated as an SDP. The planner (the decision maker) has to decide on an effective

campaign selection (an action) at each time bucket (decision epoch) and also has to target

a set of key performance indices (KPIs) at the end of the planner. Here, these KPIs can

be considered elements of a suitable utility function.

SDP formulation of the CP follows:

Decision epoch - Production horizon: T = {bktstarts, bktstarts + 1, bktstarts +

2, . . . , bktend};

State: S = Set of all possible configuration of the WCP for every campaign operations set

OP;

Action: A = Set of all permutation of operations which are enabled at a state s. For exam-

ple, a = 11001 is one of the actions at state s ∈ S where there are five campaign operations

and, first, second and fifth of them are enabled. After taking this action, we proceed to

next state where again we will get different WCPs;

Reward: Reward(s j,i) = maxaq∈As j,i
{Eval(s j,i, aq)};

Transition Probability: Deterministic;

Given a state st and an action set Ast as an input, for each time bucket t, from start till

termination of the campaign horizon (duration in planning horizon that must respect cam-

paign restrictions), we obtain the following action:

a∗t = arg min
ai∈Ast

{Exp(Reward(st, ai))}. (5.1)

5.1 Campaign Planning as SDP 117

Here (st, ai) is a state obtained by taking an action ai on state st.

a∗t can be extended as,

a∗t = arg min
ai∈Ast

∑

S j,i ∈ set of possible states generated

after keeping an OP value as it is

and disabling others in (S t, ai)

Prob((st, ai), s j,i) × Reward(s j,i).

where Prob((st, ai), s j,i) is the transition probability from (st, ai) to s j,i and Reward(s j,i) is

minimum evaluation-value of the possible next state, i.e.,

Reward(s j,i) = min
aq∈As j,i

{Eval(s j,i, aq)}.

Transition probability is deterministic: For each state and action we specify a new state.

The evaluation function has the following form:

Eval = f unction(w1 × f1 + w2 × f2 + w3 × f3 · · · + wd × fd, wd+1, wd+2, . . . , wd+k), (5.2)

where Eval, gives evaluation-values of the given configuration of consumption profiles

(state) in the SCP plan. It is a linear combinations of the features (f1, f2, f3, · · · , fd,)

weighted by coefficients (w1, w2, w3, . . . , wd). Note that features are the objective values

of the campaign metrics of every layer, such as, demand not satisfied, lateness, earliness,

inventory evaluated from the run. The k weights wd+1, . . . , wd+k are associated with first k

lookahead consumption profiles.

Our motivation for modeling the CP as SDP and learning the underlying policy

using Cross-entropy method comes from a popular game 2048 [127], an addictive single-

player, non-deterministic puzzle game modeled into an MDP framework [128]. There

are 16 tiles on the 2048 board. The action is to move the tile up, down, left, or right to

combine various tiles starting with a tile of 2 and combining them to reach 2048. The tile

of 2 combines with the tile of 2 and makes a tile of 4. At the same time system pops up a

tile of 2 or 4 with equal probability. Similarly, tile of 4, 8, 16, ... 1024 combines with the

tile of the same number. The game terminates if no further moves are possible or one of

the tiles gets the number 2048.

In our case of the improved heuristic, we start with the consumption profiles associ-

ated with each campaign operation as the initial state. We fix some operations to zero to

restrict the number of operations running in a bucket and the restriction in the changeover

operation. It is one of the actions in the model. After fixing some variables, we call the

solver to solve the updated h-MOLP model. The evaluation function evaluates the score

from the solution obtained from the LP solve. The process continues till we reach the final

5.1 Campaign Planning as SDP 118

stage. The better the input weights assigned to the model for the computation of WCP

and Eval, the better the MPS plan quality we will obtain. To learn an ideal weight, we use

the CE method.

5.1.2 Steps in Cross-entropy Method

CE method follows the following steps for an optimal policy for our model at any

iteration t. We perform an initialization process by choosing the initial k weights for WCP

and the weights associated with d objective functions - mean µti and standard deviation

σti, for individuals wi, iteration i = 1, · · · , k + d. We then generate N random sample

vectors for every elements in a vector using normal sample distribution with parameter

vectors

(µt1, . . . , µtk, . . . , µt(k+d) and sigmat1, · · · , σtk, · · · , σt(k+d).

For each generated sample as an input weight vector, we use the policy (discussed above,

based on evaluation function) that returns the corresponding utility value, say Eval(w j),

∀ j = 1, 2, 3, · · · ,N. We sort these sample vectors by the generated output values (in

descending order). Assign the top output value as OutTopt. If the stopping cricteria meets

we stop the process with the learned weight Wt with the utility value OutTopt. Otherwise,

we top m samples from the sorted N population and evaluate mean and standard deviation

vectors from them and repeat the same process. A flow chart shown in Figure 5.1.2

illustrates the per iteration set of steps followed in the CE method applied to the campaign

planner heuristic. Samples that are the weights generated from distribution on continuous

space can be arbitrary. The distributions used to get generated random weights at each

iteration are assumed to be Normal with unknown parameters as the state space in the

campaign problem is continuous.

The initial parameters for the CE method are the following:

Mean weights w, it an initial guess of the unknown mean parameters to the Normal

distributions.

w0 = w01, w02, . . . , w0c, w0c+1, w0c+2, . . . , w0c+d

contains c weights for WCP and d weights for initializing evaluation function. Standard

deviation s0, a vector consists of standard deviations associated to the elements of w0 -

the i′th pairs (w0i, s0i) such that w0i ∈ w0 and s0i ∈ s0 corresponds to the empirical mean

and standard deviation to the i′th normal random distribution. After every iteration, a

new vector of mean and standard deviation pairs gets updated. After a long run, from the

principle of the strong law of large numbers, the empirical mean vector (weight vectors)

converges to a true mean vector. Selection of w0 and s0 is crucial. A better selection

5.1 Campaign Planning as SDP 119

Start

Initialize:

w, s, t, l, m, n, stopσ

Generate n Normal weight

vector samples S with

parameters w and s

Compute WCP, fixing operations

with low WCP, Run LP to

compute Eval(ws) for all ws ∈ S

Select m,m < n weight

vectors with highest F(ws score

and Evaluate µ vector and σ

vector from those m weights

max(σ) ≤

stopσ
Set Evaluated w = µ and s = σ

Evaluated µ is

the resulting

weight vector

Stop

yes

no

Figure 5.2: Cross-entropy method for learning the input weight vector used in the im-

proved heuristic

5.1 Campaign Planning as SDP 120

of initial means and standard deviation vectors leads to faster convergence of CE to the

best possible solution. We use expert opinion-based w0 and s0 selection which implicitly

gives a prior belief that is dependent on the previous plan quality of similar dataset for a

given customer. Expert suggests that weights associated with consumer profile should be

in decreasing order over the horizon, i.e., the weight associated with the current bucket

should be assigned a higher value than the weight associated with the next bucket. Sim-

ilarly, weights associated with objective function campaign planning should be assigned

the weights proportional to the priority given to the respective KPIs. For example, the

weight associated with the demand not satisfied should be given more weight than the

lateness. However, the optimal weights obtained after learning from CE may differ from

the expert suggestion.

Sample size s and the number of iteration itrn: Each iteration generates s random

weight vector samples using a Normal distribution with mean vector w0 and standard

deviation vector s0. The mean vector and standard deviation vector consist of different

mean weights associated with consumption profile and campaign planning objective func-

tion. Given every set of mean-standard deviation pairs as normal parameters, s number of

random weights get generated.

S topσ, the stopping criteria can be 1) the maximum number of iterations, if conver-

gence is computationally expensive 2) the standard deviation touches the lower bound.

In our case, 0.00001 is set as the lower bound of the standard deviation. Thus, if the

maximum of the standard deviation vector elements reaches less than 0.00001, we ter-

minate the Cross-entropy process. In our implementation, it is set as one-eighth of the

mean value. Sub-sample is the best m sample to be chosen to evaluate the empirical mean

and standard deviation. Here “best" samples represent those samples whose evaluation

function values are better.

The improved heuristic is implemented with a small dummy data set. We call it

a “small-industry supply chain scenario”. It has two plants that produce four items I1,

I2, I3, and I4. There are two groups for each plant. So, there are four groups, G11 and

G12 belong to plant1, and G21 and G22 belong to plant2. I1 and I4 belong to group

G11 and G21 of plant1 and plant2, respectively, and I2 and I3 belong to group G12 and

G22 of plant1 and plant2, respectively. We run our experiment with various demand re-

quests from the customer ends. First, we mathematically model the MPS for this problem.

We refer to Chapter 3 for the steps to model the MPS. We can find its modeling detail,

production rate, consumption rate, maximum capacity of the resource, and network flow

constraints from the formulated model. We describe it in Appendix C.

5.1 Campaign Planning as SDP 121

Table 5.2: Performance comparison of improved planner over the heuristic method on

small-industry dataset

Demand Total Heuristic method Improved heuristic

item1 item2 item3 item4 Requests Satisfied Lateness Satisfied Lateness

3000 3000 3000 3000 12000 9000 1 12000 4

4000 3000 4000 3000 14000 11000 3 14000 5

1500 2000 3300 2500 9300 7300 0 9300 9

4500 3000 3300 1500 12300 9300 2 12300 5

The hardware used for the computation is a 64 bit Intel(R) Xeon (R) E5-2673 v4 at

2.30GHz CPUs with 20 cores and 64 GB RAM. We use CPLEX-12.10.0, for solving the

intermediate LPs hierarchically. Initial mean and standard deviation vectors are

w0 : [100000, 50000, 50000, 20000, 5000, 100000, 50000, 10000, 5000],

and

s0 : [100000/8, 50000/8, 50000/8, 20000/8, 5000/8, 100000/8, 50000/8, 10000/8, 5000/8].

Sample size which is the sample population of weights we generate every iteration is

n = 45 and the subsample, which is the total number of weights vectros selected as per

the Eval score, is m = 15. We set stopping criteria stopσ = 0.00001

A comparison table also compares performance indices, demand satisfaction, and

lateness. Figure 5.1.2 clearly illustrates that the result evaluated from the learned weight

outperforms the existing weight assigned randomly to the solver.

To validate the robustness of the computed weights, we run our improved planner

with different demand scales of a Small-industry supply chain scenario. In this, 2000

units are the base demand items requirement. We use X to represent items requested, X ∗ k

represents the requested items if we scale the demand required by a k fraction to X. For

each instance the total demand after scaling is denoted by TD. S denotes the total demand

meet to customer and, TDLT denotes the total lateness in days from the due date. The

table shown in Table 5.3 provides the results obtained by running the improved heuristic

on various input demand scales. It provides a better plan than the existing plan over each

demand scale. In the next section, we will perform the same experiment with the ‘exact

method’. We will find that the current solution obtained by the improved heuristic using

an ideal weight is globally optimal.

The above analysis and result, and the convergence plot obtained from running im-

proved method provide an effective methodology for the better plan quality. However,

5.1 Campaign Planning as SDP 122

Table 5.3: A result summary of the heuristic method and the improved campaign planner

with various input demand scale

Demand :=X = 12000 heuristic method improved heuristic

Demand*k TD SAT TDLT SAT TDLT

X*0.2 2400 1800 0 2400 9

X*0.4 4800 3600 0 4800 9

X*0.6 7200 5400 0 7200 9

X*0.8 9600 7200 0 9600 9

X*1.0 12000 9000 1 12000 4

X*1.2 14400 10800 3 14400 6

X*1.4 16800 12600 4 16800 6

X*1.6 19200 14400 5 19200 6

X*1.8 21600 16200 6 21600 7

X*2.0 24000 18000 6 24000 7

X*2.2 26400 19800 6 26400 8

X*2.4 28800 21600 6 28800 8

X*2.6 31200 23400 6 31200 8

X*2.8 33600 25200 6 33600 15

X*3.0 36000 27000 6 36000 15

X*3.2 38400 28800 6 38400 15

X*3.4 40800 30600 13 40800 22

X*3.6 43200 43200 217 43200 22

X*3.8 45600 45600 217 45600 22

X*4.0 48000 48000 217 48000 22

5.2 Formulation of Campaign Planning as a Mixed Integer Program 123

one can analyze that though the above experiment looks promising, all the experiments

are performed with small data set. In practice, for the large data set, it would be chal-

lenging to perform weight learning. For example, consider a scenario where a campaign

planner takes an hour to complete one run. If the standard CE method is applied and con-

sidered, it requires, on average, 5000 runs to converge the evaluation function and return

the weights. The whole run would take at least 5000 hrs, i.e., 208 days! It is practically

not possible to request a customer to wait for these many days. To speed up the process,

we can parallelize the CE method. A batch of weight vectors is generated at each iteration

in the standard CE method, called a sample set. For every generated sample, a campaign

planner is triggered. All samples are independent as they do not share any information

among them.

Though ‘improved heuristic’ showed computational effectiveness, learning an ideal

input parameter requires many LP solver calls. Even after the parallel run, it is not feasible

for large dataset to learn the input weights. For large-sized models training process is

expensive. To resort to it, we focus on an ‘exact method’ which does not depend upon the

input weights and requires a single solver call.

5.2 Formulation of Campaign Planning as a Mixed

Integer Program

We recall Chapter 4 for mathematical modeling of MPS with demand satisfaction as one

of the business requirements as follows: in a given supply chain problem as follows:

LP1: min−xd1
t1 − xd2

t2 − xd3
t3 (5.3)

s.t.
∑
i∈O1

opi
1t − c1

t ≤ 0, for all t = 1, . . . ,T , (5.4)

opi
11 − bi

11 = 0 for all i = 1, 2, 3, (5.5)

opi
12 + bi

11 − bi
12 = 0 for all i = 1, 2, 3, (5.6)

... (5.7)

opi
1ti + bi

1ti−1 − bi
1ti − xdi

ti = 0 for all i = 1, 2, 3, (5.8)

bound: 0 ≤ xdi
ti ≤ d̃i

ti for all demand item i = 1, 2, 3, (5.9)

0 ≤ c1
t ≤ max_c1

t for all bucket t = 1, 2, 3, · · · ,T , (5.10)

opi
1t, b

i
1t ≥ 0 for all i = 1, 2, 3, and t = 1, 2, 3 · · · ,T . (5.11)

5.2 Formulation of Campaign Planning as a Mixed Integer Program 124

Here requirement of demands is of equal priority. d̃ j
tx

are the demand requirements, where

j and tx denote the corresponding item code and due date to receive the demand re-

quirement. The decision variables cr
1, cr

2, . . . c
r
t̃

are the amount of resource (associated

to each resource r ∈ R) required to process the associated operations at time bucket

t = 1, 2, 3, · · · , t̃. Each variable cr
t is upper bounded by the known amount of resource,

maximum capacity(max_cr
t). Similarly, the decision variable opi

jt defines the operation

i ∈ O j with the resource j utilized at time bucket t that is needed to produce one unit

of the product item. Associated to each inventory location i ∈ I and resource type j, a

decision variable bi
jt defines the amount of inventory carried from time bucket t to t + 1.

We also define an associated decision variable xd j
t that denote the demand (of type j) that

could be satisfied over the given due date t over the known supply chain settings. Here R

and I denote the index sets of resources and inventory items available in the production

process. O be the index set of operations with subsets Ok ⊆ O that can utilize the resource

rk ∈ R. A known amount ‘load_per’ is the amount of resource utilized by one unit of

operation.

The bucket to bucket planning of the supply chain creates a network structure that

helps in posing a network-type mathematical formulation. For a simplistic formulation,

assume there is only one resource r that can load three operations O1, O2 and O3. Here

Or = {1, 2, 3} is the index set of production operations and, r = 1 is the resource type.

Each operation type consumes raw material (available in infinite amounts) and produces

the corresponding finished goods d1, d2, and d3. We set the planning horizon as a daily

bucket window, t = 1, 2, . . . ,T days. We can make it more simplified by considering

load_per to 1 and the lead time to be zero. We set the rate at which operations consume

items as input to produce per unit item to be unity. The demand requirements of the

finished products are: d̃1
t1 units of item d1 on t = t1 day, d̃2

t2 units of item d2 on t = t2 day

and d̃3
t3 units of item d3 on t = t3 day.

Other than the information for MPS formulation mentioned in Section 1.4.1, two

additional information we must consider in the campaign planning formulation with MPS

1. bounds on the number of ongoing operations in a given bucket and for a given group

of operations and,

2. a limit on the changes of those active operations that are running from one bucket

to another.

With this set of information, the planner must optimize each business requirement without

any violation of the hierarchy among them and, minimize the setup costs that are needed

to support multiple operations for given resources.

5.2 Formulation of Campaign Planning as a Mixed Integer Program 125

LP1 consists of inventory balance constraints that balance total inflow, outflow, and

inventory carryover of materials at a location and a particular time bucket and resource

load constraints that consider the capacity utilization of resources. We also have to con-

sider other KPIs required in MPA. Optimizing them simultaneously over the given supply

chain constraints is not possible. We solve them in a hierarchy by associating each busi-

ness requirement with a priority value. If we do not consider campaign planning during

MPS, the plan may be infeasible or may lead to a suboptimal result. Running setup mini-

mization problem after the MPS relies on the solution already obtained from MPS with no

campaign constraints. If we run the setup minimization problem before the MPS, high-

priority business requirements may go for a toss. We handle this by incorporating CP

constraints with MPS formulation as follows:

1) We add constraints that add a restriction on the number of operations running in a time

bucket for a given group of operations sharing a common resource. A positive parameter

mogt that denotes the maximum running operations in a time bucket t, for a given group of

operations g, is known to planner. It constrains the campaign changes in a bucket for the

shared resources.

Let us consider O1, O2, O3, . . .Ok be k types of operations that belong to g, sup-

ported by a shared resource r. For such case, Or = {1, 2, 3 . . . , k}. The decision variable

opi
rt defines the operation i ∈ Ok loading the resource r at time bucket t. Since any opera-

tion that belongs to g can load r at any time bucket t = 1, 2, 3, . . . ,T , we define a binary

variable xopi
rt associated to each opi

rt. xopi
rt = 0(1) indicates that the corresponding oper-

ation belongs to g, that loads r is disabled (enabled) at t. Further, given the upper bound

mogt , for any g we can have

xop1
rt + xop2

rt + · · · xopk
rt ≤ mogt t = 1, 2, 3, . . . ,T . (5.12)

Equation (5.12) is the knapsack constraint that respects campaign constraint. In addition,

each variable opi
rt in LP1 will be replaced by xopi

rt · opi
rt.

2) We add constraints that add a restriction on the number of changes in the set of active

operations. The active operation is the running operation in the user-defined group of

operations for a given time bucket. A user-defined group of operations is the collection

of those operations that belong to similar products. A positive parameter cogt denotes the

maximum possible changes in the running operations (from the idle state to running state

or vice versa) in t ≥ 2 and for a group g. Note that this constraint further assists in

maintaining a gradual shift of campaigns for a resource over time.

Let xopi
rt and xopi

r(t+1) are binary variables associated to operation i and belongs to

g at t and t + 1 respectively. A binary decision variable downi
rt, is equal to xopi

rt · (1 −

5.2 Formulation of Campaign Planning as a Mixed Integer Program 126

xopi
r(t+1)) = 1 if the active operation Oi at t is disabled at t + 1. Similarly, an indicator

decision variable upi
rt is equal to (1 − xopi

rt) · xopi
r(t+1) = 1 if the disabled operation Oi

at t is active at t + 1. For a given g and r, total number of operations that are active at t

and disabled at t + 1 is denoted by downgt . Similarly, total number of operations that are

disabled at t and active at t + 1 is denoted by upgt . They are expressed as follows:

downgt =
∑
i∈Ok

downi
rt and upgt =

∑
i∈Ok

upi
rt.

For a given cogt+1, at bucket t where 1 ≤ t ≤ T − 1, we have

min(upgt , downgt) ≤ cogt+1. (5.13)

We can reformulate constraint (5.13) as follows:

y
g
t ≤ downgt ; ygt ≤ upgt ; ygt ≥ downgt + upgt − 1; ygt ≥ 0.

Applying them to LP1 forms mixed-binary nonlinear program (MBNLP). Nonlinearity

terms in the MBNLP, such as the product of binary variables downi
rt = xopi

rt ·(1−xopi
r(t+1))

and upi
rt = (1 − xopi

rt) · xopi
r(t+1) can be linearize as follows:

downi
rt ≤ xopi

rt

downi
rt ≤ (1 − xopi

r(t+1))

downi
rt ≥ xopi

rt − xopi
r(t+1)

downi
rt ≥ 0,

and

upi
rt ≤ (1 − xopi

rt)

upi
rt ≤ xopi

r(t+1)

upi
rt ≥ xopi

r(t+1) − xopi
rt

upi
rt ≥ 0.

Similarly, we can linearize zi
rt = xopi

rt · opi
rt. This linearization reformulates a mixed

binary integer program as follows:

MBIP1: min−xd1
t1 − xd2

t2 − xd3
t3 (5.14)

s.t.
∑
i∈O1

zi
1t − c1

t ≤ 0, for all t = 1, 2, 3, . . . , T , (5.15)

zi
11 − bi

11 = 0 for all i = 1, 2, 3, (5.16)

zi
12 + bi

11 − bi
12 = 0 for all i = 1, 2, 3, (5.17)
... (5.18)

zi
1ti + bi

1ti−1 − bi
1ti − xdi

ti = 0 for all i = 1, 2, 3, (5.19)

xop1
1t + xop2

1t + xop3
1t − mo1

t ≤ 0 ∀t = 1, . . . , T . (5.20)

y1
t − down1

t ≤ 0 ∀t = 1, . . . , T − 1, (5.21)

y1
t − up1

t ≤ 0 ∀t = 1, . . . ,T − 1, (5.22)

5.3 Implementation, Computational Results and Conclusion 127

y1
t − down1

t − up1
t + 1 ≥ 0 ∀t = 1, . . . , T − 1, (5.23)

down1
t −
∑
i∈Ok

downi
1t = 0 ∀t = 1, . . . , T − 1, (5.24)

downi
1t ≤ xopi

1t ∀t = 1, . . . , T, i = 1, 2, 3. (5.25)

downi
1t ≤ (1 − xopi

1(t+1)) ∀t = 1, . . . , T, i = 1, 2, 3. (5.26)

downi
1t ≥ xopi

1t − xopi
1(t+1) ∀t = 1, . . . ,T, i = 1, 2, 3 (5.27)

up1
t −
∑
i∈Ok

upi
1t = 0 ∀t = 1, . . . , T − 1, (5.28)

upi
1t ≤ (1 − xopi

1t) ∀t = 1, . . . ,T, i = 1, 2, 3, (5.29)

upi
1t ≤ xopi

1(t+1) ∀t = 1, . . . ,T, i = 1, 2, 3, (5.30)

upi
1t ≥ xopi

1(t+1) − xopi
1t ∀t = 1, . . . , T, i = 1, 2, 3, (5.31)

zi
1t ≤ opi

1t · xopi
1t ∀t = 1, . . . , T, i = 1, 2, 3, (5.32)

zi
1t ≤ opi

1t ∀t = 1, · · · , T, i = 1, 2, 3, (5.33)

zi
1t ≥ opi

1t − (1 − xopi
1t) · opi

1t ∀t = 1, 2, 3, · · · , T, i = 1, 2, 3. (5.34)

bound: 0 ≤ xdi
ti ≤ d̃i

ti∀ demand item i = 1, 2, 3, (5.35)

y1
t ≥ 0 ∀t = 1, · · · , T − 1,, (5.36)

0 ≤ c1
t ≤ max_c1

t for all bucket t = 1, . . . , T , (5.37)

opi
1t, b

i
1t, downi

1t, upi
1t ≥ 0 ∀i = 1, 2, 3, & t = 1, 2, 3 · · · , T . (5.38)

xopi
1t ∈ {0, 1} ∀t = 1, 2, 3, · · · , T, i = 1, 2, 3. (5.39)

All the variables, unless otherwise mentioned in MBIP1, are non-negative. It consists of

binary variables and knapsack constraints. For each campaign operation, there is an asso-

ciated binary variable. The total number of knapsack constraints is equal to the product of

total buckets in the planning horizon and the number of user-defined groups of operations.

5.3 Implementation, Computational Results and

Conclusion

In this section, we give empirical evidence of the effectiveness of our method. We model

the MPS for two supply chain scenarios, ‘S1’ and ‘S2’, that require CP and report the

performance observation by comparing our model with the heuristic method. The hard-

ware used for the computation is a 64−bit Intel(R) Core(TM) E5- 2640 V3 at 2.60GHz

CPUs with 16 cores and the main memory 128GB RAM. We use cplex12.9 [27] solver

for solving our model.

5.3 Implementation, Computational Results and Conclusion 128

Table 5.4: Demand planning summary of supply chain scenarios, ‘S1’ by heuristic-based

planner and our MIP-based planner.

scaled-demand

-type (total-demand*

scaled factor)

demand-

requirement

demand-satisfied lateness

heuristic-

method

exact-

method

percentage

benefit

heuristic-

method

exact-

method

benefit

(in days)

12000*0.2 2400.0 1800.0 2400.0 33.3 0 9 -9

12000*0.4 4800.0 3600.0 4800.0 33.3 0 9 -9

12000*0.6 7200.0 5400.0 7200.0 33.3 0 9 -9

12000*0.8 9600.0 7200.0 9600.0 33.3 0 9 -9

12000*1.0 12000.0 9000.0 12000.0 33.3 1 4 -3

12000*1.2 14400.0 10800.0 14400.0 33.3 3 6 -3

12000*1.4 16800.0 12600.0 16800.0 33.3 4 6 -2

12000*1.6 19200.0 14400.0 19200.0 33.3 5 6 -1

12000*1.8 21600.0 16200.0 21600.0 33.3 6 7 -1

12000*2.0 24000.0 18000.0 24000.0 33.3 6 7 -1

12000*2.2 26400.0 19800.0 26400.0 33.3 6 8 -2

12000*2.4 28800.0 21600.0 28800.0 33.3 6 8 -2

12000*2.6 31200.0 23400.0 31200.0 33.3 6 8 -2

12000*2.8 33600.0 25200.0 33600.0 33.3 6 15 -9

12000*3.0 36000.0 27000.0 36000.0 33.3 6 15 -9

12000*3.2 38400.0 28800.0 38400.0 33.3 6 15 -9

12000*3.4 40800.0 30600.0 40800.0 33.3 13 22 -9

12000*3.6 43200.0 43200.0 43200.0 0.0 217 22 195

12000*3.8 45600.0 45600.0 45600.0 0.0 217 22 195

12000*4.0 48000.0 48000.0 48000.0 0.0 217 22 195

The scenario ‘S1’, mimics a small supply chain of a firm with two plants that pro-

duce four items I1, I2, I3, and I4. There are two groups for each plant: G11 and G12

belong to plant1, and G21 and G22 belong to plant2. Items I1 and I4 of group G11 and

group G21 share the same resource. Similarly, I2 and I3 belong to groups G12 and G22

and share the same resource. The demand for each of the items is 3000 at the distribution

center. The supply chain horizon used in ‘S1’ is 26 buckets and, each bucket is of daily

bucket type. There are 25 business objectives that MPS needs to consider. The campaign

constraints restrict the production changeover in the same group to one and the number

of permissible operations per group per bucket to one. The scenario, ‘S2’, unlike ‘S1’,

considers the larger supply chain and details one of the tire industries manufacturing sup-

ply chain problems. The mathematical formulation of MPS for ‘S2’ contains millions of

continuous and discrete variables and constraints. Horizon consists of 86 buckets, daily,

weekly, and monthly types. There are 87 business objectives that needs to optimize.

There are hundreds of thousands of units of demand requirement, and there are more than

twenty-two thousand groups present in this supply chain network. For both the scenarios,

we model the respective MPS, obtain plan output and collect computation time in getting

the planned output from our model with the existing heuristic. For ‘S1’, we report the

scaled demand requirement, demand fulfillment, and lateness for both the MPS methods

5.3 Implementation, Computational Results and Conclusion 129

Table 5.5: Demand planning summary of supply chain scenarios, ‘S2’ by heuristic-based

planner and our MIP-based planner.

demand-type demand-requirement
demand-satisfied

benefit
percentage

benefitheuristic method exact method

0 14801059.0 14763993.0 14780603.0 16610.0 0.1125034

1 3708725.0 3658033.0 3691402.0 33369.0 0.9122116

2 308322.0 305494.0 305583.0 89.0 0.0291331

3 580865.0 551365.0 568238.3 16873.3 3.0602686

4 2978081.0 2859776.0 2944522.8 84746.8 2.9634052

5 596367.0 536562.0 589611.7 53049.7 9.8869632

6 11892967.0 11556315.0 11794757.0 238442.0 2.0633048

7 1607441.0 1462872.4 1552322.0 89449.6 6.1146568

8 380675.0 336808.0 365187.4 28379.4 8.4259894

9 1902510.0 1686265.9 1741089.4 54823.5 3.2511777

10 156067.0 155793.0 155966.0 173.0 0.1110448

11 672298.0 669415.0 663557.0 -5858.0 -0.875092

12 7006306.0 6810424.5 6722108.5 -88316.0 -1.296777

in Table 5.4. Lateness, the total number of days late from the target date, is set with low

priority than the demand satisfaction. The column, percentage benefit, indicates the per-

centage change in demand met, reports a positive value if our MIP-based method (exact

method) performs better. Also, a positive value in the column benefit (in days) represents

the number of days saved in meeting the demand requirements if our procedure is pre-

ferred. Similarly, for ‘S2’, we report the priority-based customer demand requirements,

demand fulfillment, and the benefits in demand met in Table 5.5. An ideal planner should

focus more on high-priority demand requirements than the demand requirement with low

priority. In the last column, percentage benefit reports the percentage change in demand

met. The positive percentage value represents exact formulation-based MPS performing

better and, the negative value shows its degradation over the heuristic. The exact method

is MIP and solving it is generally much slower than that of LPs. However, it requires only

one MIP solver call in contrast to the heuristic planner which requires many LP solvers.

We observe that for both supply chain scenarios, our method performs better than the

heuristic. The time taken in MPS computation from the exact method is 1.76 sec for sup-

ply chain scenario ‘S1’, which is nearly 70 times faster than the heuristic. Similarly, for

larger supply chain ‘S2’, our model takes 111 seconds which is more than 10 times the

heuristic that takes 1791 sec.

5.4 Campaign Planning in one of the Tire Manufacturing Industries 130

5.4 Campaign Planning in one of the Tire

Manufacturing Industries

One of the more complex requirements of campaign planning is encountered in tire man-

ufacturing. Master planning for tire manufacturing is particularly challenging due to the

global manufacturing and distribution network and complex manufacturing processes.

Tire manufacturing starts with the first step, a ‘Green Tire’ production, by assembling

multiple layers of rubber and chemicals as required by the final finished tire performance

characteristics. A ‘Green Tire’ then goes inside a ‘Mould’, which goes inside a ‘Con-

tainer’ and is placed in a ‘Cavity’ of a ‘Press’. The ‘Press’ is then taken through the

‘Curing’ process of around 20 minutes before ‘Tire Articles’ are obtained. ‘Tire Articles’

are taken through further quality checks, finishing, special treatments, and packaging to

get the final ‘SKU’ that can be allocated, shipped, and sold against customer orders and

forecasts across various sales channels.

There is a many-to-many relationship between the ‘Green Tire’, ‘Press’ and ‘Arti-

cle’, requiring efficient planning of these processes to avoid costly changeovers. Since the

outcome of the curing process is tightly linked with operational planning at the factory

level, just the curing process cannot be modeled as a standalone optimization problem. It

has to take place with other constraints and objectives at local and global plants, ware-

houses, and distribution lanes. This problem is solved by embedding ‘campaign planning

heuristics method’ within the hierarchical optimization problem. However, even with in-

genious mix of heuristics and hierarchical LP, the problem becomes very hard to solve

and could run for as much as 100 hours on powerful boxes. This has necessitated further

breaking down of the overall operation planning into different stages where demands and

forecasts are propagated up to the stage of curing process, curing process is optimized us-

ing campaign planning and the resulting operation plans are taken as starting solution for

rest of the global optimization problem. The ‘segmented campaign planning approach’

compromises the global optimality of the plan. Further, even the campaign planning prob-

lem could take as much as thirty hours to solve. These runs are part of an operational plan

that runs every week, but these runtimes could still obstruct the business process flow.

5.4.1 Industrial Outlook of the Challenges of Campaign Planning

Campaign planning is the industry terminology for optimizing and managing the

resources and work centers with the switchover requirements. The term ‘campaign’ basi-

cally comes from the simplistic approach to minimizing the changeover cost – campaign

(keep running) the setup once it is loaded so that changeover costs are minimized. It is

5.4 Campaign Planning in one of the Tire Manufacturing Industries 131

easy to see that the heuristic approach is myopic and leads to sub-optimal planning of

resources. However, the challenge in adopting an optimal method is the complexity and

solve-time of the model. With the presence of constraints for a global supply chain, a

careless formulation of changeover minimization can easily keep solving for hundreds

of hours on reasonably powerful resources. These long-running planning cycles are pro-

hibitive due to various reasons. One of the reasons is the cost of computation. Even with

the advent of SaaS (Software as a service) and PaaS (Platform as a service), the comput-

ing cost of such resources becomes very high. Global full-scaled supply chains needed

to be replanned on a monthly or weekly basis are now require planning multiple times

in a day. The disruption and exception in the extended supply chain are more accurately

and frequently made available due to the advent of technology. Shipping agencies are

providing updates on possible delays of trucks or ships every 15 minutes. The delay cal-

culation can be based on real-time events (e.g., port congestions at the current docking

port) or predicted based on environmental factors (e.g., predicted oceanic conditions).

These more accurate inputs make re-planning more reliable. Further, there is pressure

from the customer side, who also expects to be intimated of any possible delay or dis-

ruption more frequently and accurately. Most of the operational planning runs happen

daily and, the planned output is rolled out for production orders and purchase orders in

an incremental manner. If an optimal changeover problem exceeds the planning cycle

time, the plan is just stale and not execution-ready. With the above practical constraints,

most of the planners settle for heuristic-based changeover optimization. However, it has

pitfalls – suboptimality, infeasibility, or both. If a formulation for campaign planning

is well-formulated and is faster, it has immense business value. To conclude, we provide

mathematical modeling for a master production schedule that respects campaign planning

constraints and try to attempt few supply chain scenarios for understanding plan output.

We study campaign planning problems one tire industry faces and highlight the indus-

trial outlook of the challenges an industry or management can have. However, we only

attempted to highlight the benefit of computing an efficient and optimal campaign plan.

Implementation and challenges in other supply chain industries that look for the model

respecting campaign planning and lot sizing constraints is the work that needs to be done.

Chapter 6

Conclusion and Future Work

We study MILPs and MOLPS, two categories of linear mathematical programs, one spec-

ified with integer variables and the other with many objectives. We focus on methodolo-

gies to obtain their solution that employs a general method of solving a sequence of LPs.

For MILPs, we introduce a new branching technique similar to reliability branching that

uses the closeness between LPs solved using the branch and bound method. For MOLPs,

we develop a lexicographic method that, similar to the branching technique for MOLPs,

exploits the similarity between LPs solved with preference. Apart from studying various

strategies and developing methodologies for MILPs and hierarchical MOLPs (h-MOLPs),

our contribution to industry problems is to perform a detailed study of the master produc-

tion schedule (MPS), one of the main components in master planning in manufacturing

industries, and some related restrictions associated with it. We study the modeling of

MPS as h-MOLP. The challenge of addressing campaign planning in MPS is also studied

using the heuristic and the exact formulation.

In Chapter 2, we discuss various variable branching rules and present a new branch-

ing procedure that looks more closely at the information collected at different nodes in

B&B and tries to use them selectively. The procedure evaluates the similarity between

the current node and nodes already explored in the tree to select an appropriate variable

to branch on. Towards this end, we define a similarity measure between nodes computed

using relevant features of the relaxation, like bounds on variables. Using information

from ‘similar’ nodes, we estimate the change in the objective value for each branching

candidate, much like reliability branching, to select the variable to branch on. We develop

efficient procedures for implementing this scheme and, present computational results on

benchmark instances and compared with the default scheme of a solver (CBC). We find

that effectively calling strong branching speeds up the LP-based B&B for MILP by 20%

and results in a 30% node reduction.

132

133

Chapter 3 studies two popular methods used to solve h-MOLPs and their challenges.

We obtain results on the lexicographic method for h-MOLPs and propose a new reduced

cost-based lexicographic technique. It exploits the structure of the underlying hierarchi-

cal model by monitoring the changes in the input parameters and leverages reoptimization

when solving the objectives in the hierarchy. We define a similarity measure between in-

termediate linear programs appearing while solving the model and use it to decide whether

we should solve the current linear program from scratch or use the available feasible so-

lution obtained from the previous linear program solve. We show the effectiveness of

our rule over the existing method on small-sized benchmark instances. We realize the

consistent speedup of 25% over the available default lexicographic method in CPLEX for

solving h-MOLPs, modeled for master production schedules.

In Chapter 4, we perform a modeling exercise where the MPS of a dummy potato

chip industry is formulated. We discuss various important demand-based business objec-

tives and a mathematical formulation for them. We devise a rule to combine some of the

objectives in the lexicographic method. We find that functional knowledge of objectives’

preferences helps us combine them without losing the solution quality of the standard

lexicographic method.

Chapter 5 starts by posing the campaign planning heuristic as a sequential decision

problem (SDP) and use the Cross-entropy method to solve it to obtain a better solution

than the existing one. We avoid the unnecessary multiple MPS routines while ensuring

optimal plan output. It develops an idea of an ‘exact method’ that applies campaign

planning constraints on MPS. Further, we discuss a case study of campaign planning for

one of the tire industries to understand the importance of campaign planning. We run

our exact formulation of campaign planning in 12.10 version of the CPLEX solver and

compare it with the existing campaign planning technique over h-MOLP modeled for

master production schedules over two supply chain scenarios. In the first scenario, which

is a small-sized supply chain, we see the performance improvement with seventy times

faster planning computation from our method. For the second scenario, the speed up is

ten times.

We now highlight some promising future research directions that can extend the

work presented in this thesis.

Currently, our similarity-based branching procedure, SimBranch, is implemented

only with MIPs where some variables are constrained to be binary. We can extend this idea

by exploiting other features in the subproblems in the branch-and-bound procedure for

general integer cases and other classes of problems like MINLP, quadratic programs, and

CSP. Similarly, we can extend the work of the similarity-based lexicographic technique,

134

SimLex, for the MOPs consisting of integer variables. Unlike reduced cost information

for non-basic continuous variables used in our current work’s similarity computation, we

need to have some other feature that computed similarity and decide whether reoptimiza-

tion is useful. In addition, we can extend the current work to link our Optimization-based

SimBranch and SimLex with machine learning techniques that can exploit the feature

vectors.

Another direction can be to use with no extra cost features collected in SimBranch

for node selection strategy. We studied two key points we need to consider while selecting

the node in the branch-and-bound procedure. 1) it should choose the node pointing to

subproblems with the best lower bound (in the case of minimization), and 2) the node

setup cost should not be high - the linear program should not change much from one

iteration to the next.

Sensitivity analysis may be another research direction toward selective reoptimiza-

tion in MOPs. Two consecutive LPs solved using the lexicographic method differ in more

than two parameters. Sensitivity analysis in multi-objective decision-making is a popular

area of study [129, 130]. Sensitivity analysis with simultaneous variations in the model

is studied in [131]. To our best knowledge, almost all of them analyze the extent of vari-

ations in input parameters by which the solution of the model does not change - they

perform the post optimality. Our idea is to check whether two LPs are similar to decide

whether to build the solution from scratch or to use the existing solution, which can be

combined with the simultaneous sensitivity analysis.

Focusing on our industry work, including lot sizing constraints with the master pro-

duction schedule and further including it with campaign planning, can be another research

direction. It will incorporate the situation where some intermediate buffer items produced

or the final items demanded must be lot sized. Considering lot-sizing into MPS need

modeling a mathematical program with integer variables. Further, including lot-sizing

and MPS with campaign planning make the problem more challenging to model and

solve. Another interesting area of research from our industry-based work is to find the

sequence of business objectives management can accept in calculating MPS. A weighted-

sum approach will combine those hierarchical objectives without losing their hierarchy

in the lexicographic technique. Currently, we have such objectives - demand-based ob-

jectives. A group of safety stock-based objectives of various items can be an example of

such groups that can be tried.

Appendix A

MIP Instances

Table A.1: Running time (t, in seconds), number of nodes processed (n) and number of strong branching iterations

(#strong_itrn) by SimBranch and Default-Cbc on all 222 benchmark instances

SimBranch Default-Cbc

Instance t n #strong_itrn t n #strong_itrn

30n20b8 2066.7 39554 4574136 1636.48 81262 963920

50v-10 7200 833564 2168082 7200 1454959 17890026

aflow40b 7200 1132095 1452 7200 556977 45187370

air04 28.78 144 120866 33.78 1282 29776

app1-2 7200 12862 3704174 4140.93 13876 1633646

assign1-5-8 7200 9437195 19272 7200 2509526 246931754

atlanta-ip 7200 2786 907208 7200 3023 1189275

b1c1s1 7200 150376 189426 7200 106076 3389556

bab2 7200 1903 1569398 7200 5526 138918

bab5 7200 26684 9446052 7200 79230 848403

bab6 7200 4596 3446948 7200 4605 131650

beasleyC3 7200 285732 226188 7200 215416 10438111

biella1 628.05 1350 1181269 7200 83754 1308635

bienst2 349.51 72550 10915 442.24 69748 1063511

binkar10_1 62.55 10976 27915 61.09 11514 68773

blp-ar98 7200 72223 15669195 7200 201116 1932681

blp-ic98 4006.47 47156 9096366 7200 128681 6411946

bnatt400 7200 46084 2194501 7200 36771 5169764

bppc4-08 7200 2303032 2577 7200 2248360 27508589

brazil3 7200 5732 3227386 7200 7304 3218996

buildingenergy 7200 352 384419 7200 233 203580

chromaticindex512-7 7200 10248 2309223 7200 68510 749293

cmflsp50-24-8-8 7200 69282 1510384 7200 36388 4151640

CMS750_4 7200 67192 257459 7200 63300 936250

co-100 7200 4298 1669251 7200 2085 84494

cod105 7200 111457 2177796 7200 79823 11417996

comp21-2idx 7200 2798 2290435 7200 3732 1331912

core2536-691 1478.76 4690 2694941 283.6 2292 65599

cost266-UUE 7200 587294 190994 7200 307727 21411168

cov1075 7200 918344 267801 7200 704709 15802997

csched007 7200 1038155 1467124 7200 1635149 17236674

csched008 7200 2394359 674224 7200 2177516 20811656

csched010 7007.23 764318 1330629 7200 1228224 12031128

cvs16r128-89 7200 46899 13700550 7200 68870 10586187

dano3_5 146.39 402 42528 155.7 324 77550

danoint 4997.59 502308 65470 7200 687526 17675634

dws008-01 7200 63354 9186413 7200 117693 1108765

eil33-2 221.23 5128 1515388 105.21 10894 169073

eilA101-2 7200 4952 5182640 7200 15906 329271

eilB101 1250.87 12968 4900827 1814.53 52456 721683

enlight_hard 194.33 120346 46737 233.59 67721 247210

enlight13 7200 494755 97213 7200 510872 427682

exp-1-500-5-5 7200 1381906 9850 7200 672138 53203314

fast0507 7200 19651 13637157 7200 196691 1747175

fastxgemm-n2r6s0t2 7200 288693 44241 7200 216553 5204311

germanrr 7200 77308 8922144 7200 206723 2290545

glass-sc 7200 107265 282356 7200 72952 2872744

135

136

glass4 7200 1862286 1930 7200 1176335 42397239

gmu-35-40 124.38 112950 12307 641.98 569884 1693734

gmu-35-50 7200 5565066 37495 7200 5033123 55728038

graph20-20-1rand 7200 18869 2051346 7200 14911 2985262

graphdraw-domain 2397.12 447282 94070 6323.99 856926 26853297

h80x6320d 7200 204832 25314 7200 123712 8143952

ic97_potential 7200 1281952 61101 7200 1370030 8331548

icir97_tension 7200 873119 465637 7200 510390 23914293

iis-100-0-cov 7200 191081 185718 7200 132204 6441808

iis-bupa-cov 7200 104982 157606 7200 85487 3217323

iis-pima-cov 7200 57171 296290 7200 46314 3037337

irp 4.57 40 12981 5.78 120 5514

istanbul-no-cutoff 1624.28 1848 10375 1825.67 1932 221638

lectsched-5-obj 7200 11621 3493839 7200 15220 2824217

leo1 7200 297782 8525081 7200 460363 4734826

leo2 7200 192245 10959569 7200 338839 3320975

lotsize 7200 111746 1906934 7200 305498 4761766

macrophage 255.05 3602 102809 571.3 8514 396148

mad 7200 9065978 84495 7200 5673186 181414257

map10 4627.14 2922 109354 4346.67 2422 356504

map16715-04 7200 1483 91038 7200 2572 448385

map18 1503.9 1688 84455 2173.68 2134 341471

map20 1491.2 2040 65534 1339.08 1602 234490

markshare_4_0 23.57 2195853 491 29.84 1626048 435928

markshare2 7200 171838226 4569 7200 190661114 119487467

mas74 534.2 3645065 21847 417.64 2996964 6226261

mas76 28.36 546805 7122 22.94 324782 521713

mc11 7200 170328 357467 7200 188146 5320395

mcsched 1268.39 58202 2141106 5675.38 262202 22819827

mik-250-1-100-1 273.73 837770 66886 1512.51 2242458 27569929

mik-250-20-75-4 38.36 151240 22436 28.94 124111 288004

milo-v12-6-r2-40-1 7200 213633 223383 7200 210100 2876704

mine-166-5 31.11 1772 42302 60.38 3608 123588

mine-90-10 3339.33 1122608 225083 3493.5 902058 14170010

momentum1 7200 6416 857667 7200 11036 1418417

msc98-ip 7200 706 571906 7200 1280 826488

mspp16 7200 1560 67337 7200 1893 98575

mushroom-best 7200 62121 313210 7200 36913 1858583

mzzv11 97.39 120 51102 82.72 140 33761

n2seq36q 7200 166298 11321696 7200 350979 2814187

n3div36 7200 77745 12779475 7189.3 263950 2997734

n3seq24 7200 35075 10611169 7200 87913 941624

neos-1109824 7200 78468 5175 4941.3 37686 3192172

neos-1337307 7200 83888 7223091 7200 73611 5093874

neos-1396125 753.61 73670 269950 781.8 46594 3025056

neos-1445765 594.4 6246 2738991 3336.82 173706 1722231

neos-1456979 7200 78935 4679817 7200 99059 5234655

neos-1582420 55.36 1054 481292 22.9 1298 108991

neos-2657525-crna 7200 1924971 364927 7200 10179555 70264336

neos-2746589-doon 7200 19231 6787719 7200 119921 1057921

neos-2978193-inde 7200 430102 25236 7200 275004 12294185

neos-3046615-murg 7200 16831515 85997 7200 3667520 2353094

neos-3083819-nubu 6.99 2098 26680 14.42 5966 51680

neos-3216931-puriri 4149.82 6178 2998006 4584.9 7442 2378586

neos-3381206-awhea 7200 555853 265849 7200 723373 4420560

neos-3555904-turama 7200 6836 4348083 7200 9741 4021870

neos-3627168-kasai 7200 1064567 71678 7200 1287477 5820479

neos-3656078-kumeu 7200 1424 910079 7200 1438 1050790

neos-3754480-nidda 7200 7808244 7147 7200 6795519 32224139

neos-4300652-rahue 7200 310 351651 7200 791 913734

neos-4338804-snowy 7200 1739219 261891 7200 1390117 20835744

neos-4387871-tavua 7200 124011 3410945 7200 84801 11175606

neos-4532248-waihi 7200 1004 619774 7200 1018 504577

neos-4647030-tutaki 7200 5359 10939 7200 6073 12791

neos-4722843-widden 7200 651 104449 7200 759 231751

neos-4738912-atrato 315.57 10385 236726 552.21 17189 976335

neos-476283 358.92 246 20274 688.42 1102 51034

neos-4763324-toguru 7200 1073 804486 7200 1445 458939

neos-4954672-berkel 7200 610748 48969 7200 488480 6101484

neos-5052403-cygnet 7200 2570 2389539 7200 3309 94382

neos-5093327-huahum 7200 54395 38683 7200 50483 2240747

neos-5107597-kakapo 7200 128610 685690 7200 73060 5552460

neos-5188808-nattai 7200 17124 48027 7200 21120 1371409

neos-5195221-niemur 7200 436 385154 7200 1017 851375

Continued on next page −→

137

neos-631710 7200 10058 1509899 7200 11071 478849

neos-662469 7200 41330 18003053 7200 209116 1519426

neos-686190 144.85 4298 698841 68.66 4848 219370

neos-848589 7200 655 142805 7200 440 332407

neos-860300 83.19 574 294399 138.42 5248 86993

neos-873061 7200 68691 17157 7200 72272 3450676

neos-911970 7200 1407586 4570 7200 814172 64810519

neos-916792 7200 315484 27282 1944.75 55134 2845557

neos-934278 7200 8300 3844844 7200 11962 5589591

neos-957323 1554.57 2258 1289761 752.58 12902 222443

neos13 3909.65 64266 255810 1618.55 16888 997324

neos17 7200 1045643 200976 7200 3135269 30448850

neos18 308.45 11262 201444 533.44 17302 483377

neos5 1667.73 3502835 18805 7200 1596440 8518782

net12 4375.4 1708 809779 5286.97 2568 730469

netdiversion 1176.09 226 173999 481.43 98 5645

newdano 7200 722081 43293 7200 527561 8034121

nexp-150-20-8-5 7200 139969 207585 7200 93258 3969075

noswot 7200 23261519 29058 7200 20838393 64073523

ns1208400 7200 114707 4896787 7200 251653 3120866

ns1688347 7200 8788 1500223 7200 4633 1363961

ns1830653 933.83 23692 496878 4921.93 112430 5031707

nu25-pr12 360.07 41357 457945 427.52 43614 904309

nursesched-

medium-hint03 7200 640 344571 7200 586 31176

opm2-z10-s4 7200 424 390121 7200 654 277731

opm2-z7-s2 380.42 462 253802 669.62 2158 369847

p200x1188c 140.58 8784 218905 884.06 38270 2361162

pg 5.49 202 7461 6.38 160 8339

pg5_34 870.51 72248 1408760 838.95 32978 3153583

pigeon-10 7200 2609640 868240 7200 3109938 18460069

piperout-08 84.93 120 71514 88.24 291 11749

pk1 47.69 303191 8181 54.86 285094 1124744

proteindesign

121hz512p9 7200 18447 4767155 7200 59886 1016773

proteindesign

122trx11p8 7200 17213 3883868 7200 51870 847627

pw-myciel4 7200 231683 895950 7200 192724 17007743

qiu 98.07 12250 26678 123.88 10646 320188

radiationm18-12-05 7200 61071 2673087 7200 44104 6810637

radiationm40-10-02 7200 3867 2556249 7200 2603 1830401

rail01 7200 827 818794 7200 435 23000

rail507 7200 17036 12100888 7200 171056 1885423

ran14x18-disj-8 7200 1662572 193178 7200 920050 47689977

ran16x16 536.89 123902 98778 489.34 82644 3023779

rd-rplusc-21 7200 35180 983 7200 11268 1054913

reblock115 7200 1854165 484242 7200 1272312 31183214

reblock67 370.34 173234 158676 1137.56 323626 7220591

rmatr100-p10 119.61 2440 151782 133.04 2032 235715

rmatr100-p5 150.54 1544 145616 183.04 1520 258001

rmatr200-p5 7200 7664 253314 7200 5731 1178196

rmine6 1613.58 810650 215438 863.52 206772 4209024

rocI-4-11 7200 135518 275291 7200 164428 5186953

rocII-4-11 5367.99 45122 2723384 7200 32753 1788990

rocII-5-11 7200 20416 5348991 7200 35592 2233138

rococoB10-011000 7200 33024 8081301 7200 51767 470964

rococoC10-001000 565.14 8064 2431158 708.66 15710 187907

roi2alpha3n4 1859.28 8598 1745848 1343.63 10678 77844

roi5alpha10n8 7200 1616 1131286 7200 1722 51381

roll3000 142.94 1533 167547 169.43 1592 265083

s100 7200 6772 5336606 7200 20800 336603

s250r10 1238.66 5740 2472098 385.95 1776 40935

satellites1-25 7200 26777 18050837 1189.34 23446 299649

satellites2-40 7200 12014 8065563 7200 6424 202647

satellites2-60-fs 7200 2729 2388503 3908.15 3526 137085

sct2 7200 1022860 400560 7200 293456 9753748

seymour 7200 70456 582404 7200 54460 4602308

seymour1 546.86 5350 52008 926.69 6566 719961

sing326 7200 5140 2320876 7200 11037 2361827

sing44 7200 2777 1425384 7200 17547 1529814

snp-02-004-104 7200 25467 3440 7200 13059 29953

sp150x300d 208.4 46452 48981 7200 2730562 608276

sp97ar 7200 111242 11157571 7200 219056 2332050

sp98ar 7200 120188 8154551 7200 176136 1814152

Continued on next page −→

138

sp98ic 406.17 14681 1640253 860.11 65396 475548

sp98ir 38.31 2564 195881 35.76 4184 60778

splice1k1 7200 1962 728038 7200 4859 706038

square41 7200 1013 957930 7200 3815 164859

supportcase18 7200 586969 5501778 7200 883773 6451225

supportcase26 7200 2786384 36608 7200 2115546 22836237

supportcase33 3257.66 14408 4552013 3957.19 61120 681782

supportcase40 2935.75 28328 117477 5548.01 36212 5223062

supportcase42 7200 22725 71973 7200 25769 446823

supportcase6 7200 20249 10180458 7200 155926 2537273

supportcase7 625.06 200 55201 881.4 182 141656

swath1 182.53 22578 283252 99.53 9226 298729

swath3 978.07 142632 598139 1361.56 198236 1901465

tanglegram1 7200 509 565169 7200 624 763733

tanglegram2 59.11 158 72564 664.59 2652 661860

tbfp-network 46.78 118 102721 32.47 152 8586

thor50dday 7200 9152 2174209 7200 11065 1079248

timtab1 7200 3199630 44007 7200 3183369 8296692

tr12-30 7200 550998 8539 7200 472705 3398127

traininstance2 7200 639603 7535083 7200 672494 13349619

traininstance6 7200 872512 2785913 7200 725684 21975990

trento1 1713.32 5682 3493318 7200 77721 954160

uccase12 7200 29603 56507 7200 56418 344708

uccase9 7200 590 262619 7200 1166 952447

uct-subprob 7200 55857 2138655 7200 58103 167963

unitcal_7 1233.28 4252 438975 1116.71 4224 642239

var-smallemery

-m6j6 1800.89 417014 305486 3516.02 287906 6700991

vpphard 7200 17236 4695406 7200 129797 935027

wachplan 7200 521228 3442528 7200 327650 29997961

zib54-UUE 3967.82 163672 57429 3943.86 123918 4227522

Table A.2: number of nodes enumerated (n), strong branching iterations (#strong_itrn) and percentage gap (gap) of those

instances which could not be solved by both the procedures for a given time limit of 7200 seconds

SimBranch Default-Cbc

Instance n #strong_itrn gap n #strong_itrn gap

50v-10 833564 2168082 3.18 1454959 17890026 3.52

aflow40b 1132095 1452 6.03 556977 45187370 5.89

assign1-5-8 9437195 19272 11.59 2509526 246931754 9.42

atlanta-ip 2786 907208 8.90 3023 1189275 8.90

b1c1s1 150376 189426 31.90 106076 3389556 35.80

bab2 1903 1569398 3.97 5526 138918 3.97

bab5 26684 9446052 0.97 79230 848403 1.02

bab6 4596 3446948 2.23 4605 131650 2.23

beasleyC3 285732 226188 11.07 215416 10438111 11.69

blp-ar98 72223 15669195 0.74 201116 1932681 0.72

bnatt400 46084 2194501 100.00 36771 5169764 100.00

bppc4-08 2303032 2577 2.66 2248360 27508589 2.66

brazil3 5732 3227386 4.17 7304 3218996 4.17

buildingenergy 352 384419 0.00 233 203580 0.00

chromaticindex512-7 10248 2309223 25.00 68510 749293 25.00

cmflsp50-24-8-8 69282 1510384 0.70 36388 4151640 0.72

CMS750_4 67192 257459 0.79 63300 936250 0.79

co-100 4298 1669251 57.44 2085 84494 57.44

cod105 111457 2177796 34.25 79823 11417996 34.28

comp21-2idx 2798 2290435 38.36 3732 1331912 38.36

cost266-UUE 587294 190994 6.88 307727 21411168 6.99

cov1075 918344 267801 11.06 704709 15802997 10.97

csched007 1038155 1467124 12.35 1635149 17236674 14.04

csched008 2394359 674224 1.16 2177516 20811656 1.16

cvs16r128-89 46899 13700550 24.26 68870 10586187 25.61

dws008-01 63354 9186413 65.15 117693 1108765 66.18

eilA101-2 4952 5182640 8.18 15906 329271 6.70

enlight13 494755 97213 66.52 510872 427682 65.36

exp-1-500-5-5 1381906 9850 18.17 672138 53203314 16.05

fast0507 19651 13637157 0.67 196691 1747175 0.61

fastxgemm-n2r6s0t2 288693 44241 88.26 216553 5204311 88.26

germanrr 77308 8922144 1.83 206723 2290545 1.93

Continued on next page −→

139

glass-sc 107265 282356 21.23 72952 2872744 21.31

glass4 1862286 1930 31.16 1176335 42397239 29.87

gmu-35-50 5565066 37495 0.00 5033123 55728038 0.00

graph20-20-1rand 18869 2051346 156.76 14911 2985262 156.76

h80x6320d 204832 25314 4.71 123712 8143952 4.27

ic97_potential 1281952 61101 0.75 1370030 8331548 0.79

icir97_tension 873119 465637 0.19 510390 23914293 0.27

iis-100-0-cov 191081 185718 16.93 132204 6441808 17.99

iis-bupa-cov 104982 157606 12.53 85487 3217323 12.93

iis-pima-cov 57171 296290 6.42 46314 3037337 7.56

lectsched-5-obj 11621 3493839 33.33 15220 2824217 33.33

leo1 297782 8525081 1.19 460363 4734826 1.23

leo2 192245 10959569 1.64 338839 3320975 1.84

lotsize 111746 1906934 44.98 305498 4761766 45.35

mad 9065978 84495 100.00 5673186 181414257 100.00

map16715-04 1483 91038 162.12 2572 448385 160.14

markshare2 171838226 4569 100.00 190661114 119487467 100.00

mc11 170328 357467 18.33 188146 5320395 19.11

milo-v12-6-r2-40-1 213633 223383 9.87 210100 2876704 9.69

momentum1 6416 857667 15.72 11036 1418417 16.96

msc98-ip 706 571906 0.18 1280 826488 0.17

mspp16 1560 67337 6.06 1893 98575 6.06

mushroom-best 62121 313210 71.07 36913 1858583 62.03

n2seq36q 166298 11321696 0.38 350979 2814187 0.38

n3seq24 35075 10611169 0.38 87913 941624 0.38

neos-1337307 83888 7223091 0.03 73611 5093874 0.02

neos-1456979 78935 4679817 7.32 99059 5234655 7.32

neos-2657525-crna 1924971 364927 100.00 10179555 70264336 100.00

neos-2746589-doon 19231 6787719 1.12 119921 1057921 1.12

neos-2978193-inde 430102 25236 1.29 275004 12294185 1.29

neos-3046615-murg 16831515 85997 62.94 3667520 2353094 63.25

neos-3381206-awhea 555853 265849 0.19 723373 4420560 0.19

neos-3555904-turama 6836 4348083 19.45 9741 4021870 19.45

neos-3627168-kasai 1064567 71678 0.59 1287477 5820479 0.61

neos-3656078-kumeu 1424 910079 25.32 1438 1050790 25.32

neos-3754480-nidda 7808244 7147 4409.25 6795519 32224139 4222.72

neos-4300652-rahue 310 351651 93.23 791 913734 93.23

neos-4338804-snowy 1739219 261891 1.63 1390117 20835744 1.63

neos-4387871-tavua 124011 3410945 32.52 84801 11175606 32.78

neos-4532248-waihi 1004 619774 91.88 1018 504577 91.88

neos-4647030-tutaki 5359 10939 0.00 6073 12791 0.00

neos-4722843-widden 651 104449 55.78 759 231751 55.78

neos-4763324-toguru 1073 804486 30.36 1445 458939 30.35

neos-4954672-berkel 610748 48969 20.69 488480 6101484 20.38

neos-5052403-cygnet 2570 2389539 1.30 3309 94382 1.31

neos-5093327-huahum 54395 38683 23.08 50483 2240747 23.08

neos-5107597-kakapo 128610 685690 58.73 73060 5552460 62.50

neos-5188808-nattai 17124 48027 82.77 21120 1371409 94.56

neos-5195221-niemur 436 385154 100.00 1017 851375 100.00

neos-631710 10058 1509899 7.27 11071 478849 7.27

neos-662469 41330 18003053 0.01 209116 1519426 0.01

neos-848589 655 142805 2.65 440 332407 2.65

neos-873061 68691 17157 1.17 72272 3450676 1.17

neos-911970 1407586 4570 4.65 814172 64810519 4.62

neos-934278 8300 3844844 0.19 11962 5589591 0.19

neos17 1045643 200976 48.00 3135269 30448850 58.67

newdano 722081 43293 29.85 527561 8034121 28.43

nexp-150-20-8-5 139969 207585 60.99 93258 3969075 60.06

noswot 23261519 29058 4.88 20838393 64073523 4.88

ns1208400 114707 4896787 100.00 251653 3120866 100.00

ns1688347 8788 1500223 81.48 4633 1363961 81.48

nursesched-medium-hint03 640 344571 50.32 586 31176 50.32

opm2-z10-s4 424 390121 41.04 654 277731 41.04

pigeon-10 2609640 868240 11.11 3109938 18460069 11.11

proteindesign121hz512p9 18447 4767155 2.51 59886 1016773 2.58

proteindesign122trx11p8 17213 3883868 0.92 51870 847627 0.92

pw-myciel4 231683 895950 50.00 192724 17007743 10.00

radiationm18-12-05 61071 2673087 0.01 44104 6810637 0.01

radiationm40-10-02 3867 2556249 0.00 2603 1830401 0.00

rail01 827 818794 16.64 435 23000 16.64

rail507 17036 12100888 0.65 171056 1885423 0.63

ran14x18-disj-8 1662572 193178 4.42 920050 47689977 4.56

rd-rplusc-21 35180 983 99.94 11268 1054913 99.94

reblock115 1854165 484242 0.61 1272312 31183214 0.56

Continued on next page −→

rmatr200-p5 7664 253314 27.14 5731 1178196 26.14

rocI-4-11 135518 275291 84.06 164428 5186953 84.06

rocII-5-11 20416 5348991 76.68 35592 2233138 77.48

rococoB10-011000 33024 8081301 13.60 51767 470964 16.38

roi5alpha10n8 1616 1131286 40.64 1722 51381 40.64

s100 6772 5336606 0.77 20800 336603 0.18

satellites2-40 12014 8065563 57.89 6424 202647 57.89

sct2 1022860 400560 0.02 293456 9753748 0.02

seymour 70456 582404 1.84 54460 4602308 1.87

sing326 5140 2320876 0.16 11037 2361827 0.16

sing44 2777 1425384 0.14 17547 1529814 0.00

snp-02-004-104 25467 3440 0.07 13059 29953 0.49

sp97ar 111242 11157571 0.65 219056 2332050 0.66

sp98ar 120188 8154551 0.34 176136 1814152 0.38

splice1k1 1962 728038 317.73 4859 706038 317.73

square41 1013 957930 41.07 3815 164859 41.07

supportcase18 586969 5501778 1.69 883773 6451225 1.69

supportcase26 2786384 36608 16.20 2115546 22836237 16.37

supportcase42 22725 71973 0.09 25769 446823 0.09

supportcase6 20249 10180458 9.13 155926 2537273 9.66

tanglegram1 509 565169 99.90 624 763733 99.90

thor50dday 9152 2174209 58.70 11065 1079248 58.70

timtab1 3199630 44007 36.13 3183369 8296692 35.94

tr12-30 550998 8539 21.69 472705 3398127 21.10

traininstance2 639603 7535083 100.00 672494 13349619 100.00

traininstance6 872512 2785913 100.00 725684 21975990 100.00

uccase12 29603 56507 0.00 56418 344708 0.00

uccase9 590 262619 1.52 1166 952447 1.52

uct-subprob 55857 2138655 6.85 58103 167963 8.60

vpphard 17236 4695406 100.00 129797 935027 100.00

wachplan 521228 3442528 12.50 327650 29997961 12.50

Appendix B

Mathematical Modeling and h-MOLP
Instances

B.1 Instances

Table B.1: MOLP instances selected from MOPLIB library for our computational exper-

iment

instance
no. of linear

constraints

no. of

variables

no. of nonzeros

in linear constraints

no. of business

objectives

no. of nonzeros

in objective function

molp_3_100_20_assignment 20 100 200 3 300

molp_4_729_729_bensolvehedron 729 729 729 4 2612

molp_4_900_60_assignment 60 900 1800 4 3600

molp_9_100_60_mpp 100 60 6000 9 540

molp_10_779_10174_entropy 779 10174 43948 10 12668

molp_10_900_60_assignment 60 900 1800 10 9000

molp_12_21_30_dc 21 30 75 12 22

molp_21_31_138_entropy 31 138 546 21 21

molp_22_43_213_entropy 43 213 863 22 22

molp_23_28_218_entropy 28 218 623 23 1592

molp_27_28_218_entropy 28 218 623 27 1860

B.2 Formulation of MPS for Potato Chips Industry

hMOLP1: lexmin − 8.17285714 AMT020201 − 6.74428571 AMT020101

− 8.17285714 AMT010201 − 3.88714286 AMT010101

subject to CP01T01 : 0.1666667 OP03T01 + 0.000666667 OP04T01 −CP01BD0T01 = 0,

CP01T02 :0.1666667 OP03T02 + 0.000666667 OP04T02 −CP01BD0T02 = 0,

141

CP01T03 :0.1666667 OP03T03 + 0.000666667 OP04T03 −CP01BD0T03 = 0,

CP01T04 :0.1666667 OP03T04 + 0.000666667 OP04T04 −CP01BD0T04 = 0,

CP01T05 :0.1666667 OP03T05 + 0.000666667 OP04T05 −CP01BD0T05 = 0,

CP01T06 :0.1666667 OP03T06 + 0.000666667 OP04T06 −CP01BD0T06 = 0,

CP01T07 :0.1666667 OP03T07 + 0.000666667 OP04T07 −CP01BD0T07 = 0,

BL04T01 :OP03T01 − XBL04T01 = 0,

BL04T02 :OP03T02 + XBL04T01 − XBL04T02 = 0,

BL04T03 : − AMT020201 + OP03T03 + XBL04T02 − XBL04T03 = 0,

BL04T04 : − AMT020101 + OP03T04 + XBL04T03 − XBL04T04 = 0,

BL04T05 :OP03T05 + XBL04T04 − XBL04T05 = 0,

BL04T06 :OP03T06 + XBL04T05 − XBL04T06 = 0,

BL04T07 :OP03T07 + XBL04T06 − XBL04T07 = 0,

BL05T01 :OP04T01 − XBL05T01 = 0,

BL05T02 :OP04T02 + XBL05T01 − XBL05T02 = 0,

BL05T03 : − AMT010201 + OP04T03 + XBL05T02 − XBL05T03 = 0,

BL05T04 :OP04T04 + XBL05T03 − XBL05T04 = 0,

BL05T05 :OP04T05 + XBL05T04 − XBL05T05 = 0,

BL05T06 : − AMT010101 + OP04T06 + XBL05T05 − XBL05T06 = 0,

BL05T07 :OP04T07 + XBL05T06 − XBL05T07 = 0,

bound: 0 ≤AMT020201 ≤ 3600,

0 ≤AMT020101 ≤ 3600,

0 ≤AMT010201 ≤ 2160,

0 ≤AMT010101 ≤ 2160,

0 ≤CP01BD0T01 ≤ 36,

0 ≤CP01BD0T02 ≤ 36,

0 ≤CP01BD0T03 ≤ 36,

0 ≤CP01BD0T04 ≤ 36,

0 ≤CP01BD0T05 ≤ 36,

0 ≤CP01BD0T06 ≤ 36,

0 ≤CP01BD0T07 ≤ 36.

Appendix C

Modeling of MPS for the
Small-industry Problem

LP1: obj1:= min−xd1
3 − xd2

3 − xd3
3 − xd4

3

subject to 0.002 opi
t − ci

t ≤ 0, t = 1, 2, 3, . . . , T , and i = 1, 4, 5, 6, 7, 12,

0.01666667 op3
t + 0.01 op2

t − c2
t ≤ 0, t = 1, 2, 3,

0.01 op8
t + 0.025 op9

t − c7
t ≤ 0, t = 1, 2, 3,

0.01666667 op10
t + 0.01 op11

t − c8
t ≤ 0, t = 1, 2, 3,

0.025 op13
t + 0.01 op14

t − c10
t ≤ 0, t = 1, 2, 3,

op1
1 − op2

1 − b1
1 = 0,

op1
t − op2

t + b1
t−1 − b1

t = 0, t = 2, 3,

op6
1 − op10

1 − b2
1 = 0,

op6
t − op10

t + b2
t−1 − b2

t = 0, t = 2, 3,

op5
1 − op11

1 − b3
1 = 0,

op5
t − op11

t + b3
t−1 − b3

t = 0, t = 2, 3,

op4
1 − op3

1 − b4
1 = 0,

op4
t − op3

t + b4
t−1 − b4

t = 0, t = 2, 3,

op11
1 − op15

1 − b5
1 = 0,

op11
t + b5

t−1 − b5
t = 0, t = 2, 3,

op3
1 − op16

1 − b6
1 = 0,

op3
t + b6

t−1 − b6
t = 0, t = 2, 3,

op2
1 − op17

1 − b7
1 = 0,

143

144

op2
t + b7

t−1 − b7
t = 0, t = 2, 3,

op10
1 − op18

1 − b8
1 = 0,

op10
t + b8

t−1 − b8
t = 0, t = 2, 3,

op13
1 − op19

1 − b9
1 = 0,

op13
t + b9

t−1 − b9
t = 0, t = 2, 3,

op14
1 − op20

1 − b10
1 = 0,

op14
t + b10

t−1 − b10
t = 0, t = 2, 3,

op9
1 − op21

1 − b11
1 = 0,

op9
t + b11

t−1 − b11
t = 0, t = 2, 3,

op8
1 − op22

1 − b12
1 = 0,

op8
t + b12

t−1 − b12
t = 0, t = 2, 3,

op16
1 − b13

3 = 0,

op17
1 − b14

3 = 0,

op19
1 − b15

3 = 0,

op20
1 − b16

3 = 0,

op18
1 − b17

3 − xd1
3 = 0,

op15
1 − b18

3 − xd4
3 = 0,

op21
1 − b19

3 − xd3
3 = 0,

op22
1 − b20

3 − xd2
3 = 0,

op7
1 − op13

1 − op14
1 − b21

1 = 0,

op7
t − op13

t − op14
t − b21

t + b21
t−1 = 0, t = 2, 3,

op12
1 − op8

1 − op9
1 − b22

1 = 0,

op12
t − op8

t − op9
t − b22

t + b22
t−1 = 0, t = 2, 3,

bound: 0 ≤ xdi
3 ≤ 3000, for all demand item i = 1, 2, 3, 4,

0 ≤ c1
t ≤ 12, t = 1, 2, 3,

0 ≤ c2
t ≤ 12, t = 1, 2, 3,

...

0 ≤ c10
t ≤ 12, t = 1, 2, 3,

opi
t, b

i
t ≥ 0, i = 1, 2, 3, . . . , 14, and t = 1, 2 , 3,

opi
1, b

i
1 ≥ 0, i = 15, . . . , 22. (C.1)

Bibliography

[1] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning.

1998.

[2] Robert Fourer and Dominique Orban. Drampl: a meta solver for optimization

problem analysis. Computational Management Science, 7(4):437–463, 2010.

[3] Christos H Papadimitriou. On the complexity of integer programming. Journal of

the ACM (JACM), 28(4):765–768, 1981.

[4] Ailsa H Land and Alison G Doig. An automatic method for solving discrete pro-

gramming problems. In 50 Years of Integer Programming 1958-2008, pages 105–

132. Springer, 2010.

[5] Dimitris Bertsimas and Robert Weismantel. Optimization over integers, volume 13.

Dynamic Ideas Belmont, 2005.

[6] Alexander Schrijver. On the history of combinatorial optimization (till 1960).

Handbooks in operations research and management science, 12:1–68, 2005.

[7] George B Dantzig and Mukund N Thapa. Linear programming 1: introduction.

Springer Science & Business Media, 2006.

[8] Francis Ysidro Edgeworth. Mathematical psychics: An essay on the application of

mathematics to the moral sciences, volume 10. CK Paul, 1881.

[9] Vilfredo Pareto. Manual of political economy: a critical and variorum edition.

OUP Oxford, 2014.

[10] Joseph G Ecker and IA Kouada. Finding efficient points for linear multiple objec-

tive programs. Mathematical Programming, 8(1):375–377, 1975.

[11] Stanley Zionts and Jyrki Wallenius. An interactive programming method for solv-

ing the multiple criteria problem. Management science, 22(6):652–663, 1976.

145

Bibliography 146

[12] Hanif D Sherali and Allen L Soyster. Preemptive and nonpreemptive multi-

objective programming: Relationship and counterexamples. Journal of Optimiza-

tion Theory and Applications, 39(2):173–186, 1983.

[13] SF Tantawy and RH Sallam. Multiple objective linear programming (molp) prob-

lems with the same objective space. Journal of Algorithms & Computational Tech-

nology, 3(4):573–581, 2009.

[14] Jasbir S Arora. Multiobjective optimum design concepts and methods. Introduction

to optimum design, pages 657–679, 2012.

[15] Michael Comelli, Michel Gourgand, and David Lemoine. A review of tactical

planning models. Journal of Systems Science and Systems Engineering, 17(2):204,

2008.

[16] Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Arti-

ficial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995.

[17] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constraint

integer programming: A new approach to integrate cp and mip. In International

Conference on Integration of Artificial Intelligence (AI) and Operations Research

(OR) Techniques in Constraint Programming, pages 6–20. Springer, 2008.

[18] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell.

Branch-and-bound algorithms: A survey of recent advances in searching, branch-

ing, and pruning. Discrete Optimization, 19:79–102, 2016.

[19] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard

Ribière, and O Vincent. Experiments in mixed-integer linear programming. Math-

ematical Programming, 1(1):76–94, 1971.

[20] Gautam Mitra. Investigation of some branch and bound strategies for the solu-

tion of mixed integer linear programs. Mathematical Programming, 4(1):155–170,

1973.

[21] David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The

traveling salesman problem: a computational study. Princeton university press,

2006.

[22] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revis-

ited. Operations Research Letters, 33(1):42–54, 2005.

Bibliography 147

[23] Juhani Koski. Multicriteria truss optimization. In Multicriteria Optimization in

Engineering and in the Sciences, pages 263–307. Springer, 1988.

[24] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, vol-

ume 6. Athena Scientific Belmont, MA, 1997.

[25] Mokhtar S Bazaraa, John J Jarvis, and Hanis D Sherali. Linear programming and

network flows. John Wiley & Sons, 2010.

[26] Gurobi. Gurobi optimizer reference manual. http://www.gurobi.com. May 29,

2020.

[27] CPLEX. IBM ILOG CPLEX Optimization Studio V12.9.0 documentation.

https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/

ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html.

July 07, 2020.

[28] Martin Bartusch, Rolf H Möhring, and Franz J Radermacher. Scheduling project

networks with resource constraints and time windows. Annals of operations Re-

search, 16(1):199–240, 1988.

[29] Markus W Schäffter. Scheduling with forbidden sets. Discrete Applied Mathemat-

ics, 72(1-2):155–166, 1997.

[30] M Bartusch, Rolf H Möhring, and Franz Josef Radermacher. Design aspects of an

advanced model-oriented dss for scheduling problems in civil engineering. Deci-

sion Support Systems, 5(4):321–344, 1989.

[31] Bruno Escoffier, Martin Milanič, and Vangelis Paschos. Simple and fast reopti-

mizations for the steiner tree problem. Algorithmic Operations Research, 4(2):86–

94, 2009.

[32] Davide Bilò, Hans-Joachim Böckenhauer, Juraj Hromkovič, Richard Královič, To-

bias Mömke, Peter Widmayer, and Anna Zych. Reoptimization of steiner trees. In

Scandinavian Workshop on Algorithm Theory, pages 258–269. Springer, 2008.

[33] Claudia Archetti, Luca Bertazzi, and M Grazia Speranza. Reoptimizing the travel-

ing salesman problem. Networks: An International Journal, 42(3):154–159, 2003.

[34] Hans-Joachim Böckenhauer and Dennis Komm. Reoptimization of the metric

deadline tsp. Journal of Discrete Algorithms, 8(1):87–100, 2010.

http://www.gurobi.com
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html

Bibliography 148

[35] David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig. Spar-

sification—a technique for speeding up dynamic graph algorithms. Journal of the

ACM (JACM), 44(5):669–696, 1997.

[36] Monika R Henzinger and Valerie King. Maintaining minimum spanning trees in

dynamic graphs. In International Colloquium on Automata, Languages, and Pro-

gramming, pages 594–604. Springer, 1997.

[37] Hans-Joachim Böckenhauer, Juraj Hromkovič, and Dennis Komm. Reoptimization

of hard optimization problems. In Handbook of Approximation Algorithms and

Metaheuristics, Second Edition, pages 427–454. Chapman and Hall/CRC, 2018.

[38] Giorgio Ausiello, Vincenzo Bonifaci, and Bruno Escoffier. Complexity and ap-

proximation in reoptimization. In Computability in Context: Computation and

Logic in the Real World, pages 101–129. World Scientific, 2011.

[39] Joseph YJ Chow. Activity-based travel scenario analysis with routing problem

reoptimization. Computer-Aided Civil and Infrastructure Engineering, 29(2):91–

106, 2014.

[40] Herbert Meyr. Simultaneous lotsizing and scheduling by combining local search

with dual reoptimization. European Journal of Operational Research, 120(2):311–

326, 2000.

[41] Hadas Shachnai, Gal Tamir, and Tami Tamir. A theory and algorithms for combi-

natorial reoptimization. In Latin American Symposium on Theoretical Informatics,

pages 618–630. Springer, 2012.

[42] Nicola Secomandi and Francois Margot. Reoptimization approaches for

the vehicle-routing problem with stochastic demands. Operations research,

57(1):214–230, 2009.

[43] TK Ralphs and M Güzelsoy. Duality and warm starting in integer programming.

In The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees

and Research Conference, 2006.

[44] Elizabeth John and E Alper Yıldırım. Implementation of warm-start strategies in

interior-point methods for linear programming in fixed dimension. Computational

Optimization and Applications, 41(2):151–183, 2008.

Bibliography 149

[45] Tiago P Filomena and Miguel A Lejeune. Warm-start heuristic for stochastic port-

folio optimization with fixed and proportional transaction costs. Journal of Opti-

mization Theory and Applications, 161(1):308–329, 2014.

[46] Jacek Gondzio. Warm start of the primal-dual method applied in the cutting-plane

scheme. Mathematical Programming, 83(1):125–143, 1998.

[47] Hartmut Stadtler, Hartmut Stadtler, Christoph Kilger, Christoph Kilger, Herbert

Meyr, and Herbert Meyr. Supply chain management and advanced planning: con-

cepts, models, software, and case studies. Springer, 2015.

[48] R Keith Oliver, Michael D Webber, et al. Supply-chain management: logistics

catches up with strategy. Outlook, 5(1):42–47, 1982.

[49] Paul Pounder, Gavin Bovell, and Shannelle Pilgrim-Worrell. A review of supply

chain management and its main external influential factors. In Supply Chain Fo-

rum: An International Journal, volume 14, pages 42–50. Taylor & Francis, 2013.

[50] Samuel H Huan, Sunil K Sheoran, and Ge Wang. A review and analysis of supply

chain operations reference (scor) model. Supply chain management: An interna-

tional Journal, 2004.

[51] Bernhard Fleischmann, Herbert Meyr, and Michael Wagner. Advanced planning.

In Supply chain management and advanced planning, pages 81–106. Springer,

2005.

[52] Jens Rohde, Herbert Meyr, Michael Wagner, et al. Die supply chain planning

matrix. Technical report, Darmstadt Technical University, Department of Business

Administration . . . , 2000.

[53] ASCP. Association for supply chain management. https://www.ascm.org/.

June 10, 2022.

[54] Ken Titmus. Master planning the forgotten, but vital, manufacturing supply chain

planning process, 2006. Paper Presented at Sapics 28th Annual Conference and

Exhibition, Feb 2, 2021.

[55] Paul Higgins and Jim Browne. Master production scheduling: a concurrent plan-

ning approach. Production Planning & Control, 3(1):2–18, 1992.

https://www.ascm.org/

Bibliography 150

[56] G Guillén, FD Mele, MJ Bagajewicz, A Espuna, and L Puigjaner. Multiob-

jective supply chain design under uncertainty. Chemical Engineering Science,

60(6):1535–1553, 2005.

[57] Fulya Altiparmak, Mitsuo Gen, Lin Lin, and Turan Paksoy. A genetic algorithm

approach for multi-objective optimization of supply chain networks. Computers &

industrial engineering, 51(1):196–215, 2006.

[58] Songsong Liu and Lazaros G Papageorgiou. Multiobjective optimisation of pro-

duction, distribution and capacity planning of global supply chains in the process

industry. Omega, 41(2):369–382, 2013.

[59] Tadeusz Sawik. A lexicographic approach to bi-objective scheduling of single-

period orders in make-to-order manufacturing. European Journal of Operational

Research, 180(3):1060–1075, 2007.

[60] Mohamad Sayed Al-Ashhab, Taiser Attia, Shadi Mohammad Munshi, et al. Multi-

objective production planning using lexicographic procedure. American Journal of

Operations Research, 7(03):174, 2017.

[61] GE Vieira and F Favaretto. A new and practical heuristic for master produc-

tion scheduling creation. International Journal of Production Research, 44(18-

19):3607–3625, 2006.

[62] C-C Chern and J-S Hsieh. A heuristic algorithm for master planning that satisfies

multiple objectives. Computers & Operations Research, 34(11):3491–3513, 2007.

[63] Zhengjia Wu, Cheng Zhang, and Xiaoqin Zhu. An ant colony algorithm for mas-

ter production scheduling optimization. In Proceedings of the 2012 IEEE 16th

International Conference on Computer Supported Cooperative Work in Design

(CSCWD), pages 775–779. IEEE, 2012.

[64] Marcio M Soares and Guilherme E Vieira. A new multi-objective optimization

method for master production scheduling problems based on genetic algorithm.

The International Journal of Advanced Manufacturing Technology, 41(5-6):549–

567, 2009.

[65] Lazaros G Papageorgiou and Constantinos C Pantelides. Optimal campaign plan-

ning/scheduling of multipurpose batch/semicontinuous plants. 1. mathematical for-

mulation. Industrial & engineering chemistry research, 35(2):488–509, 1996.

Bibliography 151

[66] Peter Loos and Thomas Allweyer. Application of production planning and schedul-

ing in the process industries. Computers in Industry, 36(3):199–208, 1998.

[67] VCB Camargo, Franklina Maria Bragion Toledo, and Bernardo Almada-Lobo.

Three time-based scale formulations for the two-stage lot sizing and scheduling

in process industries. Journal of the Operational Research Society, 63(11):1613–

1630, 2012.

[68] Josef Kallrath. Planning and scheduling in the process industry. OR spectrum,

24(3):219–250, 2002.

[69] Georgios P Georgiadis, Apostolos P Elekidis, and Michael C Georgiadis.

Optimization-based scheduling for the process industries: From theory to real-life

industrial applications. Processes, 7(7):438, 2019.

[70] Marcus Brandenburg and Franz-Josef Tölle. Milp-based campaign scheduling in

a specialty chemicals plant: a case study. In Supply Chain Planning, pages 1–26.

Springer, 2009.

[71] Klaus Neumann, Christoph Schwindt, and Norbert Trautmann. Advanced produc-

tion scheduling for batch plants in process industries. OR spectrum, 24(3):251–

279, 2002.

[72] Kumar Rajaram and Uday S Karmarkar. Campaign planning and scheduling for

multiproduct batch operations with applications to the food-processing industry.

Manufacturing & Service Operations Management, 6(3):253–269, 2004.

[73] Christopher Suerie. Campaign planning in time-indexed model formulations. In-

ternational Journal of Production Research, 43(1):49–66, 2005.

[74] Andreas Drexl and Knut Haase. Proportional lotsizing and scheduling. Interna-

tional Journal of Production Economics, 40(1):73–87, 1995.

[75] Narasimha B Kamath, Devender Chauhan, Deba Kalyan Mohanty, and Dinesh

Damodaran. System and method of solving supply chain campaign planning prob-

lems involving major and minor setups, February 24 2015. US Patent 8,965,548.

[76] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A

tutorial on the cross-entropy method. Annals of operations research, 134(1):19–67,

2005.

Bibliography 152

[77] Shie Mannor, Reuven Y Rubinstein, and Yohai Gat. The cross entropy method for

fast policy search. In Proceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 512–519, 2003.

[78] Xiu Ning and Pingke Li. A cross-entropy approach to the single row facility layout

problem. International Journal of Production Research, pages 1–14, 2017.

[79] G Alon, Dirk P Kroese, Tal Raviv, and Reuven Y Rubinstein. Application of

the cross-entropy method to the buffer allocation problem in a simulation-based

environment. Annals of Operations Research, 134(1):137–151, 2005.

[80] Gerardo Beruvides, Ramón Quiza, and Rodolfo E Haber. Multi-objective opti-

mization based on an improved cross-entropy method. a case study of a micro-scale

manufacturing process. Information Sciences, 334:161–173, 2016.

[81] Hossein Jahandideh, Kumar Rajaram, and Kevin McCardle. Production campaign

planning under learning and decay. 2016.

[82] Tobias Achterberg. Constraint integer programming. 2009.

[83] Denis Naddef. Polyhedral theory and branch-and-cut algorithms for the symmetric

tsp. In The traveling salesman problem and its variations, pages 29–116. Springer,

2007.

[84] Ralf Borndörfer, Carlos E Ferreira, and Alexander Martin. Decomposing matrices

into blocks. SIAM Journal on optimization, 9(1):236–269, 1998.

[85] Jeff T Linderoth and Martin WP Savelsbergh. A computational study of search

strategies for mixed integer programming. INFORMS Journal on Computing,

11(2):173–187, 1999.

[86] David Applegate, Robert Bixby, William Cook, and Vasek Chvátal. On the solution

of travelling salesman problems. Universität Bonn. Institut für Ökonometrie und

Operations Research, 1998.

[87] Gilbert Laporte. The traveling salesman problem: An overview of exact and ap-

proximate algorithms. European Journal of Operational Research, 59(2):231–247,

1992.

[88] J Forrest and R Lougee-Heimerl. CBC (coin-or branch-and-cut) solver. https:

//projects.coin-or.org/Cbc. April 10, 2020.

https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc

Bibliography 153

[89] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Ei-

fler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin

Halbig, et al. The scip optimization suite 7.0. 2020.

[90] W. Glankwamdee and Jeff T. Linderoth. Lookahead branching for mixed integer

programming. In ICS 2011, 2011.

[91] Tobias Achterberg and Timo Berthold. Hybrid branching. Integration of AI and OR

techniques in constraint programming for combinatorial optimization problems,

pages 309–311, 2009.

[92] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual

Design Automation Conference, pages 530–535, 2001.

[93] Gregor Hendel. Enhancing mip branching decisions by using the sample variance

of pseudo costs. In International Conference on AI and OR Techniques in Con-

striant Programming for Combinatorial Optimization Problems, pages 199–214.

Springer, 2015.

[94] Chu Min Li and Anbulagan Anbulagan. Heuristics based on unit propagation for

satisfiability problems. In Proceedings of the 15th international joint conference

on Artifical intelligence-Volume 1, pages 366–371, 1997.

[95] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Pro-

gramming Computation, 1(1):1–41, 2009.

[96] Ashutosh Mahajan. Presolving mixed-integer linear programs. Wiley Encyclopedia

of Operations Research and Management Science. John Wiley& Sons, Inc, page 44,

2010.

[97] George L Nemhauser, Martin WP Savelsbergh, and Gabriele C Sigismondi. Minto,

a mixed integer optimizer. Operations Research Letters, 15(1):47–58, 1994.

[98] Matteo Fischetti and Michele Monaci. Backdoor branching. In IPCO, pages 183–

191. Springer, 2011.

[99] Fatma Kılınç Karzan, George L Nemhauser, and Martin WP Savelsbergh.

Information-based branching schemes for binary linear mixed integer problems.

Mathematical Programming Computation, 1(4):249–293, 2009.

Bibliography 154

[100] IBM ILOG CPLEX. 12.2: Using the cplex callable library. Information available

at http://www-01. ibm. com/software/integration/optimization/cplex-optimizer.

[101] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Miplib 2003. Opera-

tions Research Letters, 34(4):361–372, 2006.

[102] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo

Berthold, Robert E Bixby, Emilie Danna, Gerald Gamrath, Ambros M Gleixner,

Stefan Heinz, et al. Miplib 2010. Mathematical Programming Computation,

3(2):103–163, 2011.

[103] COR@L. Mip instances. http://coral.ie.lehigh.edu/mip-instances/.

June 10, 2022.

[104] Matteo Fischetti and Michele Monaci. Branching on nonchimerical fractionalities.

Operations Research Letters, 40(3):159–164, 2012.

[105] Timo Berthold and Domenico Salvagnin. Cloud branching. In International Con-

ference on AI and OR Techniques in Constriant Programming for Combinatorial

Optimization Problems, pages 28–43. Springer, 2013.

[106] Gerald Gamrath, Tobias Fischer, Tristan Gally, Ambros M Gleixner, Gregor Hen-

del, Thorsten Koch, Stephen J Maher, Matthias Miltenberger, Benjamin Müller,

Marc E Pfetsch, et al. The scip optimization suite 3.2. ZIB Report, pages 15–60,

2016.

[107] Pierre Le Bodic and George L Nemhauser. An abstract model for branching and

its application to mixed integer programming. arXiv preprint arXiv:1511.01818,

2015.

[108] Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina.

Learning to branch in mixed integer programming. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 30, 2016.

[109] Hang Li. Learning to rank for information retrieval and natural language process-

ing. Synthesis lectures on human language technologies, 7(3):1–121, 2014.

[110] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine

learning-based approximation of strong branching. INFORMS Journal on Com-

puting, 29(1):185–195, 2017.

http://coral.ie.lehigh.edu/ mip-instances/

Bibliography 155

[111] Norman J Driebeek. An algorithm for the solution of mixed integer programming

problems. Management Science, 12(7):576–587, 1966.

[112] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.

Machine learning, 63(1):3–42, 2006.

[113] Gerald Gamrath, Anna Melchiori, Timo Berthold, Ambros M Gleixner, and

Domenico Salvagnin. Branching on multi-aggregated variables. In CPAIOR, pages

141–156, 2015.

[114] Jagat Patel and John W Chinneck. Active-constraint variable ordering for

faster feasibility of mixed integer linear programs. Mathematical Programming,

110(3):445–474, 2007.

[115] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions

on neural networks, 16(3):645–678, 2005.

[116] A Gleixner, G Hendel, G Gamrath, T Achterberg, M Bastubbe, T Berthold,

PM Christophel, K Jarck, T Koch, J Linderoth, et al. Miplib 2017, 2018.

[117] Stefan Gollowitzer, Luis Gouveia, and Ivana Ljubić. Enhanced formulations and

branch-and-cut for the two level network design problem with transition facilities.

European Journal of Operational Research, 225(2):211–222, 2013.

[118] Tobias Achterberg, Ashish Sabharwal, and Horst Samulowitz. Stronger inference

through implied literals from conflicts and knapsack covers. In International Con-

ference on AI and OR Techniques in Constriant Programming for Combinatorial

Optimization Problems, pages 1–11. Springer, 2013.

[119] James Renegar. Incorporating condition measures into the complexity theory of

linear programming. SIAM Journal on Optimization, 5(3):506–524, 1995.

[120] James Renegar. Some perturbation theory for linear programming. Technical re-

port, Cornell University Operations Research and Industrial Engineering, 1993.

[121] Diagnosing ill conditioning. https://www.ibm.com/support/pages/

diagnosing-ill-conditioning. Accessed: 2022-02-18.

[122] Gurobi Optimization. Gurobi optimizer version 7.0. 2, 2017.

[123] Andreas Lohne and Sebastian Schenker. A problem library for multi-objective

linear, multi-objective.

https://www.ibm.com/support/pages/diagnosing-ill-conditioning
https://www.ibm.com/support/pages/diagnosing-ill-conditioning

Bibliography 156

[124] Juhani Koski. Defectiveness of weighting method in multicriterion optimization of

structures. Communications in applied numerical methods, 1(6):333–337, 1985.

[125] Indraneel Das and John E Dennis. A closer look at drawbacks of minimizing

weighted sums of objectives for pareto set generation in multicriteria optimization

problems. Structural optimization, 14(1):63–69, 1997.

[126] Numeric difficulties. https://www-eio.upc.edu/lceio/manuals/

cplex-11/html/usrcplex/solveLP17.html. Accessed: 2022-03-20.

[127] Cirulli Gabriele. 2048, 2014. Accessed: 2021-09-20.

[128] S Kalyanakrishnan and Devanand. Policy encoding as 2-ply search with evaluation

function, 2015. Accessed: 2022-09-07.

[129] David Rios Insua. Sensitivity analysis in multi-objective decision making. In Sensi-

tivity Analysis in Multi-objective Decision Making, pages 74–126. Springer, 1990.

[130] Roberto Calandra, Jan Peters, and MP Deisenrothy. Pareto front modeling for

sensitivity analysis in multi-objective bayesian optimization. In NIPS Workshop

on Bayesian Optimization, volume 5, 2014.

[131] David Rios Insua and Simon French. A framework for sensitivity analysis in dis-

crete multi-objective decision-making. European journal of operational research,

54(2):176–190, 1991.

https://www-eio.upc.edu/lceio/manuals/cplex-11/html/usrcplex/solveLP17.html
https://www-eio.upc.edu/lceio/manuals/cplex-11/html/usrcplex/solveLP17.html

List of Publications

Conferences and Posters

1. Devanand, R., et al. “Mathematical Modeling of Master Production Schedule with

Campaign Planning Constraints.” 2021 IEEE International Conference on Indus-

trial Engineering and Engineering Management (IEEM). IEEE, 2021.

2. Devanand, Ashutosh Mahajan, N. Hemachandra “Similarity Based Lexicographic

Method for Hierarchical Multiobjective Linear Programs.” 2022 Poster Presenta-

tion at Mathematics of Data Science (MDS) 2022. SIAM Conference, 2022.

3. Devanand, Ashutosh Mahajan, N. Hemachandra. “Similarity among nodes for the

branching decisions in Branch and Bound algorithm.” 2019 Seminar presentation,

Operations Research Society of India (ORSI) at Indian Institute of Management

Ahmedabad (IIMA), India, 2019. ORSI, 2019.

4. Devanand, Ashutosh Mahajan. “Bandit based branching scheme in branch and

bound algorithm.” 2019 Poster presentation, Mumbai, 2016. Optimization Sum-

mit, JDA 2016.

Patents

Issued

1. Devanand, R. “System and Method for Automatic Parameter Tuning of Campaign

Planning with Hierarchical Linear Programming Objectives.” U.S. Patent Applica-

tion No. 17/728,808.

Filed

1. Devanand R., Tushar Shekhar. “Dynamic Switching in Hierarchical LPOPT Solve.”

U.S. Patent Application No. 17/858,727.

157

List of Publications 158

2. Devanand R., Tushar Shekhar. “System and Method of Auxiliary Model-Supported

Combination of Hierarchical Objectives.” U.S. Patent Application No. 63/178,884.

3. Devanand R., Tushar Shekhar. “Objective Crunching (ObCrunch) in Hierarchical

Optimization of Supply Chain.” U.S. Patent Application No. 62/741,516.

4. Devanand R. et al. “Fair-Share Band Optimization using a mixture of Heteroge-

neous Gaussian.” U.S. Patent Application No. 63/051,647.

Acknowledgements

First and foremost, many thanks and immense love to my Divine Mother for her blessings

that gave me wisdom and strength to handle challenges in completing my Ph.D. journey,

mixed with academic and industry endeavors.

I would like to thank my supervisors, Prof. Ashutosh Mahajan and Prof. N

Hemachandra, for all their help and advice with this Ph.D.

I also thank my research progress committee members for their time and advice. I

am thankful to Prof. V. Kavitha for her guidance at the initial stage of my Ph.D.

I especially like to thank my external supervisor and manager, Tushar Shekhar, for

his consistent support, invaluable advice, and help managing my industry and Ph.D. work.

Additionally, I would like to thank my senior colleagues and friends, Dr. Umakanta

Pattanayak, Dr. Parmod Kumar, and Dr. Prashant Palkar, for their research writing guid-

ance. I thank office staffmembers Abasaheb Molavane and Pramod Pawar for their timely

help in office-related work.

I am deeply grateful to my family members for their support, appreciation, and

encouragement. I am especially grateful to my parents for being supportive during my

Ph.D. and always.

Finally, my biggest thanks to my wife, Jyoti, who has been by my side throughout

this journey. I could not have undertaken this journey without her.

Devanand
IIT Bombay

8 May 2023

159

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Notation
	Branch and Bound Algorithm
	Node Selection
	Branching Strategy

	Multiobjective Linear Program
	Lexicographic Method

	Master Planning in Supply Chain Planning
	Master Production Schedule

	Manufacturing Campaign Planning
	Sequential Decision Making
	Cross-Entropy Method

	Outline of Thesis and Contributions

	Similarity-based Branching for Integer Optimization
	Introduction
	Branching Schemes
	Schemes based on Pseudocosts
	Some More Branching Rules

	Issues in Reliability Branching
	Reliability Requirements - Same for Every Branching Candidates
	Limited Information in Branching Selection Score
	Threshold Value is Invariant over Problem Instances
	Branching Decision is Short-Sighted in Nature
	Uneven Calls of Strong Branching

	The Notion of Similarity-based Branching - SimBranch
	Similarity of Nodes
	Connections with Other Methods

	Implementing SimBranch
	Storing Branching Information
	Selecting a Branching Candidate
	Parameters in SimBranch

	Computational Results and Summary

	Similarity-based Method for Hierarchical Multiobjective Linear Program
	Introduction
	Issues with Constraint-addition Rule
	Linear Program with Bounded Variables and Fixing of Variables
	Fixing of Variables Using Reduced Costs

	Notion of Similarity and SimLex
	Notion of Similarity between Linear Programs

	Implementation
	Computational Result and Summary of the Work

	Master Production Schedule as h-MOLP
	Popular Objectives used in MPS
	Maximizing Meeting of Demand
	Avoiding Lateness
	Other Important Business Objectives

	Combining Objectives
	Implementation of Combining Objectives: Benefits and Challenges
	MPS in Potato Chip Manufacturing Model

	Master Production Schedule with Campaign Planning Restriction
	Campaign Planning as SDP
	Sequential Decision Problem
	Steps in Cross-entropy Method

	Formulation of Campaign Planning as a Mixed Integer Program
	Implementation, Computational Results and Conclusion
	Campaign Planning in one of the Tire Manufacturing Industries
	Industrial Outlook of the Challenges of Campaign Planning

	Conclusion and Future Work
	Appendices
	MIP Instances
	Mathematical Modeling and h-MOLP Instances
	Instances
	Formulation of MPS for Potato Chips Industry

	Modeling of MPS for the Small-industry Problem
	Bibliography
	List of Publications
	Acknowledgements

