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Abstract

Optimization models and solution methods have been used to improve the efficiency of trans-

portation systems for quite some time. However, their application to maritime transportation

problems has gathered interest only in the last couple of decades. These techniques are often

used to build decision support systems that optimize critical planning decisions leading to a

more efficient system. Optimization-related research in maritime transportation has primarily

revolved around scheduling operations. Scheduling problems incorporate cargo ship activities

related to transporting cargoes between different locations. These locations are either intra-port

(multiple berths within a port) or inter-port (a network of multiple ports). The ships service

different categories of cargoes like bulk cargoes (grain, oil, or chemicals), containers, or peo-

ple. Based on the planning requirements and the type of cargo transported, cargo shipping is

classified into liner and tramp shipping.

Liner shipping (also known as container shipping) is analogous to bus service, meaning it

transports large volumes of cargo (inside containers) at a relatively cheaper cost, but has a

pre-planned schedule. The tramp shipping segment is like a cab service. It is scheduled ac-

cording to the needs of the customer. Tramp ships transport bulk cargoes that are directly

stored in the compartments of the ships. Different structural specifications of different cargo

ships, varied operational and tactical planning requirements of different shipping segments, and

numerous safety regulations result in different scheduling problems. Our research primarily

revolves around scheduling problems related to the chemical tanker industry. Chemical tankers

are one of the most sophisticated types of cargo tramp ships. The sophisticated design of the

tanker enables it to transport multiple chemicals simultaneously. However, it also complicates

the scheduling operations and presents a challenging research opportunity from a practical and

academic perspective.
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We study a chemical tanker scheduling problem in which a multi-compartment chemical tanker

picks up chemicals (within specific time windows) and delivers them to their destinations. Im-

portant scheduling decisions included in the problem definition are the arrival times of the

chemical tanker at different ports on its route and the chemicals to be serviced (either pick-

ups or drop-offs) at these ports. Additionally, a chemical tanker operator has to also generate

a cargo-compartment assignment plan at every port. The cargo compartment assignment plan

details the quantity of cargoes stored in every compartment while considering multiple safety

and ship balancing requirements. Traditionally, the scheduling decisions like route planning

and cargo-to-ship allocations and the cargo-compartment assignment decisions are considered

two different problems. However, solving them individually can lead to cargo pick-ups that

cannot be feasibly assigned to the compartments.

Consequently, we refer to the combined problem of scheduling the route, assigning cargoes

to ship, and assigning the cargoes to compartments as the single ship pick-up and delivery

problem with pick-up time windows, tank allocations, and changeovers (s-PDP-TWTAC). The

s-PDP-TWTAC also allows flexibility in terms of cargo-compartment changeovers to incorpo-

rate newly loaded cargoes. Including all these compartment-related decisions as part of the

scheduling requirements makes our research problem unique. Moreover, for a fixed route and

fixed cargoes to ship allocations, the cargo-compartment assignment problem will be referred

to as multi-period cargo assignment problem (mp-CAP).

We propose a mixed integer linear programming (MILP) formulation for the s-PDP-TWTAC.

The MILP formulation has a significantly fewer number of decision variables and constraints

in comparison to the previous formulation. The number of variables is reduced primarily due to

the altered definition of the changeover decision variable. The MILP formulation gives a tighter

linear relaxation than the formulations in the literature. We also introduce a more practical

definition of cargo pick-up time windows. All these factors help improve our MILP formulation,

making it more tractable and practically more relevant.

During our research, it became evident that there was a dearth of data related to chemical tanker

scheduling problems. A comprehensive library of compartment-related data like the number

of compartments, the compartment capacities, and the ship’s structure was also scarce. We

introduce an instance generator built on real-world data capable of generating randomised test
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instances for the s-PDP-TWTAC. A set of test instances have also been presented to help future

researchers in this area.

Even though the MILP formulation for the s-PDP-TWTAC requires significantly lesser com-

putational effort than previous formulations, it is still challenging to solve for large realistic

networks. We propose neighbourhood search methods for generating feasible schedules for the

s-PDP-TWTAC. The proposed heuristics have two phases. Phase 1 generates one or more initial

solutions for the problem. The second phase improves the initial solution through a neighbour-

hood search that explores the solution space by either serving a new cargo or removing a port

from the existing chemical tanker’s route. Two heuristics use linear relaxation to restrict the

solution space and generate an initial solution. Three heuristics depend on a unique integer

relaxation of the s-PDP-TWTAC to generate good quality initial solutions during Phase 1. We

also propose a greedy randomised adaptive search procedure (GRASP) meta-heuristic frame-

work for our problem. These heuristics find good quality solutions in a reasonably less amount

of time. The fastest heuristic generates solutions within 1 % optimality gap for more than 80 %

of the test instances in under 10 seconds.

We study the structure and complexity of the mp-CAP. The MILP formulation for the mp-CAP

is already considered part of the s-PDP-TWTAC. The structural analysis enabled us to design a

Dantzig-Wolfe reformulation for the mp-CAP. The DW reformulation reduces the total number

of constraints for the model but increases the number of decision variables exponentially. As

a result, we designed a customised delayed column generation framework to solve the DW re-

formulation. This framework is solved only at the root node as designing an entire branch-cut

& price algorithm would require advanced knowledge of branching rules, cutting planes, and

tree pruning strategies, which are out of the scope of this chapter. The experiments showed

that the CG framework could find good MILP solutions using fewer variables. DW reformula-

tion helps us decompose the mp-CAP into a master problem and multiple sub-problems. The

sub-problems are independent and are solved in parallel. The master problem also helps us ex-

ploit a unique shortest path structure within the mp-CAP. This eliminates the need to solve the

Branch & Bound tree to get a MILP solution from a given set of master problem columns. This

framework also found tighter lower bounds than the LP relaxation of the MILP for the mp-CAP.

However, for bigger instances, the DW-CG framework converges slowly.
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Chapter 1

Introduction

1.1 Motivation

Global trade depends, to a large extent, on maritime transportation. It is the cheapest mode

of transport available to haul a large volume of cargo internationally. According to Sieminski

(2016), the total annual demand for solid fuels (coal) is decreasing while that for liquid fuels

(crude oil, petroleum and chemicals) is increasing. Sieminski (2016) states that during 2016,

the total liquid fuel consumption in the world was 93.85 million barrels per day at an average

cost of $48 per barrel. It also predicts that the total liquid fuel consumption by 2017 will

increase to 96.78 million barrels per day. Moreover, Sieminski (2016) states that the daily

consumption of liquid fuels in India will be 4.88 million barrels per day. These liquid fuels are

transported regularly via very intricate and robust transportation networks. Incredibly complex

strategic, tactical and operational problems need to be solved for these transportation networks

to function efficiently and profitably.

The transportation industry (for all types of cargoes; solid, liquid, gaseous or otherwise) can be

broadly classified under Vehicle Related, Airline Related, Railway Related, Maritime Related
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and Pipeline Related. Among these, the maritime industry is responsible for hauling the greatest

quantity of cargo by volume. The total volume of world seaborne shipments has increased

from 4 billion tonnes (in 1990) to 9.84 billion metric tonnes (in 2014). The maritime industry

accounts for about 80% of the world merchandise trade (and more than 90% in developing

countries) according to United Nations (2019). Additionally, shipping is the cheapest mode of

transport after the pipeline and much more flexible than the same while hauling high volume

cargoes over long distances Christiansen et al. (2007).

Figure 1.1: Distribution of world seaborne trade (percentage share in world tonnage) as per

United Nations (2021).

Figure 1.1 shows that Asia is responsible for majority of the total world seaborne trade. How-

ever, there are enormous infrastructure deficits in developing countries like India. According

to United Nations (2015), their annual infrastructure improvement budget should double from

$0.9 trillion (2013) to about $1.8-$1.9 trillion by 2020. Further, there has been a steady de-

crease in the manufacturing of new vessels, and the fleet’s average age has also increased. As

per Dimitrakiev and Gunes (2019), this trend of reduction in buying of new ships will continue

in the years to come. They state that factors like steep increase in fuel cost, low cargo prices, and

high capital cost have lead to difficult operating conditions. As such, there is an ever-increasing

need to optimise the pre-existing maritime transportation networks and make them as efficient

as possible.
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Figure 1.2: Structure of the international seaborne trade during 2014 as shown in United Nations

(2015).

Figure 1.3: Different types of tankers, and the structural layout of a typical chemical tanker.
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Based on the planning requirements and the type of cargo transported, cargo shipping is classi-

fied into liner and tramp shipping. Liner shipping (also known as container shipping) is anal-

ogous to bus service. It transports large volumes of cargo (inside containers) at a relatively

cheaper cost, but it has a pre-planned schedule. The tramp shipping segment is like a cab ser-

vice. It is scheduled according to the needs of the customer. Generally, liner ships transport

cargoes within containers, while tramp ships transport bulk cargoes. Bulk cargoes compris-

ing crude oil, petroleum, and chemical shipping showed a volatile freight rate environment in

2014-15. Figure 1.2 shows that 32% of the world’s seaborne shipment falls under the tramp

shipping segment, which transports crude oil, petroleum, and chemicals throughout the globe.

A minor change in the efficiency of these massive and highly complex tramp shipping networks

will result in savings amounting to billions of dollars.

Tramp ships transporting liquid bulk cargo like oil, petroleum or chemicals are known as parcel

tankers. Figure 1.3 shows the different types of parcel tankers, with the chemical tanker in

the highlighted box. According to United Nations (2021), the total world chemical tanker fleet

stands at 48,858 at the end of 2021. Table 1.1 shows the fleet sizes owned by the most influential

companies in the chemical tanker shipping segment.

Table 1.1: Global leaders in the chemical tanker segment and their fleet sizes as stated by

Dimitrakiev and Gunes (2019)

Company

Name
Stolt Odjfell Navig8 Sinochem

MOL

Chemical
Nordic

Uni

chartering
Bahri

Team

Tankers
Womar

Fleet

size
119 85 75 60 60 46 39 38 36 34

Our research focuses on scheduling problems related to the chemical tanker industry. Even

amongst the parcel tankers, chemical tankers are smaller in size. However, compared to other

liquid bulk cargoes, chemicals are quite volatile by nature, and it is dangerous to transport them.

As such, the chemical tankers transporting them are highly sophisticated and have more com-

partments than other parcel tankers. The number of compartments can typically vary from 10 to

55. Figure 1.4 depicts the Bow Cecil chemical tanker used by the Odfjell shipping company1.

It also shows a planar network representation of the ship’s compartment structure. The sophis-

1https://www.odfjell.com
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ticated design of the tanker enables it to transport multiple chemicals simultaneously. However,

it also complicates the scheduling operations and presents a challenging research opportunity

from a practical and academic perspective. In our research, we study two problems often faced

by chemical tanker operators while transporting chemicals from one port to another. The first

problem is related to generating the most profitable schedule for a chemical tanker. A sched-

ule of a chemical tanker includes decisions like route of the tanker, arrival times at each port,

cargoes to be serviced, and their allocation to different compartments of the tanker. The second

problem is a special case of the scheduling problem. It deals only with decisions related to the

allocation of cargo to compartments at each port on the route of the chemical tanker. We now

present a detailed discussion of these problems.

Figure 1.4: This figure shows the structure of the Bow Cecil chemical tanker managed by the

Odfjell Ship Management.

We primarily study a chemical tanker scheduling problem in which a multi-compartment chem-

ical tanker picks up chemicals (within specific time windows) and delivers them to their desti-

nations. Important tactical decisions included in the problem definition are the tanker’s route,

the tanker’s arrival time at each port on its route, and the chemicals to be serviced (either pick-

ups or drop-offs) at these ports. In order to transport several non-mixable chemicals together,

the chemical tanker has many compartments or cargo holds. A higher number of compartments

allows for more flexible cargo-compartment allocation plans. This flexibility, in turn, increases
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the complexity of the problem. The compartment walls of the chemical tanker are made of stain-

less steel, zinc or epoxy. The compartment material might restrict the possible cargoes that can

be stored in the compartment. Additionally, safety regulations may restrict the type of chem-

icals stored in adjacent compartments. Furthermore, the unbalanced distribution of the cargo

weight in various compartments may lead to instability of the tanker. These domain-specific

planning requirements make our problem quite unique and complex.

Traditionally, the tactical decisions of our scheduling problem and the cargo-compartment

assignment-related operational decisions are considered two different problems. However, solv-

ing them individually can lead to cargo pick-ups that cannot be feasibly assigned to the com-

partments. We refer to the combined problem of scheduling the route, assigning cargoes to ship,

and assigning the cargoes to compartments as the single ship pick-up and delivery problem with

pick-up time windows, tank allocations, and changeovers (s-PDP-TWTAC). The solution to

the s-PDP-TWTAC generates a schedule that is feasible for the tactical as well as operational

planning requirements of the chemical tanker operators.

We also separately study the operational problem of generating the cargo-compartment assign-

ment plan. For a fixed route and fixed cargoes to ship allocations, the cargo-compartment

assignment problem will be referred to as multi-period cargo assignment problem (mp-CAP).

Both these problems are formally defined and described in detail in Chapters 4 and 6. We

present a brief overview of our main research requirements, followed by an outline for the rest

of the thesis.

1.2 Main research contributions

We study the single ship pick-up and delivery problem with pick-up time windows, tank al-

locations, and changeovers (s-PDP-TWTAC) and the multi-period cargo assignment problem

(mp-CAP). The main research contributions related to these problems are as follows:

1. We develop a mixed integer linear programming model capable of generating a schedule

based on significant operational and tactical constraints for a single chemical tanker. This

formulation substantially reduces the memory requirements for solving the problem, re-

duces the solving time compared to previous formulations in the literature, and improves
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the practical usage of the solution.

2. Additionally, motivated by the unavailability of freely accessible data, we built an in-

stance generator and a library of instances that may help develop better models and solu-

tion techniques.

3. Empirical computational results related to the MILP formulation show that even the im-

proved model is insufficient for medium-sized benchmark instances. Thus, a systematic

study of the s-PDP-TWTAC formulation is performed to gain additional insight. Subse-

quently, to generate good quality solutions in less time, we present a set of linear pro-

gramming guided neighbourhood search heuristics and integer relaxation guided neigh-

bourhood search heuristics.

4. We also study the mp-CAP problem. We present a MILP formulation for this problem

and perform a structural analysis of the problem.

5. This analysis helps us present a Dantzig-Wolfe (DW) reformulation solved using a de-

layed column generation (CG) framework for the mp-CAP. This framework helps us ex-

ploit multiple special structures within the mp-CAP.

1.3 Thesis outline

Chapter 2 - Cargo shipping background This chapter starts with a short introduction to var-

ious terminologies used in the maritime transportation industry. It then presents various tax-

onomies used to classify the shipping industry, and a short introduction to liner shipping fol-

lowed by a detailed discussion of the tramp shipping segment. We discuss some of the issues

hindering the research in this area.

Chapter 3 - Operations research background This chapter focuses on chemical tanker ship-

ping literature from an operations research perspective. We discuss the evolution of tramp

shipping and various mathematical models related to the chemical tanker industry. We also talk

about the different solution approaches implemented in the literature. We present the math-

ematical background of the Dantzig-Wolfe (DW) decomposition and the column generation

(CG) algorithm. This background is essential to understand the customised DW-CG framework
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applied to the mp-CAP in Chapter 6.

Chapter 4 - The single ship pick-up delivery problem with time-windows, tank allocations

and changeovers (s-PDP-TWTAC) This chapter describes the s-PDP-TWTAC, including the

various assumptions and unique features in the problem definition. It also presents the revised

MILP formulation proposed by us and highlights its major differences compared to the previous

formulations. Then, this section discusses details about the instance generator’s construction

and design. The computational section of this chapter discusses computational details related to

the generation of the test instances, the effects of improvements to the MILP formulation, and

the sensitivity of some performance parameters to the input data.

Chapter 5 - Neighbourhood search heuristics for the s-PDP-TWTAC The fifth chapter

presents six heuristics designed to solve the s-PDP-TWTAC. The heuristics are grouped into

two main categories: linear programming guided neighbourhood search heuristics and integer

relaxation guided neighbourhood search heuristics. Complete details related to the design phi-

losophy and heuristic design are also presented in this chapter. The final section of this chapter

presents an empirical study discussing the performance of various heuristics revolving around

two major performance parameters, total solution time and quality.

Chapter 6 - The multi-period cargo assignment problem (mp-CAP) This chapter starts by

describing the mp-CAP, followed by its MILP formulation. The chapter then discusses the

Dantzig-Wolfe (DW) reformulation and the delayed column generation (CG) framework. It

also discusses some special structures present within the mp-CAP, which can be exploited with

the help of the DW-CG framework. Further, the chapter notes practical implementation related

to termination criteria, generating initial and multiple columns, embedding heuristics within

the framework, symmetry breaking, and parallel computing. The computational section of this

chapter presents experiments related to the performance of the DW-CG framework and makes

some comparisons with the MILP formulation.

Chapter 7 - Summary and Conclusions This chapter gives a short recap of the thesis research.

It also presents key results and important conclusions that can be drawn from our research.
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Chapter 2

Cargo shipping background

Operations researchers working on maritime-related problems are relatively fewer than in other

application domains. As such, we think it would be useful to develop some background about

the terminologies used in the maritime transportation industry. We define a few terms to fa-

miliarize the readers, and encourage them to go through Christiansen et al. (2007), Chew et al.

(2015), Ronen (1983) or Christiansen et al. (2013) for more background and in-depth explana-

tions.

Shipping is an act of moving cargo through ships, while a shipper is a person or entity that

provides the cargo. We refer to routing as assigning a series of ports to individual ships without

considering the time-related activities (space network). On the other hand, scheduling considers

routing as well as time assignments for different activities (space-time network). The inclusion

of temporal activities in a problem definition often makes the problem difficult to solve. The

first problem considered in this thesis is a scheduling problem with pick-up time windows.

Thus, both the schedule optimises not only the sequence of ports followed by the ship, but also

generates arrival times for each of these ports. Additionally, the problem considered in this

thesis is made more complicated due to the presence of time-windows restricting the pick-up of

new cargoes.
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A loading port or a unloading port is a port at which a cargo is picked up or dropped off,

respectively. The journey between the harbour where the ship loads or unloads its first cargo,

and the port where the ship unloads its last cargo is referred to as its voyage. The scheduling

problem presented in Section 4.2 has exactly one loading and one unloading port for each

cargoes. Meaning, the entire quantity of a single cargo is picked up a single port and the entire

quantity has to be discharged at its unloading port.

A sailing leg is the journey of a ship between two consecutive ports it visits, while a loaded

leg is the load carrying leg in a ship’s voyage. Legs are analogous to arcs in a network while

voyage is similar to a path in a network. The placement of the cargoes in a ship in a manner

that provides ship stability is called stowage. A good stowage plan would ensure the ship’s

stability, as well as easy offloading of the cargoes. The capacity of a ship is often calculated

in terms of dead-weight tonnage (DWT). DWT is the difference between loaded and unloaded

ship. Another factor affecting the capacity of the ship is the draft. Draft is the vertical distance

measured between the waterline and the bottom of the ship’s hull.

We refer to cargoes as a set of goods shipped from its source to its destination and load is the

set of cargoes on board a ship at any time. A product is defined as a set of goods or cargoes that

can be stored together in the same compartment, and have the same loading and unloading port.

Cargoes can also broadly be classified as bulk cargoes and containerized cargoes.

There are many different types of ships in the maritime industry. According to Christiansen

et al. (2007), some of the important categorizations are as follows:

• Tankers: These ships carry liquid in bulk. They are usually in three sizes: crude oil

tankers, large parcel tankers and small parcel tankers.

• Bulk carriers: Carry dry bulk commodities like iron ore or coal.

• Liquefied gas carriers: Carry refrigerated gas under pressure.

• Container ship: Standardised metal containers.

• General cargo: These carry all kinds of goods in their holds and decks.

• Reefers or refrigerated vessels: Carries cargo that needs temperature control.

• Roll on- roll off: These ships have ramps for vehicles like trucks and cars.
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Figure 2.1: Various sources of costs incurred by cargo ship operators as mentioned in United

Nations (2015).

Christiansen et al. (2007) give a useful classification of various operations research (OR) models

and solution methods used in maritime transportation. Maritime OR problems are classified as

follows:

• Type of shipping industry (Liner, Tramp or Industrial Shipping)

• Type of planning decisions (Strategic, Tactical or Operational)

• Fleet type (Homogeneous or Heterogeneous)

• Types of cargo (Bulk (Dry or liquid), Container or Passenger)

• Geographical characteristics (Deep Sea, Short Sea, Coastal or Inland Waterways)

From an operations research perspective, the industrial and tramp shipping sectors are very

similar. They are often grouped together in the literature, but they do have their own unique

characteristics. In industrial shipping, the cargo is often owned by the shipping company. Thus,

their primary objective is to transport the given set of cargoes at minimum cost. On the other

hand, in tramp shipping, the shipping company choose to transport cargoes that maximize their
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revenue. The focus of this thesis is on problems faced by chemical tankers, which are a special

type of tramp ship.

However, liner and tramp shipping are very different. Liner shipping is similar to a bus ser-

vice. It has fixed schedules and routes. In this case, cargo follows the schedule of the ships.

Some large-scale, long-term contracted cargo decides the liner schedule. However, it might also

be decided due to strategic or political decisions to maximise the profit. It is quite the oppo-

site of tramp/industrial shipping. Tramp shipping is very similar to a taxicab service, meaning

they travel to the cargo as per demand. Along with the different types of cargoes transported,

the cargo shipping industry has to also manage different types of transportation costs shown

in Figure 2.1. Thus, the models and solution methods that are required in each of these areas

are different. The literature on maritime transportation suggests that liner shipping is analo-

gous to container shipping, while liquid products like crude oil, chemicals and petroleum are

transported using tramps.

Christiansen et al. (2007) further divides the operations research models for the optimisation of

design and operation functions in the shipping industry as follows:

• Strategic planning problems including – ship designing problems, fleet size and mix prob-

lems, liner network design problems, maritime transportation design issues, and contract

evaluation problems.

• Tactical planning problems including – scheduling/routing problems in industrial and

tramp shipping, maritime supply chain/inventory routing problems, liner fleet deployment

problem, barge scheduling problem, schedule of marine vessels and ship management

problems.

• Operational planning problems including – operations scheduling, environmental rout-

ing (waves or ocean currents), optimum, speed selection, ship loading and single order

bookings.

Let us first understand the difference between problems in the shipping industry and traditional

vehicle routing problems. Vilhelmsen et al. (2015) mention the following modelling character-

istics that separate these two domains.

• Continuous operations: Ships operate around the clock. As such, a delay in the schedule

might not be absorbed due to a lack of downtime in ship operations. Additionally, this
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also points to the fact that ships might have different starting points during the start of the

schedule.

• Lack of common depot: In most VRPs, the trucks must return to their respective depots at

the end of the planning horizon. Thus, the starting points are fixed. In tramp shipping, on

the other hand, a ship generally never returns to its original point immediately. The ships

might also be in transit or at their refuelling ports at the start of the planning horizon.

• Compatibility issues: These issues are much more complex in the shipping industry than

in vehicle routing. Many restrictions between ship-cargo, ship-port and ship route can

arise due to safety issues, lack of equipment, incompatible draft conditions, unavailability

of necessary cargo or political ties between two nations.

• Optional cargoes: The presence of optional cargo leads to a prioritised list of cargoes,

which is generally not used in vehicle routing problems.

The above list of differences is non-exhaustive. Additionally, differences between ship routing

with other modes of transport like airways and trains have been discussed in Ronen (1983),

Ronen (1993) and Christiansen et al. (2004). We request the readers to refer to these papers to

better understand the difference between maritime transportation models and others. This thesis

focuses on chemical tanker operations, a subset of the tramp shipping sector. We will briefly

discuss some aspects of liner shipping before focusing on the tramp shipping domain and the

chemical tanker industry.

2.1 Liner Shipping

Liner shipping, as explained earlier, is similar to a bus service. A liner shipping company pub-

lishes its routes and schedule at the beginning of the time horizon. These routes and schedules

are finalised based on long-term shipping commitments. The routes might also be decided on

factors like maximising the utility of ships and the percentage of spot cargoes. Once these

schedules are published, the cargo owners have to synchronise their exports according to these

schedules. The schedule’s restrictions are balanced by the low cost incurred while using liner

services. It can be seen from the literature that liner shipping is analogous to container shipping.
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A standard 20 feet or 40 feet container is used to transport the cargo, and the shipping capac-

ities are mentioned in Twenty feet equivalent units (TEUs). Tran and Haasis (2015) mention

that the ports on a liner route must be visited every week. Kjeldsen (2011) and Tran and Haa-

sis (2015) give excellent classifications of the liner shipping industry. Tran and Haasis (2015)

review more than 120 papers in the liner shipping segment published during 1979-2013. Tran

and Haasis (2015) attempt to classify the entire liner shipping domain while Kjeldsen (2011)

focus only on the liner routing and scheduling problems. Kjeldsen (2011) review a total of 24

papers from 1969 to 2010. Liner shipping problems can be classified as shown in Table 2.1.

Table 2.1: Liner shipping problem classification[Kjeldsen (2011), Tran and Haasis (2015)]

1. Container routing 2. Liner routing and scheduling 3. Network design

1.1 Single period

1.2 Multiple period

2.1 Routing without fleet management

2.2 Routing with fleet management

2.3 Scheduling without fleet management

2.4 Scheduling without fleet management

3.1 Optimal single route

3.2 Optimal multiple routes

3.3 Hub and spoke network

2.2 Tramp Shipping

This section briefly reviews the literature on the tramp shipping sector. Tenold and Murphy

(2007) give an excellent description of the shipping industry from 1960 to 1985. They discuss

the history of the parcel tanker industry, which includes the growth of three prominent shipping

companies (Stolt-Nielson, Panocean-Anco, and Odfjell Group). The paper also explains how,

despite substantial financial backing, the pan-ocean company bowed out of the parcel tanker

industry around 1983. The paper states two main reasons for this: (a) fleet management and (b)

strategic timing.

One of the first maritime transportation review papers was published by Ronen (1983). Chris-

tiansen et al. (2007) specifically focuses on the evolution of scheduling problems in tramp ship-

ping. Further, Christiansen et al. (2013), Vilhelmsen et al. (2015), Pache et al. (2019) and Pache

et al. (2020) extensively review the research carried out in the field of tramp shipping since

1983. Together they review more than 50 research papers, most of which have been published
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in the last decade.

Optimization-related research in Tramp shipping routing and scheduling problems (TSRSP)

only started picking up pace around a decade ago, even though the industry has been around for

more than 100 years. According to Vilhelmsen et al. (2015), some of the reasons are as follows:

• Conservative and competitive industry: The shipping industry has a relatively small num-

ber of players involved. As such, the industry is highly competitive and secretive regard-

ing its operations. There has been less exchange of real-world problems and data between

the industry and researchers. This has been a significant hindrance in the digitization of

shipping-related operations.

• Industry under pressure: Till recently, there was a considerable gap between industry

research and academic research. The research outputs were either too theoretical or were

unable to handle the complexities of practical models. This uncertainty of results, coupled

with the traditional outlook of the industry, has led to the industry focusing its resources

(that are already scarce) on more pressing matters.

• Highly uncertain and disruptive operating conditions: Stochasticity in maritime trans-

portation is much higher when compared to other modes of transport. Many unforeseen

events like the change in weather or daily variation in demand coupled with very long

voyages made it almost impossible to plan for entire voyages ahead of time. Thus, the

traditional vehicle routing models could not be directly translated to TSRSP.

• Simplified Problems: Most of the problems tackled by academicians were oversimplified

versions of their real-world counterparts. Additionally, until recently, researchers were

not equipped with hardware and software advanced enough to handle real-world prob-

lems.

However, recent advancements in the field of mathematics and improved computer software

and hardware capabilities are gradually offsetting these issues. Both researchers and industry

personnel are willing to work together with a common goal of tackling practical problems.

Advancements in the tramp shipping industry are also being propelled by the fact that most

domains have a wave of digitization and automation.

Pache et al. (2019) and Pache et al. (2020) present an overview of the recent trends and advances

related to the tramp shipping segment. They derive their finding from thirty nine research pa-
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pers published in the last decade. They mention that strategic problems tackled by researcher

mostly deal with optimal fleet sizing decisions, while tactical problems revolve around gen-

erating routes and scheduling for tramp ships. Moreover, they also mention that operational

problems focus on cargo routing or cargo-compartment assignment related decisions. Rela-

tively few papers tackle problem combining tactical and operational decisions. Pache et al.

(2020) divide the research related to tramp shipping domain as follows:

1. Planning horizon: Tramp shipping problems are classified as short term, medium-term

and long term. Short term problems generally occur while dealing with operational deci-

sion, medium term problems generally occur when dealing with tactical decisions, while

long term problems are problems focusing on strategic decisions.

2. Vessel type: Pache et al. (2020) segregate research based on vessel types. Vessel type are

defined as bulk carriers, tankers and others.

3. Voyage distance: Different categories of voyage distances include deep sea and short sea

shipping.

Pache et al. (2019) also state that compared to liner shipping, tramp shipping is easier to enter,

which makes this segment highly competitive. Additionally, absence of fixed schedules, short

term contractual cargoes and operating models dictated by availability of cargo make tramp

shipping highly uncertain. Pache et al. (2020) segregate the tramp shipping literature on basis on

research related to variable speed, environmental aspects, extended cargo constraints, bunkering

decisions and uncertainties. We now move our discussion towards chemical tanker shipping,

and some of its unique aspects.

2.3 Chemical tanker shipping

Chemical tankers are specialized vessels designed to transport a wide range of liquid chemicals

and petroleum products, while other types of tankers, such as oil tankers, are specifically de-

signed for the transportation of crude oil or refined petroleum products. The chemical tanker

operators transport multiple chemicals over a network of ports. As discussed in Chapter 1,

chemical tankers are smaller than oil tankers. However, their highly sophisticated design en-
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ables them to transport multiple chemicals (cargoes) simultaneously. Due to the dangerous na-

ture of the chemicals these tankers have to abide by multiple safety related rules and regulations

as defined under the international bulk chemical (IBC) code.

Contrary to oil tankers, which are generally classified based on their capacities, the IBC code

defines three types of chemical tankers based on the chemicals which they transport. The ST1

category of chemical tankers transport the most dangerous category of products. Due to the

hazardous nature of chemicals it transports, these ships are required to be designed in such a

way that meet extreme damage resistance. Similarly, categories ST2 and ST3 have to adhere

to comparatively milder safety requirements. Multiple storage requirements and compartment

coating regulations also have to be adhered to depending on the specifications included in the

IBC code. Here are some of the key differences between chemical tankers and other types of

tankers:

• Voyage planning: Chemical tankers must carefully plan their voyages to ensure that they

comply with international regulations, avoid dangerous weather conditions, and minimize

the risk of cargo contamination or spillage. Oil tankers may require less extensive voyage

planning.

• Safety systems: Chemical tankers are equipped with specialized safety systems, such

as emergency shutdown systems and gas detection systems, to ensure the safe handling

and transportation of hazardous chemicals. Oil tankers may require less extensive safety

systems due to the less hazardous nature of the cargo.

• Regulatory compliance: Chemical tankers are subject to a range of international regula-

tions governing the transport of hazardous chemicals, such as the International Maritime

Dangerous Goods (IMDG) Code, while oil tankers are subject to regulations governing

the transportation of petroleum products, such as the International Convention for the

Prevention of Pollution from Ships (MARPOL).

• Cargo compatibility: Chemical tankers are designed to carry a wide range of liquid chem-

icals, such as acids, alkalis, and organic solvents, which require specialized cargo han-

dling equipment and tanks with a high degree of resistance to chemical corrosion. In

contrast, oil tankers are designed to carry crude oil or refined petroleum products, which

are generally less corrosive than chemicals.
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• Tank construction: Chemical tankers typically have a greater number of smaller cargo

tanks than oil tankers, which have fewer and larger tanks. Chemical tanks are often made

of stainless steel or coated with specialized chemical-resistant coatings, while oil tankers

are commonly constructed of mild steel.

• Crew training: Due to the specialized nature of chemical tankers, crew members must

receive extensive training on the handling and transportation of hazardous chemicals. In

contrast, crew members on oil tankers may require less specialized training due to the

more straightforward nature of the cargo.

• Cargo segregation: Chemical tankers must ensure that incompatible chemicals are not

stored or transported together, which requires careful planning and segregation of cargo.

Oil tankers typically transport a single type of petroleum product and do not require the

same level of cargo segregation.

• Cleaning requirements: Chemical tankers must undergo thorough cleaning between car-

goes to prevent contamination, which can be a time-consuming and costly process. Oil

tankers may require less extensive cleaning between cargoes.

• Cargo value: Chemicals typically have a higher value than petroleum products, which can

make chemical tankers more attractive targets for piracy and theft.

• Safety systems: Chemical tankers are equipped with specialized safety systems, such

as emergency shutdown systems and gas detection systems, to ensure the safe handling

and transportation of hazardous chemicals. Oil tankers may require less extensive safety

systems due to the less hazardous nature of the cargo.

Extending the discussion put forth by Pache et al. (2020), the chemical tanker scheduling prob-

lem discussed in this thesis can be viewed as follows. We research a short term planning prob-

lem that can be solved as a rolling horizon problem to tackle medium term planning horizon

problems. This makes it a tactical problem. Our primary research falls under the domain of

tanker scheduling problems, with its focus being chemical tanker scheduling. Additionally, we

model inter port activities of the tanker, which makes our problem a deep sea shipping prob-

lems. A set of problems within chemical tanker scheduling which specifically focuses on intra

port activities can be classified as short sea shipping problems.

This chapter discussed various terminologies and classifications of the maritime transportation
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industry. We briefly discuss various aspects of the liner and tramp shipping industries, followed

by a short discussion around chemical shipping and its unique characteristics. The following

chapter explores operations research literature on parcel tankers, emphasising on the chemical

tanker shipping from an operations research perspective .
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Chapter 3

Operations research background

As we have already seen, tramp shipping problems can be classified in multiple ways, depending

on the type of shipping industry, the different port operations, and the type of products being

transported. However, it is also imperative to understand the different mathematical models and

methods used to solve problems faced in the chemical tanker industry. This chapter discusses

the chemical tanker literature from an operations research perspective. We discuss various

mathematical formulations, heuristics, and exact approaches implemented by researchers to

tackle the multitude of problems faced by the chemical tanker industry. The multi-period cargo-

assignment problem (mp-CAP) is solved us a customised Dantzig-Wolfe (DW) and column

generation (CG) framework. This section also presents the mathematical background required

to understand this framework.
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3.1 Evolution of tramp shipping and related mathematical

models

Tramp shipping problems fall under a broad class of network problems. Network problems

are represented as a graph, G(N,A). The N stands for nodes, and A represents directed arcs.

A shipping network’s loading/unloading ports are described using nodes. The arcs (directed)

represent the connections between the different ports. These arcs have some characteristics

associated with them. For instance, in our problems, some parameters related to each arc are:

fixed cost (for setting up the arcs), variable cost (for transporting a unit quantity of commodities

on these arcs), distance travelled on the arcs and so on. Similarly, some parameters associated

with the nodes are: the cargoes loaded or unloaded at a particular node, the discharge rate at an

individual node, and the earliest and latest pickup times at these nodes (ports).

One of the simplest types of routing-scheduling problems is Full Shiploads Routing and Schedul-

ing Problem. The main objective here is to maximize the profit margin. A load is called a full

shipload when it consists of only one type of cargo. The one cargo per ship restricted can be

due to various reasons like the incompatibility of cargo with other cargoes or contractual agree-

ments. The time-window constraints are levied in addition to total shipload constraints. This

problem can be used with minor modifications for full shipload cargoes with variable sizes. A

straightforward extension of the formulation mentioned above is Multiple Cargoes with Fixed

Cargo Size. In this model, the ships are allowed to carry multiple cargoes concurrently. Gener-

ally, the cargo delivered by tramps can be classified as contracted and optional cargo. Contracted

cargo has to be delivered at all costs, while optional cargoes may be delivered if the schedule al-

lows the ship to do so. Delivering both optional cargo and contracted cargo sometimes requires

spot vessels. Thus, the following extension allows the use of spot cargoes in the model. There

has been much research on these models, and good usable results have been obtained. In the

next chapter, multiple extensions of the TSRSP will be studied. Thus, there is a need to define

a base model on which these extensions are defined. We will call this model the basic TSRSP.

A basic TSRSP will include multiple cargoes with fixed parcel sizes. It will also allow the use

of spot cargoes. Vilhelmsen et al. (2015) state that the inclusion of spot cargoes does not add to

the model complexity.
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The basic TSRSP is a simplified model and cannot be used to model real-world situations.

Thus, we need to include more realistic conditions in our basic TSRSP model. Let us look at

some extensions of the basic TSRSP model. The first extension includes Multiple Cargoes with

Flexible Sizes. Fagerholt and Christiansen (2000a) and Fagerholt and Ronen (2013) study this

problem, which allows for flexible cargo holds, meaning the ship capacity occupied by different

cargoes are unequal. Additionally, Bronmo et al. (2007), Korsvik and Fagerholt (2010) and

Bronmo et al. (2010) are some of the people who have worked on the tanker scheduling problem

with adjustable sizes.

The above TSRSP models and extensions ignore one important fact. On numerous occasions,

the onboard cargo might not be mixable. The inclusion of this fact leads us to the next extension,

Routing and Scheduling of Multiple Products. A routing and scheduling problem with multi-

ple products involves ships with multiple tanks/compartments known as parcel tankers. These

tanks facilitate the transportation of multiple products. Scott (1995), Bausch et al. (1998), Sher-

ali et al. (1999), Fagerholt and Christiansen (2000a), Fagerholt and Christiansen (2000b) and

Jetlund and Karimi (2004) are some of the researchers who have tackled this problem. A par-

ticular cargo might be picked up from multiple locations and delivered to multiple locations.

Consequently, the next extension allows cargo splitting for pick-up and delivery. Stålhane et al.

(2012), Korsvik et al. (2011), Hennig et al. (2015), Nishi and Izuno (2014), Chan et al. (2014)

and Hennig et al. (2012) have worked on split pick-up and delivery problems.

Since 2011, another set of problems that has received some attention are models, including

speed optimisation. Considering speed as a decision variable makes some constraints of the

models mentioned above non-linear. Additionally, the recent increase in fuel cost and increas-

ing awareness of environmental safety have motivated Vilhelmsen et al. (2015), Norstad et al.

(2011), Gatica and Miranda (2011), Castillo Villar et al. (2014), and Wen et al. (2016) to explore

research opportunities in tanker scheduling problems with speed optimization.

Due to the increasing fuel cost, models with bunkering features have been researched. Refu-

elling becomes important in tramp shipping due to long voyages of ships. Bunkering becomes

a necessity, and the refuelling cost can be high. Vilhelmsen et al. (2014) and Meng et al. (2015)

have worked on models that account for the bunkering feature. In some practical problems faced

by the industry, both the cargo and the ships are owned by the same company as in industrial

shipping. In such a scenario, the owner is responsible not only for the ships’ optimal func-
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tioning but also for inventory management and other supply chain decisions. This gives rise

to a set of problems called Maritime Inventory Routing Problems. Christiansen et al. (2013)

give a good introduction intro maritime inventory routing problems. Further, Andersson et al.

(2010) review various inventory management and routing problems in maritime and road-based

systems. In the next section, we will discuss the literature, different mathematical models and

solution methods related to the chemical tanker industry.

3.2 Optimization problems in the chemical tanker industry

One of our problems of interest is an extension of the multi-product TSRSP applied to the

chemical shipping industry. It simultaneously deals with tactical (routing and scheduling) and

operational (tank allocation and safety) decisions. We will refer to this problem as the single

ship pick-up delivery problem with time windows, tank allocations and changeovers (s-PDP-

TWTAC). Mathematical models for the s-PDP-TWTAC are presented in Section 4.2. In this

section, we discuss some of the problems pertaining to the the chemical tanker industry, solved

using optimization techniques like mixed integer programming and heuristics.

Depending on the application, problems are either modelled as an extension of the travelling

salesman problem with pick-ups and deliveries (TSPPD) or the pick-up delivery problem with

time windows (PDPTW). In the context of tramp shipping, the TSPPD type of problems is a

special case of the PDPTW type of problems. TSPPD consider important decisions like the

sequence of ports to be visited, and the sequence of cargo pickups and drop offs. In addition to

the primary decisions considered by TSPPD, the PDPTW also optimizes the set of ports to be

visited, and the set of cargoes to be serviced. Our formulation is an extension of the PDPTW.

Extensions of the TSPPD optimise the intra-port movement of the chemical tankers and have

time windows related to the loading/ unloading of cargoes. TSPPD-based formulations assume

that all the berths (analogous to ports) must be visited. Additionally, all cargoes are loaded

or unloaded at their origins and destinations. As output, the problem generates a sequence of

berths to visit and the arrival times at each berth. Unlike the second variation, the TSPPD-based

extensions also generate the sequence in which every cargo is picked up or discharged. This

makes the TSPPD-based extensions different in comparison to the PDPTW-based extensions.
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A recent study extending the TSPPD-based formulations has been carried out by Elgesem et al.

(2018). They consider stochastic waiting times at different terminals within the port. Addi-

tionally, they perform experiments to prove that including uncertainty in their models directly

affects the optimal route of the chemical tankers. However, unlike our problem, Elgesem et al.

(2018) do not generate a cargo-compartment allocation plan as part of their problem output.

Another study related to TSPPD-based formulations is presented by Wang et al. (2018). There

are some similarities between the problems presented in this paper and the one presented by

Wang et al. (2018). Similar to our problem, Wang et al. (2018) incorporate draft require-

ments and compartment-related decisions into their problem definition. The compartment-

related decisions include compartment capacities, ship stability criteria, cargo-cargo and cargo-

compartment incompatibility guidelines. However, our problem allows more feasible cargo

compartment allocations by permitting cargo swaps between the compartments. Further, be-

cause their formulation is based on TSPPD, some higher-level decisions, like generating an

optimal set of ports and cargoes, are fixed.

The second set of variations of the chemical tanker scheduling problems is an extension of the

PDPTW problem. This set of problems is defined over a set of ports (inter port) instead of a

set of berths/terminals (intra-port). In addition to generating a sequence of ports to visit, the

problems in this set also decide the subset of ports to visit and the subset of cargoes to pick

up. Fagerholt and Christiansen (2000a) propose a problem in dry bulk shipping by modifying

the PDPTW formulation. They generate a feasible cargo-compartment allocation based on the

capacities of the compartments. However, they do not consider tanker stability conditions and

cargo-cargo incompatibilities.

Jetlund and Karimi (2004), and more recently by Lin and Liu (2011), Cóccola et al. (2015)

and Cóccola and Méndez (2015) modify the PDPTW to propose a multi-ship pick-up delivery

problem with pickup time windows. Their formulations generate feasible schedules for a fleet

of heterogeneous chemical tankers, which considers all the decisions shown in the first column

of Table 3.1. Hennig et al. (2015) and Homsi et al. (2020) solve the multi-ship pick-up delivery

problem with pick-up time windows with an added complexity of splitting cargoes between

chemical tankers. Furthermore, Homsi et al. (2020) also includes time-windows related to

drop-offs. However, the second variations of problems discussed until now do not consider

compartment-related decisions (mentioned earlier).
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Neo et al. (2006) and Giavarina dos Santos et al. (2020) have worked on PDPTW based for-

mulations that incorporate the compartment-related decisions in their problem definition. The

problem discussed by Giavarina dos Santos et al. (2020) is transporting fertilisers (chemicals)

from their origins to their destinations. Although they include the compartment capacity in

their problem, they do not consider the ship stability conditions, the incompatibility norms, the

cargo distribution into multiple compartments, or cargo swapping activity. Moreover, Giavarina

dos Santos et al. (2020) fix the cargoes that must be picked up, including soft time windows as

opposed to hard time windows, considered by us. However, unlike us, they solve a multi-ship

problem with split loads.

Over the years, researchers have introduced numerous formulations to tackle the problems faced

by the chemical tanker industry. This has necessitated using different heuristics and exact meth-

ods to solve these formulations. Recall that the s-PDP-TWTAC is an extension of the PDPTW

problem. As such, we discuss some of the existing solution approaches for tackling some ex-

tensions of the PDPTW problem within the tramp shipping industry.

Lin and Liu (2011) study the problem of transporting dry bulk cargoes over a network of ports.

They view the problem as a combination of two different flows: the flow of the ship through

different ports and the cargoes. They apply a genetic algorithm that improves the solution by

mutating the cargoes assigned to the tanker. However, they do not consider the pick-up time

windows and model dry bulk cargoes.

Jetlund and Karimi (2004) presents a chemical tanker scheduling problem to transport chemicals

optimally over a network of ports. Hard pick-up time windows and multi-product delivery add

to the problem’s complexity. They propose a MILP formulation for the single-ship version of

their problem. Further, they propose an approximation heuristic to construct the solution to

the multi-ship problem based on the solution to the single-ship problem. The approximation

heuristic solves the multi-ship problem as multiple single-ship problems. If a cargo is shared

by more than one ship, it is assigned to the ship where it can generate the most profit. The

scheduling problems for the remaining ships are resolved with the common cargo. This process

is repeated till no conflicting assignments remain.

Cóccola et al. (2015) and Cóccola and Méndez (2015) also work on the multi-ship problem

introduced by Jetlund and Karimi (2004). However, Jetlund and Karimi (2004), Cóccola et al.

(2015) and Cóccola and Méndez (2015) do not consider the compartment-related decisions
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that have been considered by us. The compartment-related decisions include the compartment

capacities, the ship stability criteria, the cargo-cargo, and cargo-compartment incompatibil-

ity norms. Cóccola et al. (2015) propose a set-partitioning master problem and a MILP sub-

problem. Subsequently, the column generation framework and a set of custom branching rules

are employed by Cóccola et al. (2015), which reduces the total solution time. Including the

compartment-related decisions in the model increases the complexity of the MILP sub-problem

proposed by Cóccola et al. (2015), rendering the column generation framework unusable for

the s-PDP-TWTAC. Cóccola and Méndez (2015) further improve the total solution time by in-

troducing an iterative algorithm, which solves the single-ship MILP repeatedly. During each

iteration, a subset of integer variables is fixed, and an improved feasible solution is generated.

Korsvik et al. (2011), Hennig et al. (2015) and Homsi et al. (2020) solve a multi-ship exten-

sion of the PDPTW problem with split loads. Korsvik et al. (2011) present a large neighbour-

hood search heuristic to generate feasible solutions for the problem. Their heuristic primarily

works on the principle of destroy-and-repair. It destroys a feasible solution by excluding cer-

tain cargoes at each iteration and re-constructs a different solution by employing a constructive

insertion heuristic. The insertNewCargo core sub-routine of our heuristics described in Section

5.1.1, is motivated by Korsvik et al. (2011). However, compartment-related decisions in the

s-PDP-TWTAC require a different kind of implementation, unlike the type of implementation

used by Korsvik et al. (2011). Hennig et al. (2015) study the effectiveness of two different

path-flow formulations within a column generation framework. Homsi et al. (2020) work on

a similar problem with larger instances and an added complexity of discharge time windows

for the cargoes. Homsi et al. (2020) introduce a novel branch-and-price algorithm along with a

hybrid genetic meta-heuristic, which solves larger instances in significantly less time. However,

none of these researchers have considered compartment-related constraints.

An extension of the multi-ship problem with split loads is introduced by Giavarina dos Santos

et al. (2020). They include compartment capacities in their problem definition and formulate

a matheuristic. Their matheuristic consists of three phases: the relaxation algorithm phase,

the modified relax-and-fix algorithm phase, and the improvement phase. Motivated by the

relax-and-fix algorithm that is implemented by Giavarina dos Santos et al. (2020), we introduce

Heuristic H2 in Section 5.3.2. Although Giavarina dos Santos et al. (2020) incorporate com-

partment capacities in their problem definition, they do not include the rest of the compartment-
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related decisions. Additionally, unlike our model, the Giavarina dos Santos et al. (2020) works

with a fixed set of cargoes with soft time windows.

]

Table 3.1: Problem characteristics tackled by researchers working on problems similar to the

s-PDP-TWTAC
Decisions optimised

by researchers

Researchers tackling problems similar to the s-PDP-TWTAC

Jetlund and Karimi (2004),

Lin and Liu (2011),

Cóccola et al. (2015),

Cóccola and Méndez (2015)

Hennig et al. (2015)

Homsi et al. (2020)

Hvattum et al. (2009),

Vilhelmsen et al. (2016)
Wang et al. (2018) Fagerholt and Christiansen (2000a)

Neo et al. (2006),

s-PDP-TWTAC

(Our work)

Single ship X X X X

Multiple ships X X

Port set X X X X

Port sequence X X X X X

Cargo pick-ups

and drop-offs
X X X X

Cargo pick-up and

drop off sequence
X X X X X

Pick-up time window X X X X X

Drop off time window X X

Compartment capacity X X X X

Ship stability X X X

Ship’s draft X X

Cargo split

between ships
X

Cargo-cargo

compatibility
X X X

Cargo-compartment

compatibility
X X X

Cargo swapping X

Since the s-PDP-TWTAC problem incorporates all compartment-related decisions, it is struc-

turally different from the previously mentioned problems tackled by the researchers. Neo et al.

(2006) and Ladage et al. (2021) are the only researchers who solve the s-PDP-TWTAC problem.

Neo et al. (2006) were the first to incorporate compartment-related decisions into a chemical

tanker scheduling problem. However, they could not perform an extensive computational study

due to hardware limitations. Table 3.1 highlights the literature’s contributions and differentiates

the s-PDP-TWTAC from the rest.

Individually, the problem of generating a cargo-compartment assignment plan based on com-

partment related decisions is complex. The literature on solving cargo-assignment problems in

the chemical tanker industry is very scarce. Hvattum et al. (2009) and Vilhelmsen et al. (2016)

provide some insight into the problem complexity, and refer to the problem of generating cargo-

compartment allocations as the Tank Allocation Problem (TAP). They introduce multiple TAP

variants and prove that the problem is NP-complete. Hvattum et al. (2009) present a MILP
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formulation for the simplified version of the tank allocation problem. However, the solution

time for the MILP is quite large. They also propose an innovative constraint programming ap-

proach. However, this approach cannot find a feasible solution within their termination criteria.

Vilhelmsen et al. (2016) presents a hybrid method for solving the allocation problem. Their

constructive heuristic solves the test instances quite fast. However, both, Hvattum et al. (2009)

and Vilhelmsen et al. (2016) solve single period cargo-assignment problems. Ostermeier et al.

(2021) present a more general study on multi-compartment vehicle routing problems.

The assignment plans are generated individually during every sailing leg. One major draw-

back of generating a cargo-compartment allocation plan at every sailing leg separately is that it

might unnecessarily re-arrange chemicals between compartments to make room for new cargo

that might be picked up. Even worse, re-arranging chemicals might not be allowed in many

practical applications as they can prove quite time-consuming and expensive. However, if

cargo re-arrangements are not allowed, cargo-compartment allocations during previous sail-

ing legs might make future profitable cargo un-serviceable due to the unavailability of com-

partments. Re-arrangements or not, a cargo assignment problem that considers possible future

cargo-compartment placements is needed from a practical point of view. We study an exten-

sion of this problem called the multi-period cargo-assignment problem (mp-CAP). As per our

knowledge, this problem has not been studied previously in the literature.

Having explored the literature from an operations research perspective, we present the mathe-

matical background necessary to understand the DW reformulation and the column generation

framework used to solve the mp-CAP.

3.3 Dantzig-Wolfe reformulation and column generation the-

ory

The concept of Dantzig-Wolfe decomposition and reformulation was first introduced by Dantzig

and Wolfe (1960). Dantzig-Wolfe reformulation and decomposition are often employed when

the set of constraints for a given MIP formulation can be separated into easy and complicated

constraints. Ideally, the set of easy constraints would define a feasible region over which one

can quickly evaluate the solution to a given objective function. From a practical perspective, the
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niceness of the feasible region defined by the easy constraints is due to some unique structure

or the availability of good heuristics to evaluate a given objective over it.

MILP Formulation: Min cT x

A1x≥ b1,

A2x≥ b2,

x j ∈ Z ∀ j = 1, . . . , p,

x j ≥ 0 ∀ j = 1, . . . ,n.

(3.1)

Consider the MILP (3.1), where p≤ n, and all the data is assumed to be rational. Assume that

A1x ≥ b1 are complicating constraints, while A2x ≥ b2 are nice constraints. Dantzig-Wolfe’s

(DW) reformulation technique uses Minkowski’s Double Description Theorem, also known as

the Minkowski-Weyl Theorem, to reformulate the feasible region represented by the complicat-

ing constraints. Formally, the Minkowski-Weyl theorem is stated as follows.

Theorem 3.1 (Minkowski-Weyl Theorem): Any polytope P ∈ Rn can be defined by either

• P = {x ∈ Rn : Ax≥ b for some m×n, matrix A and vector b ∈ Rm}, or

• For some set of vertices f1, . . . , fM ∈ Rn and extreme rays r1, . . . ,rN ∈ Rn (where poten-

tially M=0 or N=0): P = {∑
M
i=1 λi fi +∑

N
j=1 α jr j : λ ∈ RM,α ∈ RN ,∑M

i=1 λi = 1,λi,α j ≥

0 ∀i, j}

Theorem 3.1 states that the solution to any linear program can be represented as a convex

combination of the vertices (corner points) and extreme rays. The authors assume that the

feasible region is always bounded for all further discussions, which is the case in most practical

integer formulations. This means there are no extreme rays (N=0). The feasible region of the

mp-CAP is also bounded.
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DW Relaxation:

Min ∑
v∈V

c f v
λ

v,

∑
v∈V

A1 f v
λ

v ≥ b1,

∑
v∈V

λ
v = 1,

λ ∈ RV+.

(3.2)

∑
v∈V

f v
j λ

v ∈ Z+ ∀ j = 1, . . . , p. (3.3)

Let V be a finite set of corner points of the feasible region defined by Q := {x ∈ Rn
+ : A2x ≥

b2 & x ∈ Z}. Let f v ∈ V represent a corner point. Assuming the absence of extreme rays,

formulation (3.2) represents the LP relaxation of the DW reformulation of the MILP (3.1).

Equation (3.3) is used enforce the integrality condition.

This transformation is simply obtained by substituting x j =∑v∈V f v
j λ v,where ∑v∈V λ v = 1 and f v

are vertices of the feasible region Q. Readers must observe that the number of constraints has

reduced. In addition to reducing the number of constraints under favourable conditions, the

DW reformulation also provides tighter bounds than the LP relaxation. However, the number of

decision variables increased exponentially. A DW reformulation has at least as many decision

variables as the number of corner points (and extreme rays, if present).

Consider the LP (3.2). Based on the knowledge of the simplex algorithm, readers can observe

that the number of columns in the simplex table is equivalent to the number of corner points in

set V . Generating all the columns beforehand is computationally quite expensive for practical

problems. Nevertheless, readers may recall the following optimality condition defined by the

simplex algorithm.

Theorem 3.2 Consider a basic feasible solution x associated with a basis matrix B, and let r̄c

be the vector of reduced costs. Then, the following statements are true.

• If r̄c≥ 0, then x is optimal.

• If x is optimal, then r̄c≥ 0.
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Additionally, also recall that if the above optimality conditions are met, then the optimal solution

x∗ = B−1b, where b is the R.H.S of the constraints defining the feasible region. The readers

should realize that only a small subset of columns with non-negative reduced costs are required

to prove optimality and calculate the optimal solution.

Column generation (also often referred to as delayed column generation) uses this fact to gen-

erate only those columns that improve the solution iteratively. Column generations algorithm

was first discussed by Gilmore and Gomory (1961) in the context of the cutting stock problem.

Theoretically, this method terminates when there are no more columns that can enter the basis

B, meaning no additional column with a negative reduced cost exists.

Restricted master problem (RMP):

Min ∑
v∈V ′

c f v
λ

v, (3.4)

∑
v∈V ′

A1 f v
λ

v ≥ b1, (3.5)

∑
v∈V ′

λ
v = 1, (3.6)

λ ∈ RV ′+. (3.7)

In the context of the DW reformulation (3.2), the relaxation (3.4)-(3.7), where V ′ ⊆V such that

the problem is feasible. Formulation (3.4)-(3.7) is referred to as the restricted master problem

(RMP). If the RMP is unbounded then the DW relaxation (3.2) is also unbounded.

Otherwise, for a given subset of column V ′, let λ̄ be the optimal solution for the RMP (3.4).

Moreover, let µ̄1 and µ̄2 be the optimal dual solution corresponding to the RMP Constraints (3.5)

and (3.6), respectively. Observe that µ̄1 is a vector, while µ̄2 is a scalar. Populating V ′ with any

new columns with negative reduced costs can only improve the solution. In other words, if the

RMP has an optimal solution, then it is an upper bound on the full DW reformulation. New

columns with negative reduced cost can be generated by solving the Formulation (3.8).

Sub problem (SP):

Min f∈V f T c− f T A1
T

µ̄1− µ̄2 (3.8)

Minx∈Q (c−A1
T

µ̄1)
T x− µ̄2 (3.9)
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As f is just a corner point (or a basic solution) of Q, Formulation (3.8) can be re-written in

terms of x as Formulation (3.9). Thus, the sub-problem is nothing but our original problem

(3.1) without the constraints A1x ≤ b1 and the objective function function equivalent to the

reduced cost in terms of the dual values (µ̄1, µ̄2). As the authors have assumed the feasible

region to be bounded, only two possible results can be obtained by solving the SP (3.9). If the

objective is non-negative, then (λ̄ ) is the optimal solution to the DW relaxation (3.2), where the

values of variables λv,v ∈V\V ′ are set to zero. Otherwise, one or more column (variable) with

negative reduced cost enters the restricted master problem.

It is imperative to understand the bounds generated by the reformulation. If the RMP has

an optimal solution, then it is an upper bound on the full DW reformulation. In the absence

of degeneracy, this upper bound keeps improving with each iteration of the column generation

algorithm. However, how does the optimal solution to the full DW reformulation compare to the

MILP formulation (3.1) and its LP relaxation? Let IP∗, LP∗ and DW ∗ be the optimal solutions

of the MILP formulation (3.1), its relaxation and the full DW reformulation, respectively. From

the theory of integer programming, readers are already aware that for a minimization problem,

IP∗ ≥ LP∗. The following theorem gives the relationship between the LP∗ and DW ∗.

Theorem 3.3 For minimization problems defined as (3.1), DW ∗ ≥ LP∗. Furthermore, DW ∗ =

LP∗ if conv(Q) = {x ∈ Rn : A2x≥ b2}

The above theorem effectively means that tighter bounds from the DW reformulation may be

achieved if the sub-problems are harder to solve (harder in the sense that at least branching

within the branch & bound tree is required to get an integer solution for the sub-problem).

However, even this does not assure a better bound. If readers are aware of the Lagrangian

relaxation, then they should derive and observe the fact that the Lagrangian dual is the LP dual

of the DW relaxation (3.2). However, this proof is outside the scope of this chapter.

To solve the MILP (3.1), the DW relaxation is solved at each branch node and bound tree node.

This procedure is called Branch & Price (B&P). B&P can be considered an extension of the

Branch & Bound (B&B) algorithm. Let Zip, Zl p, and Zdw denote the MILP formulation (3.1),

its LP relaxation and its Dantzig Wolfe relaxation (3.2), respectively. Recall that x∗j ∈ Z, j =

{1, . . . , p} defined for Zip are integer variables. B&B solves Zl p at each node of the tree while

B&P solves Zdw at each tree node.
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An implementation of the B&P starts by solving the Zdw at the root node. B&B employs the

Simplex method to solve Zl p, while B&P uses column generation to solve Zdw. Theoretically,

Zdw is a form of linear relaxation and can be solved using the Simplex method. However, col-

umn generation or delayed column generation is very effective at handling formulations with

an exponential number of variables, which is typically the case for Zdw. At the root node, Zdw is

solved to optimality using column generation, which generates fractional λ ’s. The correspond-

ing fractional x variable vector can be obtained from the Equation x j = ∑v∈V f v
j λ v, where f v

are the corner points are defined in formulation (3.2).

If any x∗j ∈ Z, j = {1, . . . , p′|p′ ⊆ p} take fractional values in the optimal solution of Zdw, then

the B&P algorithm creates 2p′ branches to create as many additional Dantzig Wolfe relaxations.

Every fractional integer variable x∗j gives rise to two new DW relaxations, which have bound-

ing constraints, x∗j ≤ bx∗jc and x∗j ≥ dx∗je. In terms of λ , these constraints can be written as

∑v∈V f v
j λ ∗v ≤ bx∗jc and ∑v∈V f v

j λ ∗v ≥ dx∗je. For example, if x1 = 2.5 in the optimal solution of

the Zdw, then the bounding constraints are x1 <= 2 and x1 >= 3.

The B&P algorithm solves the new DW relaxations and the branches generated from them. All

nodes resulting in optimal solutions with variables x∗j ∈ Z, j = {1, . . . , p} having integer values

are known as the leaf node. The optimal solution at any leaf node is a feasible solution for

Zip. Each leaf node generates a feasible solution or an upper bound, while each DW relaxation

generates a lower bound for the Zip. Depending on the termination criteria, the B&P algorithm

terminates after a certain time or relative gap (%). An outline of the Branch & Price procedure

is given below.

1. Solve the DW relaxation at a node to obtain the optimal solution λ ∗, and calculate the

corresponding optimal solution x∗(∑v∈V f vλ ∗v ) for the LP relaxation of the MILP (3.1).

2. If x∗ satisfied the integrality constraint x∗j ∈ Z, j = 1, . . . , p then a leaf node has been

reached.

3. Otherwise create new nodes by branching on every fractional x∗j variables by introducing

the following constraints for every new node j.
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∑
v∈V

f v
j λ
∗
v ≤ bx∗jc

∑
v∈V

f v
j λ
∗
v ≥ dx∗je

(3.10)

Practical implementations of B&P have to be significantly improved using problem-specific

cuts, heuristics to generate better upper bounds, and better formulations to reduce the compu-

tational effort required to solve DW relaxation at every node. Readers should also note that the

sub-problem’s structure changes every time a bounding constraint is added to the problem. This

could destroy any special structure inherently present in the DW reformulation at the root node.

These challenges must be addressed carefully while implementing column generation and the

B&P algorithm.

Gilmore and Gomory (1961) and Barnhart et al. (1998) have been influential in the study of

the B&P algorithm. It is worth noting that the B&P algorithm presented above would in most

practical scenarios converge extremely slowly. As such, over the years lot of work has been put

into developing various tricks to improve its practical computational performance. For exam-

ple, most Branch & Price implementations avoid the branching scheme mentioned above as it

typically destroys the structure of the pricing problem. Hence, it is common to use a custom,

problem-specific branching scheme. Yildiz et al. (2022) discuss one such branching strategy

which significantly reduces the number of nodes explored for their B&P implementation.

Some other customisations include stabilisation methods, custom cutting planes, primal heuris-

tics, pricing problem heuristics, generating multiple columns at each iteration during the column

generation procedure, supplying good quality initial columns/initial solutions using a quick

heuristic, and using parallel or distributed computing. Vaclavik et al. (2018) present an im-

plementation of Branch & Price accelerated using machine learning. Readers may also refer

to Vanderbeck (2000), Desrosiers and Lübbecke (2005), Lubbecke and Desrosiers (2005) and

Ralphs and Galati (2010) for more information on DW reformulation, CG and B&P algorithm

implementations. Desaulniers et al. (2006) present application of B&P algorithm to different

practical problems, while Cóccola and Méndez (2015), Menezes et al. (2017) and Hellsten et al.

(2022) present B&P implementations on maritime problems.

To summarize the general procedure of the DW reformulation as applied to MILPs, the readers

must start by identifying a problem for which the constraint set can be separated into easy
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and complicated constraints. The problem can be separated into a restricted master problem

and one or many sub-problem. Subsequently, a column generation approach can be employed

within a Branch & Price framework to obtain the integer solution for the MILP. In Chapter 6, we

discuss some more customisations generally used to improve B&P implementations. Having

understood the basics of DW reformulation and column generation, the authors encourage the

readers to ponder upon the following questions.

• Can a decomposed problem have multiple sub-problems?

• Can a formulation be decomposed in multiple ways? Moreover, if multiple decomposi-

tions do exists, will they be equally efficient?

• Other than the decomposition into a master problem and a sub-problem, are there any

additional special properties or structures worth exploiting?

• Is Branch & Bound algorithm always required to generate a MILP solution from a given

set of master problem columns?

3.3.1 Notes for practical implementation

The previous section, revolved around understanding the theory of Dantzig Wolfe decomposi-

tion and column generation. However, practical implementation of these methods would require

the reader to consider some additional parameters. Some of these parameters are discussed be-

low.

3.3.1.1 Termination criteria

By now, the readers are aware that theoretically, the column generation technique terminates if

there are no new columns that can enter the master problem. However, even if more columns

are added, the improvement in objective function value can be minimal. As a result, generating

all the columns can be pretty time-consuming. Instead, some widely used practical termination

criteria are total number of iterations, time limit, and gap (%) between the upper and lower

bounds. The total number of iterations states that the algorithm must terminate as soon as a

certain number of iterations have elapsed. The time limit criteria terminates the algorithm after
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a fixed amount of time. Similarly, the gap (%) criteria terminates the algorithm when a particular

gap (%) between the bounds is reached.

3.3.1.2 Generation of a set of initial columns

The column generation algorithm requires at least one initial column to begin its execution.

Initial columns can be introduced by generating a trivial solution to the sub-problems and con-

structing the corresponding column. However, generating columns from trivial solutions can

lead to extremely slow convergence. It is helpful to have some heuristics that can guide the

initial process of column generation. For example, in the proposed decomposition of the mp-

CAP, duals from the LP relaxation of the mp-CAP are used during initial iterations to guide the

generation of columns.

3.3.1.3 Adding multiple columns per iteration of column generation

Readers must observe that theory dictates the selection of only one entering column per iteration

of the column generation algorithm by solving the sub-problems to optimality. However, many

practical implementations of column generation apply a fast heuristic that generates multiple

alternative columns from the original column. These alternative columns are still feasible for

the sub-problems and adhere to the reduced cost criteria. Often for frameworks where MILP

sub-problems are solved, traversing through the Branch & Bound tree leads to multiple integer

feasible solutions. All the feasible integer solutions that satisfy the reduced cost criteria can be

used to generate multiple columns during a single iteration. Adding multiple columns during

every iteration of the column generation algorithm can significantly expedite its convergence.

3.3.1.4 Embedding heuristics within the framework

The column generation algorithm helps us split the Dantzig Wolfe reformulation into a restricted

master problem (RMP) and sub-problem(s) (SP). In a simple implementation, the RMP and

SP are solved using a solver, which selects some linear programming or integer programming

algorithm to solve the problem. However, some problems can have additional unique structures

within the RMP, SP, or both. These structures might enable the readers to solve the RMP or

SP using polynomial-time heuristics or simple arithmetic. For example, authors could leverage
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the shortest path structure in the master problem for the mp-CAP. This structure eliminated the

need to solve the Branch & Bound tree in order to generate the MILP solution from a given set

of master problem columns.

3.3.1.5 Symmetry breaking

The DW reformulation and the block diagonal structure of the mp-CAP have been discussed

earlier. However, imagine that the feasible regions defined by all the sub-problems were iden-

tical. For the sub-problems (6.16)-(6.25), this would be equivalent to saying that all the tanker

compartments are identical, and for every sailing leg, the same set of cargoes has to be assigned

to the compartments. In essence, the corner points f v
k−1 = f v

k = f v
k+1∀k ∈ K, during each iter-

ation. Constraint (6.12) disappears because the first and second terms of its L.H.S cancel out

each other. Thus, the problem essentially becomes that of placing the cargoes in the least num-

ber of compartments during the first leg and maintaining the same placement till the end of the

voyage. Readers should observe that the symmetry disappears in the master problem, which

significantly simplifies the problem.

3.3.1.6 Parallel computing

The readers may recall, the proposed reformulation helps decompose the problem into one

master problem and multiple sub-problems. As the sub-problems are disjoint, they can be

solved in parallel by using multiple CPUs. This would accelerate the time for convergence. For

large-scale problems, such frameworks can also be designed to leverage distributed computing,

where both memory and CPU speeds can be distributed across a network of computers. A

recent study by Basso and Ceselli (2022) discusses the application of distributed computing

with column generation.

We will answer these questions stated earlier, and present the application of DW-CG framework

to the mp-CAP in Chapter 6. In this next chapter, we discuss the single ship pick-up delivery

problem with time-windows, tank allocations, and changeovers (s-PDP-TWTAC) and present

some empirical experiments related to it.
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Chapter 4

The single ship pick-up delivery problem

with time-windows, tank allocations and

changeovers (s-PDP-TWTAC)

4.1 Problem description

The single ship pick-up and delivery problem with pick-up time windows, tank allocations and

changeovers (s-PDP-TWTAC) models the scheduling of a chemical tanker on a network of

ports. We consider a chemical tanker with a list of onboard chemicals (cargoes), which need to

be transported to their destinations, respectively. At the same time, unassigned cargoes can be

picked up by the chemical tanker. Our goal is to generate a schedule for the chemical tanker,

which includes cargoes to be picked up, the ports to be visited, the sequence in which these

ports are visited, the arrival times at each port, and a feasible cargo-compartment allocation.

Our objective tries to maximise the difference between the revenue and four different costs.

0Chapter 4 is heavily derived from Ladage et al. (2021)
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These costs include the time charter cost, the fuel cost incurred while travelling between ports,

the fixed cost associated to a port call, and the cargo swapping cost incurred for every intra-

compartment cargo swap.

To make the problem tractable, the intra port activities have been simplified. During each port

visit a constant administrative time incorporates activities such as waiting time for berth al-

location, repairs, re-fuelling, security clearances, immigration procedures, and delays related

to custom inspections. We assume half the administrative time is spent on security checks,

following which the cargo-compartment assignments are decided. We term this point as the

cargo-compartment assignment point. At this point, we decide the pick-up cargoes and gener-

ate a cargo-compartment plan. The cargo-compartment assignment point presented should lie

within the pick-up time window of each of the cargoes. The pick-up time windows are specified

in units of days (fractional days are allowed). Any cargo that is picked up has to be delivered

within the time horizon. All the temporal inter-port and intra-port activities are performed se-

quentially, one after the other.

Figure 4.1: Ship balancing requirements: This figure illustrates the trim and heel movements of

the ship, along with the possible cargo arrangments affecting them.

Every chemical tanker has a maximum draft limit, which limits its cargo carrying capacity.

Moreover, a chemical tanker has multiple compartments or cargo holds. Each compartment can

store at most one cargo, but a cargo can be distributed into multiple compartments. A loaded

cargo can be moved to a different compartment at an additional cost. This movement provides

more flexibility in picking up new cargoes. The cargo-compartment allocation plan must also

take into account the ship balancing requirements, and the compartment capacities. As shown

in Figure 4.1, the cargoes have to be distributed within permissible limits of trim and heel.
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We also consider the cargo-cargo compatibility criteria, which restricts the storage of certain

chemicals in neighbouring compartments. Figure 4.2 represents cargo-cargo compatibility for

a set of cargoes through an illustrative graph. An edge in the graph means that the two cargoes

can be stored in neighbouring compartments. Similarly, the cargo-compartment compatibility

criteria restricts the cargo storage to a subset of chemical tanker compartments. The cargo-

compartment compatibility can be represented by a bipartite graph, as shown in Figure 4.3.

Figure 4.2: Cargo-cargo compatibility graph: Instance (a) shows partial compatibility of cargoes

while instance (b) shows complete compatibility of cargoes with each other.

Figure 4.3: Cargo-compartment compatibility graph: Direct connections between cargoes and

compartment show compatibility while no connection reports incompatibility.

We believe that the compartment-related decisions are essential while delivering chemicals us-

ing chemical tankers. A chemical tanker can have different compartment structures, which
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dictate the compartment-related decisions. If the compartment-related decisions are ignored,

one cannot state with certainty that the schedule will be feasible for a given chemical tanker.

We make the following assumptions in our model. These assumptions have been borrowed from

Jetlund and Karimi (2004), Neo et al. (2006), Cóccola et al. (2015) and Cóccola and Méndez

(2015). They are listed below.

• We make a simplifying assumption to fix the maximum number of port calls (sailing legs).

However, even in the industry, the scheduler is required to generate a schedule for a fixed

number of port calls. As such, this is a reasonable assumption.

• The chemical tanker may or may not pick-up all the unassigned cargoes at the port it

visits.

• Cargoes cannot be delivered partially.

• The time for loading/unloading cargoes varies only with the total weight of the cargo.

• All port arrival and departure administrative activities are assumed to take 0.25 days.

• Three primary time-consuming activities, namely, travelling between ports, cargo load-

ing, and cargo unloading, are considered in our model. No two of these activities can be

performed simultaneously.

• Each compartment can carry only one cargo at any given time. The cargo can be split into

multiple compartments of the chemical tanker.

• Changeovers (rearranging) of loaded cargoes within the compartments of the ship are al-

lowed. A fixed penalty cost (changeover cost) is incurred every time an existing cargo is

replaced by a different cargo within a compartment. We assume that cargoes can be of-

floaded from the chemical tankers during re-assignment of these cargoes, and then loaded

again.

• Due to safety factors and storage norms, cargoes can only be placed in specific compart-

ments (cargo-compartment compatibility constraints).

• Safety norms also impose certain restrictions on the placement of cargoes in neighbouring

compartments, which we model as cargo-cargo compatibility constraints.

• The average speed (nm/hour) of the chemical tanker is assumed constant.
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• Fuel consumption is assumed to vary linearly with the distance travelled independently

of the load on the ship.

• Onboard cargoes can be re-assigned to compartments only at ports and that this activity

can be carried out instantaneously.

• A port can only be visited once in the planning period.

Figure 4.4: This figure illustrates a small instance for the s-PDP-TWTAC along with a possible

schedule for that instance.
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Further, with the help of an small example, we explain the problem and the importance of

considering the compartment-related decisions. Figure 4.4 helps us illustrate our example. At

the start of the planning horizon, suppose that the chemical tanker is at Port 0 (Shanghai) and

has a list of 7 ports that may be visited. We consider three different chemical tankers as shown

in the bottom right corner of Figure 4.4. Cargo C5 is on board the chemical tankers at time

zero. Additionally, cargoes, C1 to C4, are the potential (unassigned) cargoes that are available

at the ports. Attributes related to these cargoes, such as origin-destination ports, total volume,

and pick-up time windows are displayed in Figure 4.4. Figure 4.4 also depicts the simplified

port activities that have been considered in our problem.

Figure 4.5 presents a more detailed representation of the various temporal activities and various

port activities defined for the s-PDP-TWTAC. As shown in Figure 4.5, a sailing leg begins

when the ship departs from the port visited during sailing leg k−1. The ship then travels to the

next port which is referred to as the travelling time during leg k. As soon as the ship arrives

at the port, a fixed administrative time (T A
1 ) is spent for activities like immigration, customs

clearance, and generation of a cargo-compartment assignment plan. We assume that a cargo-

compartment assignment plan is available as soon as T A
1 is elapsed. Following this, cargoes

are discharged and loaded according to the cargo-compartment allocation plan. Following this

activity, some administrative time (T A
2 ) is reserved for activities like wait time, re-fuelling or

any final inspections before port departure. Finally, the sailing leg ends as soon as the ship

departs for the next port.
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Figure 4.5: This figure illustrates the temporal activities and different port activities included

into the s-PDP-TWTAC

Figure 4.4 shows a sample schedule for chemical tanker 1. The cargo C1 is picked up by

the chemical tanker. At Shanghai, cargo C5 is stored in compartments 2 and 4. At Port 1

(Hong Kong), the chemical tanker picks up cargo C1, which is stored in the third compartment.

Finally, the voyage ends at Singapore where it delivers both the cargoes. However, due to the

compartment structure and related constraints, the same schedule might become infeasible for

chemical tanker 2 and 3.

Consider the second chemical tanker, which has two compartments. Each compartment has a

storage capacity of 750 tonnes. If we ignore the chemical tanker stability criteria, the entire

cargo might be assigned to either compartment 2 or compartment 3. This would jeopardize

the safety of the chemical tanker. Consequently, the cargo C5 is equally distributed in both

the compartments of the chemical tanker 2 as shown in Figure 4.4. Further on, if the cargo

swapping is not allowed, the chemical tanker would reach port Hong Kong completely full. As

a result, the cargo C1 cannot be picked up, which makes the previous schedule infeasible for

the second chemical tanker.

Let us now consider the structure of the third chemical tanker, in which the central compartment

is coated with Epoxy. Observe that if both cargo C1 and C5 are incompatible with epoxy
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coated compartments, then the schedule generated for chemical tanker 1 becomes infeasible

for chemical tanker 3. Finally, let us assume that cargo C1 and C5 are incompatible with each

other. Meaning, both these cargoes cannot be stored in adjacent compartments. Then, the

schedule presented in Figure 4.4 becomes infeasible for chemical tanker 1. It is easy to observe

that neglecting any of the above decisions might generate infeasible schedules for a chemical

tanker.

We summarise our problem as follows. Given a set of ports and a set of cargoes, we try to

identify the optimal schedule of the chemical tanker. An optimal schedule is one that would

transport the most profitable cargoes while adhering to the various problem constraints. Our

objective maximises the revenue earned by transporting unassigned (potential) cargoes and min-

imises the port cost, fuel cost, time chartering cost, and the changeover (cargo swapping) cost.

The entire set of feasible cargoes need not be delivered. However, all the cargoes loaded on the

ship are required to be delivered before the end of the planning horizon.

The primary decisions that affect the complexity of our problem are the finding of the set of

ports to visit, the determining of the sequence in which these ports should be visited, the identi-

fication of the set of cargoes to transport, the assigning of the cargoes to compartments and the

swapping of cargoes between compartments. The proposed problem is reducible to a Hamilto-

nian path problem by fixing all decisions except the routing of the ship. Thus, the problem is

NP-hard. Our model can also be seen as a variation of the Pickup and Delivery Problem with

Time Windows (PDPTW), [Jetlund and Karimi (2004)], which itself is an extension of the ve-

hicle routing problem. The tramp scheduling problem without compartment-related decisions

is structurally very similar to the PDPTW, as defined by Sun et al. (2018). However, unlike the

PDPTW, the s-PDP-TWTAC does not require the vehicle to return to its starting location, and

all cargoes need not be served.

At every port, if the route of the chemical tanker and the cargoes to be transported are fixed, we

are left with the decision of allocating cargoes to compartments. This sub-problem of cargo-

compartment allocations is an extension of the generalised segregation storage problem (GSSP),

which is also NP-complete [Barbucha (2004)]. In the following section, we mathematically

describe the various parameters and decision variables used in our formulation. We also present

the mixed integer linear programming formulation used to model the problem explained in this

section.
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4.2 MILP formulations for the s-PDP-TWTAC

This section begins with a brief description of the revised (REV) formulation for the the single

ship pick-up and delivery problem with pick-up time windows, tank allocations and changeovers

(s-PDP-TWTAC). Following this, we present the revised MILP for the s-PDP-TWTAC, which is

proposed by us. Section 4.2.2 presents the MILP formulation proposed by Jetlund and Karimi

(2004). This formulation is extended by Neo et al. (2006) to include the cargo to compartment

decision variables and constraints. The extended formulation presented by Neo et al. (2006)

will be referred to as the original (OG) MILP formulation. Finally, we conclude this section

by stating some key differences between the revised MILP formulation and the original MILP

formulation.

4.2.1 Revised MILP formulation

The s-PDP-TWTAC revised (REV) formulation is described as follows. Let K be the set of

indices of the sailing legs, and NP be the set of feasible ports. The set of cargoes (NG) divided

into on-board cargoes (NO) and unassigned cargoes (NU ). NO are the cargoes that are on-board

the chemical tanker at the beginning of the planning horizon. Unassigned cargoes (NU ) are

the cargoes that can be potentially picked up to maximise the profit. The set NH is the set of

chemical tanker compartments.

Any cargo loaded on the ship has to be delivered. An unassigned cargo j ∈ NU can only be

picked up within a specified time-window [T E
j ,T L

j ]. A cargo j ∈NG is defined by characteristics

like revenue obtained (R j), origin (PL
j ), destination (PD

j ), weight (Wj) and density (ρ j). A

compartment h ∈ NH is defined by compartment volume (Vh), and lateral (κh) and longitudinal

(ιh) distance from the centre of the ship.

The set NB
h defines the structure of the chemical tanker by listing the bordering compartments for

every h∈NH . The sets NI
j and NX

h helps us define the cargo-cargo incompatibility and the cargo-

compartment incompatibility, respectively. The set NI
j lists all the cargoes that cannot be stored

beside the cargo j ∈ NG. The set NX
h includes cargoes that cannot be stored in compartment
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h ∈ NH .

Given the starting port (PI) and the set NP, our model tries to find an optimal by maximising the

difference in the revenue (R j) and the four different costs; namely, the port cost (CP
p ), the fuel

cost (CF
pp′), the time chartered cost (CT ) and the changeover cost (CS). The route of the ship

is defined using decision variables like port arrival time (tk) and routing variable (zkpp′). The

routing variable equals one if and only if the chemical tanker travels between ports p, p′ ∈ NP

at the end of sailing leg k ∈ K. If the number of profitable port calls are less than the maximum

number of sailing legs (|K|), then the chemical tanker is forced to enter a dummy port. Once the

chemical tanker enters the dummy port, it stays there till the end of its voyage. The sequence

in which the cargoes are serviced are modelled using variables lk j and uk j. The variables lk j

and uk j record the sailing leg k ∈ K at the end of which a cargo is picked up and dropped off,

respectively.

The decision variable ck jh equals 1 if cargo j ∈ NG is stored in compartment h ∈ NH at the end

of sailing leg k ∈ K. Moreover, if a cargo j ∈ NG is stored in compartment h ∈ NH then the

variable wk jh gives the cargo weight stored in the compartment. Further, we keep track of the

total changeovers by defining variables bk jh and rk jh. We formally define all the sets, decision

variables and parameters in Section 4.2.

Sets:

K = Set of indices of sailing legs, {0,...,|K|},

NP = Set of ports,

NG = Set of all cargoes/goods. Includes cargo 0, a dummy cargo for modelling,

NO = Set of cargoes already on-board the chemical tanker at time zero, NO ⊂ NG,

NU = Set of potential cargoes that can be picked up, NU ⊂ NG,

NI
j = Set of cargoes incompatible with cargo j ∈ NG,NI

j ⊂ NG,

NH = Set of compartments (cargo holds) in the ship,

NB
h = Set of neighbouring/bordering compartments for compartment h ∈ NH ,NB

h ⊂ NH ,

NX
h = Set of cargoes that cannot be stored in compartment h ∈ NH ,NX

h ⊂ NG.

Indices:

p, p′, p′′ = Index for port,
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k,k′ = Index for sailing leg (Index 0 indicates that the chemical tanker is at its starting port),

j = Index for cargo ( j = 0 signifies dummy cargo with no weight and no incompatibilities),

h,h′ = Index for compartment (cargo hold).

Revised decision variables:

tk = Port arrival time of the chemical tanker at the destination of leg k∈K (Continuous),

zkpp′ = 1 if chemical tanker at the end of leg k∈K\{0} departed from port p∈NP and

arrived at p′∈NP (Binary),

lk j = 1 if the chemical tanker at the end of leg k∈K loads cargo j∈NU (Binary),

uk j = 1 if the chemical tanker at the end of leg k∈K unloads cargo j∈NU (Binary),

ck jh = 1 if the chemical tanker at the end of leg k∈K carries cargo j∈NG in compartment

h∈NH (Binary),

wk jh = Weight of cargo j∈NG assigned to compartment h∈NH of chemical tanker at end

of leg k∈K (Continuous),

bk jh = 1 if the chemical tanker at the end of leg k∈K\{0} replaces any cargo (other than itself)

with cargo j∈NG\{0} in compartment h∈NH (Binary),

rk jh = 1 if chemical tanker at end of leg k∈K\{0} removes cargo j∈NG\{0} in compartment

h∈NH (Binary).

Parameters:

PI = Starting port of the ship, PI ∈ NP,

PL
j = Loading port for cargo j ∈ NU , PL

j ∈ NP,

PD
j = Discharge port for cargo j ∈ NG, PD

j ∈ NP,

|NP|= Dummy Port, |NP| ∈ NP,

R j = Revenue that can be obtained if cargo j∈NG is transported by the chemical tanker,

CF
pp′ = Cost for travelling between ports p∈ NP and p′∈ NP,

CP
p = Port cost incurred on visiting port p∈ NP,

CT = Cost of time charter of the chemical tanker per day,
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CS = Cost per changeover/swap including cleaning, labour, etc related to swapping cargoes within

compartments,

Wj = Weight of the cargo j ∈ NG,

ρ j = Density of the cargo j ∈ NG,

Vh = Volume of compartment h∈ NH ,

T E
j = Earliest pick-up time for cargo j∈NU ,

T L
j = Latest pick-up time for cargo j∈NU ,

T P
j = Time required to pick-up cargo j∈NU ,

T D
j = Time required to discharge cargo j∈NG,

T T
pp′ = Travel time between port p∈ NP and p′ ∈ NP,

T A
1 = Waiting time for berth allocation, security clearances, immigration procedure,

T A
2 = Time delays incurred due to repairs, bunkering, and customs inspections,

T A = Total administrative time, T A = T A
1 +T A

2 ,

κh = Lateral distance from compartment h∈NH to the centre of the chemical tanker,

ιh = Longitudinal distance from compartment h∈NH to the centre of the chemical tanker,

α = Maximum absolute permissible trim causing moment of the chemical tanker,

β = Maximum absolute permissible heel causing moment of the chemical tanker,

DC = Draft constant. The total allowable draft (in tonnes) for the chemical tanker (tonnes),

M = A suitably large number for modelling binary decisions.

The objective function of our formulation is as follows:

Maximise ∑
j∈NU

(
R jWj ∑

k∈K\{|K|}
lk j

)
− ∑

p∈NP
∑

p′∈NP

(
CF

pp′ ∑
k∈K\{0}

zkpp′

)

−

(
CT (t|K|+T A(1− ∑

p∈NP

z|K|p|NP|)+ ∑
p∈NP

∑
j∈NO

(T D
j z|K|pPD

j
)+ ∑

j∈NU

(T D
j u|K| j))

)

− ∑
p′∈NP

(
CP

p′ ∑
k∈K\{0}

∑
p∈NP

zkpp′

)
−

(
CS

∑
k∈K\{0}

∑
j∈NG\{0}

∑
h∈NH

bk jh

)
+ ∑

j∈NO

R jWj−CP
PI (4.1)

The first term calculates the total revenues generated by picking up a subset of unassigned

cargoes. The second term calculates the fuel cost, which is a function of the route of the ship.
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The next term including CT , calculates the total cost of chartering the chemical tanker. CT

is affected by all the temporal actions that the chemical tanker performs. Thus, total CT is

calculated by combining the arrival time at the last port (t|K|), with the temporal port activities

performed at the last port (T A and the total unloading time of all the cargoes discharged at the

last port)). The total time spent at the port is zero if the last port visited is a dummy port.

The succeeding term, calculates the total port cost CP, which is incurred for every port visited

by the chemical tanker. Moreover, the changeover cost is calculated by summing up the total

number of changeovers (bk jh). Finally, the last two terms of the Equation 4.1 calculate the

revenue obtained from the onboard cargoes, and port cost (CP) related to visiting the immediate

destination. As a result, the objective function (4.1) tries to increase the revenue earned by

servicing the cargoes. Simultaneously, the objective function tries to reduce the travel cost,

time chartered cost, port cost and changeover cost.

∑
p∈NP

zkpp′ = ∑
p′′∈NP

z(k+1)p′p′′ ∀k ∈ K\{0, |K|}, p′ ∈ NP, (4.2)

∑
k∈K\{0}

∑
p′∈NP

zkpp′ ≤ 1 ∀p ∈ NP\{|NP|}, (4.3)

∑
k∈K\{0}

∑
p∈NP

zkpp′ ≤ 1 ∀p′ ∈ NP\{|NP|}, (4.4)

∑
k∈K\{0}

∑
p∈NP

zkp,PD
j
= 1 ∀ j ∈ NO\{PD

j = PI}, (4.5)

Constraints (4.2) to (4.5) define the path of the ship. Constraint (4.2) ensures that the ship must

leave every port it visits, except the last one. However, if the chemical tanker enters the dummy

port |NP| it has to stay there for rest of the voyage. We enforce this during pre-processing

by fixing all the routing variables (zk|NP|p′, p′ ∈ P\{|NP|}) to zero. These routing variables

correspond to all the arcs originating from dummy port to all other ports. Constraints (4.3) and

(4.4) together enforce the assumption that a chemical tanker can visit any port at most once.

Constraint (4.5) imposes the condition that discharge ports of each on-board cargo must be

visited. Next we formulate constraints related to the pick-up and delivery of cargoes.

l(k−1) j ≤ ∑
p∈NP

zkPL
j p ∀k ∈ K\{0}, j ∈ NU , (4.6)

uk j ≤ ∑
p∈NP

zkpPD
j

∀k ∈ K\{0}, j ∈ NU , (4.7)

lk j ≤ ∑
k′∈K\{k′≤k+1}

uk′ j ∀k ∈ K\{|K|}, j ∈ NU , (4.8)
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∑
k∈K

uk j = ∑
k∈K

lk j ∀ j ∈ NU , (4.9)

uk j ≥−1+ ∑
k′∈K

lk′ j + ∑
p∈NP

zkpPD
j

∀k ∈ K\{0}, j ∈ NU , (4.10)

Constraints (4.6) and (4.7) ensure that the unassigned cargoes are picked up and dropped off

at their corresponding loading and unloading ports. Constraint (4.8) states that an unassigned

cargo can be dropped off only after pick-up. Constraints (4.9) and (4.10) ensure that an unas-

signed cargo can be discharged at the end of leg k if and only if it was picked up and its discharge

point is visited at the end of leg k. Next, we model the constraints that deal with the temporal

activities of the ship.

tk ≥ (T E
j −T A

1 )lk j ∀k ∈ K\{|K|}, j ∈ NU , (4.11)

tk ≤ (T L
j −T A

1 )lk j +M(1− lk j) ∀k ∈ K\{|K|}, j ∈ NU , (4.12)

t(k+1) ≥ tk + T A(1− ∑
p∈NP

z(k+1)|NP|p)+ ∑
j∈NO

(T D
j ∑

p∈NP

z(k+1)PD
j p)+ ∑

j∈NU

(T P
j lk j)

+ ∑
j∈NU

(T D
j uk j)+ ∑

p∈NP
∑

p′∈NP

(T T
pp′z(k+1)pp′) ∀k ∈ K\{|K|}, (4.13)

Constraint (4.11) enforces the condition that if a cargo is picked up then the cargo-assignment

time (tk + T A
1 ) should be greater than the earliest pick-up time (T E

j ). Similarly, Constraint (4.12)

states that if a cargo is picked up then the cargo-assignment time (tk + T A
1 ) should be less than

the latest pick-up time (T L
j ). Constraint (4.13) makes sure that the port arrival time (tk+1) during

the sailing leg (k+ 1) is greater than the addition of the port arrival time (tk) during leg k, the

administrative time (T A) during leg k (if the present port is not the dummy port), all the loading

and unloading times for the cargoes picked up and dropped off during leg k, and the travel time

time during leg (k+1). The constraints for allocating cargoes to compartments are as follows:

∑
h∈NH

c0 jh ≥ 1 ∀ j ∈ NO\{PD
j = PI}, (4.14)

∑
h∈NH

c0 jh ≥ l0 j ∀ j ∈ NU , (4.15)

∑
h∈NH

ck jh ≥ ∑
h∈NH

c(k−1) jh

|NH |
− ∑

p∈NP

zkpPD
j

∀k ∈ K\{0}, j ∈ NO\{PD
j = PI}, (4.16)

∑
h∈NH

ck jh ≥ ∑
h∈NH

c(k−1) jh

|NH |
+ lk j−uk j ∀k ∈ K\{0, |K|}, j ∈ NU , (4.17)
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∑
h∈NH

ck jh ≤ |NH | ∑
k′∈K\{k′>k}

lk′ j ∀k ∈ K, j ∈ NU , (4.18)

∑
k′∈K\{k′<k}

∑
h∈NH

ck′ jh ≤ |K||NH |(1− ∑
p∈NP

zkpPD
j
) ∀k ∈ K\{0}, j ∈ NG\{0}, (4.19)

Constraints (4.14) and (4.15) enforce the cargo allocations during leg 0. Constraint (4.14) makes

sure that all the on-board cargoes are assigned to at least one compartment unless they are de-

livered at the immediate destination. In the same way, Constraint (4.15) makes sure that if an

unassigned cargo is picked up during leg 0 then it is assigned to at least one compartment. The

Constraints (4.16) and (4.17) together maintain the continuity of unassigned and on-board car-

goes respectively. Constraints (4.16) and (4.17) are trivially satisfied if the cargoes are dropped

off during the present leg. However, if the on-board cargoes remains loaded on the ship during

the present leg, then the Constraint (4.16) makes sure that the cargo is assigned to at least one

compartment. Similarly, Constraint (4.17) makes sure that the unassigned cargoes are assigned

to at least one compartment till they are on the ship. Finally, Constraints (4.18) and (4.19) en-

force the fact that cargoes cannot be assigned to compartments before they are picked up and

after they are dropped off. Some additional cargo assignment constraints are as follows:

∑
j∈NG

ck jh = 1 ∀k ∈ K,h ∈ NH , (4.20)

c(k−1) jh +bk jh = ck jh + rk jh f orallk ∈ K\{0}, j ∈ NG\{0},h ∈ NH , (4.21)

ck jh + ∑
j′∈NI

j

ck j′h′ ≤ 1 ∀k ∈ K\{|K|}, j ∈ NG\{0},h ∈ NH ,h′ ∈ NB
h , (4.22)

Constraint (4.20) makes sure that either the compartment is empty or it has exactly one cargo

in it. Constraint (4.21) help us keep track of changeovers (cargo swapping) within every com-

partment during consecutive legs. Recall that if a compartment is empty we assume it has cargo

0. Constraint (4.21) and a negative objective function co-efficient makes sure that the variable

bk jh equals 1 if and only if a compartment is filled with different cargoes in succeeding sailing

legs, or an empty compartment is filled with new cargo. Moreover, the variable rk jh ensures that

the variable bk jh takes on value 0, when c(k−1) jh equals 1 and ck jh equals 0. Constraint (4.22)

imposes the cargo-cargo compatibility criteria. The following constraints implement the cargo

weight per compartment related restrictions.

wk jh ≤Vhρ jck jh ∀k ∈ K\{|K|}, j ∈ NG\{0},h ∈ NH , (4.23)
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∑
h∈NH

wk jh =Wj ∑
k′∈K\{k′>k}

(lk′ j−uk′ j) ∀k ∈ K\{|K|}, j ∈ NU , (4.24)

∑
h∈NH

wk jh =Wj(1− ∑
k′∈K\{0,k′>k+1}

∑
p∈NP

zk′PD
j p) ∀k ∈ K\{|K|}, j ∈ NO, (4.25)

∑
h∈NH

∑
j∈NG\{0}

wk jh ≤ DC ∀k ∈ K, (4.26)

−α ≤ ∑
h∈NH

∑
j∈NG\{0}

wk jhιh ≤ α ∀k ∈ K, (4.27)

−β ≤ ∑
h∈NH

∑
j∈NG\{0}

wk jhκh ≤ β ∀k ∈ K. (4.28)

Constraint (4.23) ensures that the weight of the cargo assigned to the compartment can be at

most equal to the maximum capacity of the compartment. Constraint (4.24) makes sure that

the total weight of the unassigned cargo distributed in various compartments is equal the total

weight of that cargo between pick-up and delivery. Constraint (4.25) forces the same condition

on the on-board cargoes. Constraint (4.26) makes sure that the total weight allocated to the

chemical tanker is less than the draft constant. Constraint (4.27) and (4.28) are ensure that the

maximum allowable trim and heel moments are not exceeded.

4.2.2 Original MILP formulation [Jetlund and Karimi (2004), Neo et al.

(2006)]

Sets:

K = Set of sailing legs,

NG = Set of all cargoes,

NP = Set of ports,

NO = Set of cargoes already on board the ship s∈S at time zero,

NU = Set of unassigned cargoes during the planning horizon,

NX
h = Set of cargoes that cannot be stored in compartment l of ship s∈S,

NI
j = Set of incompatible cargoes for cargo j∈ NG.

NH = Set of compartments of ship s∈S,

NB
h = Set of neighbouring compartments for compartment h∈ NH ,
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Parameters:

∆pp′ = Distance (nautical miles) between ports p∈P and p′∈P,

PI = Immediate destination,

PD
j = Set of discharge port for cargo j∈NG,

PL
j = Set of loading port for cargo j∈NG,

RD
j = Discharge rate of cargo j∈NG,

RL
j = Loading rate of cargo j∈NG,

RS
j = Shipping rate or revenue for cargo j∈NG(US $),

CF = Cost of fuel per unit distance,

CP
p = Port cost for ship at port p ∈ P,

CT = Time charter cost per unit time for the ship,

CC
k j j′h = Fixed changeover cost of changing the cargo from j∈NG in leg (k-1)∈ K to j′∈NG in

compartment h ∈ NH of the ship during sailing leg k ∈ K,

T E
j = Earliest pick-up time for cargo j∈NU ,

T L
j = Latest pick-up time for cargo j∈NU ,

T A = Administrative Time (Time for inspections, customs and surveys for each port visit),

Vj = Volume of cargo j∈NG,

Wj = Weight of cargo j∈NG,

V L
h = Volume of compartment h∈NH in ship,

Ψ = Total carrying capacity or volume of ship s∈S in tonnes,

SS = Sailing speed of the ship (nm/day),

κh, ιh = Lateral and longitudinal distance from compartment h∈NH to the centre of ship,

α,β = Maximum absolute permissible moments causing trim and heel of the ship,

δ ,θ = Maximum allowable draft and trim angle at the ports,

ψ,ρ,ρ j,λ ,π = Weight of the empty tanker, density of Water, density of cargo j∈NG, length and

cross-sectional area of the ship respectively,

M = Some large number.

Decision Variables:

tk = Time at which leg k∈K ends and ship arrives at a port, (Continuous)

ttk = Time required to travel during leg(k+1)∈K, (Continuous)

xpk = 1 if port p∈P is visited at the end of leg k∈K (Binary),
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uk j = 1 if cargo j∈NG is unloaded at the end of leg k∈K (Continuous),

lk j = 1 cargo j∈NU is loaded at the end of leg k∈K (Continuous),

yk j = 1 if ship s∈S carries cargo j∈NG on-board during leg k∈K (Binary),

y j = 1 if cargo j∈NG is served by the ship (Binary),

zkpp′ = 1 if the ship moves from port p∈P to p′∈P during leg (k+1)∈K (Continuous),

ck jh = 1 if compartment h∈NH of the ship carries cargo j ∈NG at the end of leg k ∈K (Binary),

wk jh = Weight of the cargo j∈NG that is loaded into compartment h ∈ NH of the ship during leg

k∈ K,

mk j j′h
1 = 1 if the compartment h ∈ NH of ship holds cargo j∈ NG during leg (k-1)∈ K and j′

during leg k∈ K (Continuous).

Objective Function:

Maximize Z = ∑
j∈NG

RS
j ×Wj× y j− ∑

k∈K
SS×CF × ttk

−CT × (t|K|+ ∑
j∈NG

Vj×u j|K|

RD
j

)− ∑
p∈NP

∑
k∈K

CP
p × xpk

− ∑
k∈K/{0}

∑
j∈NG

∑
j′∈NG

∑
h∈NH

CC
k j j′h×mk j j′h, (4.29)

The objective function of the revised MILP formulation and the original formulation is same in

terms of what it maximizes. The objective function (4.29) maximizes the difference of the total

revenue (first term) earned by servicing multiple cargoes and the different costs. Similar to the

objective function of the revised MILP formulation, the second term represents the fuel cost,

while the third term represents the cost incurred due to time-related activities. The fourth and

fifth terms incorporate the fixed port cost and the changeover cost into the objective function

(4.29), respectively.

Subject to:

∑
p∈NP

xpk = 1 ∀k ∈ K, (4.30)

∑
k∈K

xpk ≤ 1 ∀p ∈ NP/{0}, (4.31)

xPIk ≤ xPI(k+1) ∀k ∈ K/{|K|}, (4.32)

1mk j j′h is only defined for k ∈ K/{1}
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∑
p′∈NP

zkpp′ = xpk ∀p ∈ NP,k ∈ K/{|K|}, (4.33)

∑
p∈NP

zkpp′ = xp′(k+1) ∀p′ ∈ NP,k ∈ K/{|K|}, (4.34)

Constraint (4.30) ensures that a ship can visit only one port during each sailing leg, while

Constraint (4.31) makes sure that a ship cannot visit a port more than once in its planning

horizon. Constraint (4.32) ensures that if the chemical tanker is routed to a dummy port, then

it remains there for rest of the planning horizon. Constraints (4.33) and (4.34) help define the

routing variables (zkpp′) and treat them as 0-1 continuous variables. These constraints ensure

that zkpp′ can be non-zero, if and only if the tanker was at port p during sailing leg k and at port

p′ during sailing leg k+1. Even though zkpp′ is defined as a continuous variable between 0-1,

Constraint (4.30) in combination with the Constraints (4.33) and (4.34) forces the it to takes

values 0 or 1.

y j = 1 ∀ j ∈ NO, (4.35)

yk j = 1 ∀ j ∈ NO,k = 0, (4.36)

xpk = 1 ∀k = 0, p ∈ PI, (4.37)

∑
k∈K

lk j = y j ∀ j ∈ NU , (4.38)

lk j ≤ xPL
j ,k

∀k ∈ K, j ∈ NU , (4.39)

∑
k∈K

uk j = y j ∀ j ∈ NG, (4.40)

uk j ≤ xPD
j ,k

∀k ∈ K, j ∈ NG, (4.41)

∑
k∈K

k× (uk j− lk j)≥ y j ∀ j ∈ NU , (4.42)

y(k+1) j = yk j−u(k+1) j ∀ j ∈ NO,k ∈ K/{|K|}, (4.43)

y(k+1) j = yk j + l(k+1) j−u(k+1) j ∀ j ∈ NU ,k ∈ K/{|K|}, (4.44)

∑
j∈NG

Vj× yk j ≤Ψ ∀k ∈ K, (4.45)

Constraints (4.35) and (4.36) ensure that onboard cargoes (NO) are already assigned to the

chemical tanker, while Constraint (4.37) ensures that the chemical tanker starts its voyage form
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the immediate destination (PI). Constraints (4.38) amd (4.39) define the pick-up variables (lk j)

for each cargo. Similarly, Constraints (4.40) and (4.41) define the discharge variables (uk j).

Constraints (4.38) and (4.40) enforces the fact that if a ship doesn’t service a cargo then it

cannot be picked up or discharged during the any of the sailing legs. Constraint (4.39) makes

sure that a cargo can be picked up at most once during the planning horizon (lk j ≤ 1, if xPL
j ,k

=

1), and it can be picked up if and only if the tanker is visiting the pick-up port of cargo j ∈ NU

(xPL
j ,k

= 1). Similarly, Constraint (4.41) states that a cargo j ∈ NG can be discharged at most

once during the planning horizon, and can be discharged only when the tanker is visiting a

cargo’s discharge port.

Constraint (4.42) is a precedence type constraint which ensures that a cargo has be picked up

before it is discharged if it is serviced by the chemical tanker during the planning horizon.

Constraint (4.43) ensures that onboard cargoes are assigned to the ship during every sailing leg

until they are discharged. Similarly, Constraint (4.44) makes sure that cargo j ∈NU are assigned

to every sailing leg between the cargoes pick-up leg and discharge leg. Constraint (4.45) is the

ship capacity constraint which ensures that the the total volume of all cargoes assigned to the

ship during a sailing leg k is at most equal to the ship’s capacity.

ttk = ∑
p∈NP

∑
p′∈NP

∆pp′× zkpp′

24SS ∀k ∈ K/{|K|}, (4.46)

tk ≤ (T L
j −0.5T A)× lk j +M(1− lk j) ∀ j ∈ NU ,k ∈ K/{|K|}, (4.47)

t(k+1) ≥ (T E
j +0.5×T A)× lk j +

Vj× lk j

RL
j

+ ttk

∀ j ∈ NU ,k ∈ K/{|K|}, (4.48)

t(k+1) ≥ tk +T A× (1− xPIk)+ ∑
j∈NG

Vj×uk j

RD
j

+ ∑
j∈NU

Vj× lk j

RL
j

+ ttk

∀k ∈ K/{|K|}, (4.49)

Constraints (4.46), (4.47), 4.48 and (4.49) model the temporal activities in the formulation.

Constraint (4.46) defines the tk variable as a function of distance over speed between ports p
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and p′ if zkpp′ equals one. Constraints (4.47) and (4.48) define the pick-up time windows for

every unassigned cargo j ∈ NU during every sailing leg k ∈ K/{|K|}. The final time-related

constraint makes sure that the arrival time at port during sailing leg (k+1) is greater than or

equal to the addition of the arrival time at port during sailing leg (k), administrative time during

sailing leg (T A), the total loading and unloading time of all cargoes during sailing leg (k) and

the travel time (ttk) during sailing leg (k).

∑
h∈NH

ck jh ≥ yk j ∀ j ∈ NG,k ∈ K, (4.50)

∑
h∈NH

ck jh ≤ yk j×|NH | ∀ j ∈ NG,k ∈ K, (4.51)

∑
h∈NH

∑
k∈K

ck jh ≥ y j ∀ j ∈ NG, (4.52)

∑
h∈NH

∑
k∈K

ck jh ≤ y j×|NH | ∀ j ∈ NG, (4.53)

∑
j∈NG

ck jh = 1 ∀k ∈ K,h ∈ NH , (4.54)

wk jh ≤Vh×ρ j× ck jh ∀k ∈ K,h ∈ NH , j ∈ NG, (4.55)

∑
h∈NH

wk jh =Wj× yk j ∀k ∈ K, j ∈ NG, (4.56)

−α ≤ ∑
h∈NH

∑
j∈NG

wk jh× ιh ≤ α ∀k ∈ K, (4.57)

−β ≤ ∑
h∈NH

∑
j∈NG

wk jh×κh ≤ β ∀k ∈ K, (4.58)

∑h∈NH ∑ j∈NG wk jh +ψ

π×ρ
− (λ × tan(θ/2))≤ δ ∀k ∈ K, (4.59)

Constraints (4.50) - (4.63) model the cargo to compartment assignment activities. Constraint

(4.50) states that if cargo j is on-board the ship during leg k then it has to be in at least one

compartment. Constraint (4.51) states that the maximum number of compartments that can

hold any on-board cargo should be less than or equal to the total number of compartments

(|NH |). Similarly, the Constraints (4.52) and (4.53) enforce the same conditions with respect to

y j. Any compartment of the ship should carry either one of the cargoes j ∈ NG or should be

empty. This condition is modelled by Constraint (4.54). This formulation uses cargo j = 0 to

model no cargo condition. Additionally, this constraint also enforced the at most one cargo per

compartment condition.
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Constraint (4.55) is the compartment capacity constraint. This enforces the condition that the

weight of cargo j ∈NG per compartment is less than or equal to the volume of that compartment

h ∈ NH only if cargo j is assigned to the compartment (ck jh = 1). Constraint (4.56) makes sure

that the total weight of a cargo j ∈ NG assigned to all compartments during sailing leg k ∈ K,

across all compartments of the ship should be equal to the total weight of the cargo j if that

cargo is loaded on the tanker during the sailing leg k. Constraints (4.57) and (4.58) limit the

maximum and minimum trim and heel causing moment within the minimum and maximum

permissible limits [−α , α] and [−β , β ], respectively. Constraint (4.59) makes sure that the

cargo is distributed in such a way that across the ship that the total allowable draft of the ship is

not exceeded.

ck jh = 0 ∀k ∈ K, j ∈ NX
h ,h ∈ NH , (4.60)

ck jh + ∑
h′∈NB

h

∑
j′∈NI

j

ck j′h′ ≤ 1 ∀k ∈ K, j ∈ NG,h ∈ NH , (4.61)

∑
j′∈NG

mk j j′h = c(k−1) jh ∀k ∈ K/{0}, j ∈ NG,h ∈ NH , (4.62)

∑
j∈NG

mk j j′h = ck j′h ∀k ∈ K/{0}, j′ ∈ NG,h ∈ NH . (4.63)

For every compartment h ∈ NH , and every sailing leg k ∈ K, the cargo-compartment incom-

patibility is checked and enforced by Constraint (4.60). Cargo-cargo compatibility is enforced

by Constraint (4.61). Constraints (4.62) and (4.63) state that mk j j′h is one if and only if during

leg (k− 1) compartment h ∈ NH carried cargo j ∈ NG, and during leg k compartment h ∈ NH

carried cargo j′ ∈ NG. Both these constraints together define the changeover activity allowing

flexibility to re-arrange cargoes in the compartments. In the next section, we will discuss some

key differences between the revised formulation and the original formulation.
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4.2.3 Key differences between s-PDP-TWTAC formulations: existing vs.

revised

We now describe the key advantages of our model over other existing ones. First, several

decision variables defined by Jetlund and Karimi (2004) and Neo et al. (2006) have been elim-

inated/fixed. Second, we capture the changeover (cargo swapping) activities in a new way,

which reduces the complexity of the problem. Third, we propose a different approximation of

the pick-up time windows for better modelling. The complete MILP formulation introduced

by Jetlund and Karimi (2004) and extended by Neo et al. (2006) is presented in the Appendix

(Section 4.2.2). Thus, our model is more realistic and at the same time, more tractable than the

earlier ones. Next, we describe the improvements implemented by us.

4.2.3.1 Eliminating/fixing of decision variables from the existing model

A MILP solver performs advanced pre-processing automatically. However, they only look at

the mathematical formulation, and have no knowledge about the application and the model. As

a result, the solver sometimes can not do model level or application specific reformulations. We

also see a substantial improvement in the running time with the proposed reformulations which

shows that the solvers are unable to discover and deploy the proposed reformulation techniques.

These modifications, even-though elementary, can be overlooked by the reader. Please refer to

Section 4.2 for all the definitions. We eliminate the following decisions from the model.

1. The port 0 (immediate destination) of the ship is given. Therefore, during leg 1, we

eliminate all arcs not originating from port 0.

• z1pp′ = 0 ∀p ∈ P\{PI}, p′ ∈ P,

2. If immediate destination of the ship is equal to the loading port of certain cargoes, then

the cargo can only be picked up at the end of leg 0. Consequently, the cargo pick-up

variable for these cargoes is eliminated for legs greater than 0.

• lk j = 0 ∀k ∈ K\{0}, j ∈ NU\{ j|PI 6= PL
j },

3. The cargo-compartment incompatibility states that incompatible cargoes cannot be stored

within certain compartments. This restriction can easily be enforced by eliminating fol-
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lowing variables from the model.

• ck jh, wk jh, bk jh, rk jh = 0 ∀k ∈ K, j ∈ NX
h ,h ∈ NH ,

4. At the end of the planning horizon all the cargoes need to be delivered. Thus, the follow-

ing decisions can be fixed to zero.

• l|K| j, u|K| j = 0 ∀ j ∈ NU ,

• c|K| jh, w|K| jh, b|K| jh, r|K| jh = 0 ∀ j ∈ NG,h ∈ NH ,

5. Eliminate all cargo-related decision variables if immediate destination of the ship is equal

to the discharge port of these cargoes.

• lk j = 0 ∀k ∈ K, j ∈ NU\{ j|PI 6= PD
j },

• uk j = 0 ∀k ∈ K\{0}, j ∈ NU\{ j|PI 6= PD
j },

• ck jh, wk jh, bk jh, rk jh = 0 ∀k ∈ K, j ∈ NG\{0, j|PI 6= PD
j },h ∈ NH ,

Additionally, the travel time decision variable tk in the original formulation is also eliminated

because it is can be represented by constant×zkpp′ , where the constant is defined as the constant

time taken to travel between ports p and p′. Further analysis of the s-PDP-TWTAC also enables

us to understand that zkpp′ can be used to eliminate variables xpk, while rest of the assignment

variables can be replaced with ck jh. The discharge variable uk j included in the original formu-

lation is made redundant due to zkpp′ because a cargo is always discharged when its discharge

port is visited. As such, if zkpPD
j
= 1, then it implies that uk j = 1. Table 4.1 compares the de-

cision variables defined in the original formulation with the ones proposed by us in the revised

formulation.

4.2.3.2 Remodelling of the changeover decision variables

The original formulation captures the changeover activity using a four indexed decision vari-

able as shown in Table 4.1. They define a changeover variable mk j j′h = 1 if at the end of leg

k ∈ K cargo j ∈ NG is replaced with cargo j′ ∈ NG in compartment h ∈ NH . In contrast, we

model the changeover activity using three indexed variables (bk jh and rk jh). The three indexed

variables are an extension of the on/off variable idea that is presented in Schwindt et al. (2015).

As a result, the changeover activity can be captured by a significantly reduced number of vari-
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Table 4.1: This table gives a comparison between the decision variables defined in the revised

formulation and the original formulation.

Decision Variables

Category Original

Formulation

Revised

Formulation

Comments

Time

Related
tk, ttk tk

Variable ttk is eliminated

by replacing it with

a constant times zkpp′

Routing zkpp′ zkpp′ No changes

Assignment
xpk, y j,

yk j, ck jh

ck jh

All of the eliminated variables

are redundant as they

and all the related constraints

can be re-designed using ck jh or zkpp′ .

Pick-up, discharge

of cargoes
lk j, uk j lk j

Analysis of the problem helps us

understand that cargo will always

be discharged when it discharge port

is visited. As such, uk j can be

eliminated as uk j = 1 is same

as zkpp′ = 1, where p′ = PD
j

Quantity wk jh wk jh No change

Changeovers mk j j′h bk jh,rk jh

Decision variable defined in the

original formulation models changeovers

with more granularity. However, for a

practical problem granularity provided by

the revised decision variables is sufficient.

Moreover, these new definitions drastically

reduce the total number of variables and

constraints. Also, they give a tighter LP

relaxation for the revised formulation,

compared to the LP relaxation of the

original formulation.
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Figure 4.6: This figure represents the pick-up time window definition presented by Neo et al.

(2006) and Jetlund and Karimi (2004)

ables. Moreover, empirical tests (Section 4.4)indicate that our formulation yields tighter linear

relaxations than the existing formulation presented by Neo et al. (2006).

4.2.3.3 Generalising the definition of the pick-up time windows

The pick-up time windows, as defined by Jetlund and Karimi (2004), Neo et al. (2006) and

Cóccola et al. (2015), had some practical limitations. Their definition stated that if a cargo is

being picked up, its latest pick-up time should be greater than the port arrival time plus half

of the administrative time. Additionally, the definition also stated that the earliest pick-up time

should be less than the port departure time minus half of the administrative time and loading

time of that cargo. Jetlund and Karimi (2004), Neo et al. (2006) and Cóccola et al. (2015)

present the following constraints for the pick-up time windows:

tk+1 ≥ (T E
j +T A

2 +T P
j )lk j + ∑

p∈P
∑

p′∈P
T T

pp′zkpp′ ∀k ∈ K\{|K|}, j ∈ NU ,

tk ≤ (T L
j −T A

1 )lk j +M(1− lk j) ∀k ∈ K\{|K|}, j ∈ NU .

We elaborate the need for our approximation with Figures 4.6 and 4.7. For simplicity, assume

that there are four cargoes, and that the ship is empty when it arrives at the port. Figure 4.6
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Figure 4.7: This figure represents the pick-up time window definition as defined in the s-PDP-

TWTAC

shows the pick-up time windows and the length of these time windows for the four cargoes.

Let cargoes one, three and four have the same pick-up time-windows, while Cargo two has a

different time period.

If the existing definition of the time windows is considered, then all the cargoes can be picked

up. Further, the assumption that the cargoes are loaded consecutively will lead to the scenario

presented in Figure 4.6. It can be observed that the actual pickup of cargoes C2, C3 and C4

happens outside their corresponding pick-up time windows. Such a situation might frequently

occur in practical instances.

As a result, we re-define the pick-up time-windows. Figure 4.7 shows a scenario describing the

revised definitions of the pick-up time windows. According to the revised definition, cargoes

can be picked up only if the cargo-assignment point (Figure 4.7) lies within its pick-up time

window. This approximation captures more generalised real-world instances. Changes in the

definition of the pick-up time windows make the s-PDP-TWTAC more realistic and improve

the correctness of the formulation. No particular effect was observed on the total solution time

or the quality of solutions that were discovered within the time limit.

Even-though the model presented in Section 4.2 is cleaner and smaller than the existing models,

it is still difficult to solve even for medium-sized test instances. In order to find good feasible
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solutions faster, we propose a heuristic in the following section.

4.3 Instance generator

Benchmark data sets in maritime transportation research are scarce. Only a few researchers

have presented reusable benchmark datasets. Brouer et al. (2011) present a benchmark dataset

for liner shipping network design models. Their dataset is composed of data from the liner com-

pany, Maersk Line. Similarly, Papageorgiou et al. (2014) and Hemmati et al. (2014) present an

extensive list of real-world benchmark data for maritime inventory routing problems and tramp

scheduling problems. Hemmati et al. (2014) develop their data to represent various shipping

segments based on factors like the deep sea or short sea and full-load or mixed-load problems.

However, certain limitations restrict the use of their data to our problem. For example, they do

not provide data related to the operational facets of our problem, such as the volume of compart-

ments, compartment materials, compartment dimensions, cargo-cargo, and cargo-compartment

compatibility. In order to overcome this limitation, we introduce an instance generator that is

based on real-world data and parameters. The instance generator code and instances are pub-

licly available online2. Our instance generator is built in the R programming language. It has

three main components, the core data folder, the instance generation engine, and the input pa-

rameter file. The core data contains static data used by the instance generator to create the final

problem-specific instances. The instance generator engine is the actual code responsible for

producing problem instances by processing the core data based on the specifications from the

user. Finally, the input parameter file allows the user to select different parameter settings for

the instances being produced. Figure 4.8 outlines the structure of our instance generator.

4.3.1 Instance format

A single instance generated by the instance generator consists of four files; namely, the ship data

file, the onboard cargo data file, the unassigned cargo data file and the problem data file. The

ship data file consists of all the ship-related data like ship number, ship name, ship structure,

2https://ladageanurag.shinyapps.io/s-PDP-TWTAC/
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Figure 4.8: The figure details the principle components of the instance generator, namely, core data,

input parameters, instance generator engine, and final instances.

port cost, time-chartered cost, and so on. The onboard cargo data file and the unassigned cargo

data file consists of cargo data like cargo number, cargo weight, origin, destination, cargo-cargo

compatibility restrictions, etc. Finally, the problem data file consists of miscellaneous problem-

related data like the total number of ports, port names, port distances and administrative time.

Figure 4.9 presents a complete list of data included in a single instance.

Figure 4.9: Complete list of data generated for a single instance
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4.3.2 Core data for generator

The generator relies on the core data to create instances. The core data includes the data col-

lected by us and can be enhanced by the user. The core data consists of 38 structurally different

ships and four networks of ports. The designs of the chemical tankers are largely based on

Odfjell’s chemical tanker fleet3. The number of compartments on the chemical tanker ranges

from 16 to 52. The compartment walls are made of stainless steel, zinc or epoxy. Network

data consists of nautical distances between ports4. Network 1 is borrowed from Jetlund and

Karimi (2004). Network 2 consists of the 98 busiest ports of 2015 as specified by American

Association of Port Authorities5. Network 3 consists of the top 47 busy ports in the Asia Re-

gion, as published by the International Association of Ports and Harbour6. Finally, Network

4 consists of the busiest ports in the year 2016 for the NAFTA region7. The NAFTA region

consists of ports in the USA, Mexico and Canada. A user can add additional chemical tankers

and network-related data to this core data. The instance generator engine reads this core data

and generates instances.

4.3.3 Input parameters file

Our model depends on many parameters. To keep our instance generator flexible, we have

provided multiple value levels for each parameter. The list of all input parameters that can be

specified by the user are as follows:

• total_ships: This parameter allows the user to specify the total number of instances that

need to be generated. If a single value (n) is provided, then the generator engine randomly

selects n different ship data files to create n single ship instances. If a list is supplied, then

only those ships are used to create instances. When a list is provided, the number of single

3https://www.odfjell.com/tankers/our-fleet/
4http://ports.com/sea-route/
5http://aapa.files.cms-plus.com/Statistics/WORLD%20PORT%20RANKINGS%202015.xlsx
6http://www.iaphworldports.org/iaph/wp-content/uploads/WorldPortTraffic-Data_for_

IAPH_using_LL_data_2017_Final.pdf
7http://aapa.files.cms-plus.com/Statistics/NAFTA%20REGION%20CONTAINER%20TRAFFIC%

20PORT%20RANKING%202016_T3.pdf
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ship instances generated is equivalent to the length of the list. By default, a maximum

of 38 (the default number of different ships included in the core data) instances can be

generated if all other input parameters are fixed.

• total_cargoes: This specifies the total numbers of cargoes (both onboard and unassigned)

that need to be generated. The number of cargoes can be from one to infinity. Practically,

values between 50 and 150 might be interesting, depending on market conditions.

• network_number: Enables the user to select any single network, for instance generation.

The network number can be between 1 and 4. The four networks have 36, 98, 46 and 48

ports respectively.

• total_planning_time: The total short-term problem planning horizon. Specifying this

parameter ensures that the pick-up time windows of all the unassigned cargoes start before

the parameter value. The length of the pick-up time windows varies randomly from 3 days

to 7 days. The maximum and minimum time-windows lengths are determined from the

literature. We use the value 30 for our tests.

• cargo_complexity: This parameter can take values, 1, 5 or 10. Each value varies the

percentage of cargoes that belongs to each category. Setting this parameter value to 1

makes sure that 20% of the cargoes belong to category 1, 30% of the cargoes belong

to category 2, 20% of the cargoes belong to category 3, while the rest of the cargoes

belong to category 4. Similarly, setting this parameter to 5 segregates the cargoes into four

categories by {40%,30%,20%,10%} percentage split. Furthermore, setting this parameter

to value 10 yields a cargo split that follows {70%,10%,10%,10%} percentage split. All

four cargo categories are described in Section 4.3.4.

• totallegs: This number specifies the total number of legs per ship. If total_ships is a

list, then the totallegs parameter also needs to be a list of the same size separated by

spaces. If a single number is specified, then all the ships with as many numbers of legs

are generated. MILP solution time grows exponentially as the number of sailing legs

increase. The suggested range of values is from 7 to 15.

• ship_util_level: This parameter specifies the maximum allowable chemical tanker utili-

sation at the beginning of the time horizon. For example, setting the value to 0.5 assumes

that a maximum of half of the chemical tanker can be filled up with onboard cargoes in
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the generated data. The minimum and maximum values for this parameter are 0 and 1.

• loading_rate: Specifies the loading rate for all the cargoes. The default tested value is

4800 tonnes/day, which is borrowed from Jetlund and Karimi (2004).

• unloading_rate: Specifies the unloading rate for all the cargoes. Default tested value is

4800 tonnes/day, which is borrowed from Jetlund and Karimi (2004).

• administrative_time: The default tested value is 0.25 days as stated by Jetlund and Karimi

(2004).

• Alpha and beta: Absolute maximum allowable trim and heel moments in tonnes-metre.

The tested value for both parameters in our experiments is 1 tonnes-metre.

4.3.4 Instance generator engine

The instance generator engine takes multiple input parameters that are provided by the user

through a text file. A detailed description of all the input parameters is provided in Section 4.3.3.

A high-level pseudo-code of the algorithm, which is used to generate the problem instances is

presented using Algorithm 1. A single problem instance comprises of a chemical tanker data

file, an on-board cargoes data file, an unassigned cargoes data file, and the problem data file. The

chemical tanker data file and both the cargo data files store chemical tanker and cargo-related

information, respectively. The problem data file stores port-related information that includes

the list of ports in the network and distances (nautical miles) between them. The problem data

file also includes the administrative time constant.

The readInputFile() processes the inputs that are provided by the user. Subsequently, the gener-

ateShips() and generateCargoes() functions generate the interim chemical tanker data file and

the cargo data file. The generateCargoes() sub-routine is capable of generating many cargoes

infinitely; it can generate as many as four different categories of cargoes. These categories are

adopted as per cargo categories defined by Jetlund and Karimi (2004) and Neo et al. (2006).

From a practical perspective, more cargo categories can be introduced. However, we believe

that from an operations research perspective these categories should suffice for most type of

experiments.
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Algorithm 1: Instance Generator Engine

generate_instances(core_data_directory, output_directory){

readInputFile();

generateShips();

generateCargoes()→ Returns cargo_data_file;

modifyToOnboardCargoes(cargo_data_file){

solveWeightAssignmentsLP();

assignCargoNumbersToWeights();

};

modifyToUnassignedCargoes(cargo_data_file);

modifyShipData();

generateProblemData();

}

The first category can be stored in any compartment and has no conflict with any other cargo

category. Cargoes in category two have conflicts with cargoes of category three. Further, the

cargoes in category three have conflicts with cargo categories two and four. Additionally, the

cargoes in category three cannot be stored in epoxy-coated compartments. Finally, the cargoes

in category four also have conflicts with cargo category three, and can only be stored in com-

partments that are made of stainless steel. The generateCargoes() sub-routine also generates

other cargo related data shown in Figure 4.9. Loading port and unloading port of the cargoes

are randomly selected from the port network, such that the travel time between both the ports is

not more than the total planning horizon.

The cargo data file that is generated by generateCargoes() acts as an input to the modifyToOn-

boardCargoes() and modifyToUnassignedCargoes() functions. Both these functions generate

the final instance files for on-board cargoes and unassigned cargoes. The final list of onboard

cargoes has to be generated such that there is at least one cargo-compartment allocation by

weight, which respects the chemical tanker stability requirements and the compartment capac-

ities. One way to generate such an initial set of cargoes is to generate a set of cargoes, along

with the cargo weights. For this, a cargo compartment assignment MILP can be solved re-

peated, by adding a new cargo during every iteration, and terminating when no new cargoes can

be inserted. However, this is quite a time consuming process for even a single instance. Thus,
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this approach cannot be used to generate a large number of instances. Instead, we implement a

bottom down approach.

For this purpose, the sub-routine solveWeightAssignmentsLP() solves a linear program (Equa-

tions (4.64) - (4.67)) below. This linear program tries to maximise the weight in each com-

partment (wh) while satisfying the compartment capacity constraint (4.65) and chemical tanker

stability constraints (4.66, 4.67). Parameter ρmin equals the minimum density amongst all the

cargo generated for that instance. Rest of the parameters used in the linear program are already

defined in Section 4.2.

Maximise: ∑
h∈NH

wh (4.64)

Subject to: 0≤ wh ≤Vhρmin ∀h ∈ NH , (4.65)

−α ≤ ∑
h∈NH

whιh ≤ α , (4.66)

−β ≤ ∑
h∈NH

whκh ≤ β . (4.67)

Subsequently, cargo numbers are assigned to weights using the assignCargoNumbersToWeights()

sub-routine. The assignCargoNumbersToWeights() sub-routine takes into consideration all the

compatibility constraints to give a list of on-board cargoes with at least one feasible cargo-

compartment assignment allocation.

The generator then modifies the chemical tanker data file to include the list of on-board cargoes,

immediate destination and port costs through the modifyShipData() routine. The modifyShip-

Data() routine completes the chemical tanker data instance file. Finally, it generates the problem

instance file using the generateProblemData() function. In the next section, we discuss compu-

tational experiments on instances obtained from the generator.

4.4 Computational study

The computational study is divided into two main parts. First, we discuss the effects of im-

provements in the model formulation. Second, we present a secondary study discussing the

sensitivity of performance parameters of the revised formulation to that of some important in-
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put parameters. We first present a brief discussion around the test instances generated for this

study.

4.4.1 Description of test instances

We generated 200 test instances for our experiments in the following way. A default seed value

of 10 and total_ships input parameter value of 38 were provided to our generator to obtain

1,672 (44 different instance sets and 38 chemical tankers) random instances. Instances with

the same Instance Set number have identical input parameters. The input parameters include

the total number of cargoes, the port network, the total planning time, the cargo complexity

parameter value, the total number of sailing legs, the utilisation of the ship, the loading rate,

the unloading rate, the administrative time, and the alpha and beta parameter values (defined

in Section 4.3.3). However, every instance within the same instance set has different chemical

tanker characteristics. Additionally, even though the input parameter value total_cargoes is

same for an instance set it only defines the cardinality of the cargo set. Individual cargoes

differ in terms of cargo characteristics like total weight, density, origin, destination and pick-up

time-windows.

To keep the number of test instances reasonable, we selected a subset of 13 chemical tankers

(Table A.1), with the most diverse characteristics. We narrowed down our test set by ran-

domly selecting 200 test instances in such a way that there is at least one instance from each

of the 44 instance sets, and at least one for each of the 13 ships. The instances are named

INST_SET_SHIP. SET denotes the instance set number for a given instance. SHIP denotes the

chemical tanker number that is used in that particular instance. For example, instance INST_1_1

would belong to the instance set 1, and model ship 1 (BOW MEKKA) operations. Table A.2

lists the different input parameter values used to generate 44 instance sets. Tables A.2 and A.1

also tabulate some solution-related statistics.

The generator was run using R (version 3.6.1) and RStudio (version 1.1.383). All subsequent

tests are carried out using the Cplex 12.7.1 MILP solver. Each instance was solved using 4 cores

of the Xeon-E5-2667-v3 3.20 GHz CPU and 8 GB RAM. We used C++11 standard libraries and

Cplex Concert Technology libraries to construct all the formulations.
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Figure 4.10: Percentage reduction in the number of variables and constraints - OG formulation vs. REV

formulation.

We have uploaded along with the instance generator all the 200 test instances8. Logs and

solution files for the Cplex run are available online. Uploaded Cplex run includes solving the

REV formulation presented in Section 4.2 using the Cplex solver for a CPU time limit of 86,400

seconds, and the default MIP gap tolerance of 0.01 %.

For the 200 test instances, the total number of variables is between 23,115 and 4,97,749. The

total number of constraints for the 200 test instances varies from 24,440 to 5,23,392.

4.4.2 Effects of improvements in the model formulation

We now compare our revised (REV) formulation and an existing (OG) formulation of the s-

PDP-TWTAC. In order to make a fair comparison, we make use of the new approximation of

time windows in both the formulations. We refer to the formulation presented by Neo et al.

(2006), which is altered with our definition of pick-up time windows as the original formulation

(OG). Further, we refer to the formulation presented in Section 4.2 as the revised formulation

(REV). As the solution times are large we limit our comparative study to 30 instances selected

from the above set of 200 instances. For this study, our overall time limit is 86400 seconds CPU

time.

8https://ladageanurag.shinyapps.io/s-PDP-TWTAC/
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Figure 4.11: LP Relaxation - Objective value and solution time comparison - OG formulation vs. REV

formulation.

The OG and the REV formulations are compared on problem size, and their linear relaxations.

The LP relaxation provides an upper bound to the optimal value of the model. The lower

the upper bound, the tighter is the LP relaxation giving a solution closer to the integer feasible

points. Figure 4.10 reports the percentage reduction from OG to REV in the number of variables

and constraints. It was observed that the problem size decreased drastically for all the instances

when the REV formulation is used. 21 out of 30 instances show a reduction of at least 90 % in

the total number of variables, and other instances show a reduction by at least 76 %. Further, the

total constraints decrease by 15 % to 23 %. Changes described in Section 4.2.3.1 helped reduce

the number of decision variables and constraints between 5 to 15 percent. These changes did not

have any impact on the tightness of the LP relaxation. The most significant improvement was

achieved by reformulating the changeover decision variables (presented in Section 4.2.3.2). On

an average, this change lead to a 70 % to 95 % decrease in the total number of decision variables,

and 10 % to 15 % decrease in the total number of constraints.

The LP relaxation of both the formulations could be solved within the time limit for 22 out of 30

instances. Figure 4.11 compares the LP relaxation value of OG and REV formulations on these

22 instances. It shows that both the solution time and the upper bound decreases for our revised

(REV) formulation. Since, the LP relaxation gives a lower value, we obtain a tighter bound

from the REV formulation before any cutting is done. The remodelled changeover decision

variables are solely responsible for tightening of the LP relaxation of the revised formulation in
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comparison to the original formulation. In the remaining 8 instances, the LP relaxation of the

OG formulation ran out of memory. In contrast, solver managed to solve the REV formulation

without any memory issues.

Now we compare performance parameters such as the total solution time and the relative gap at

time limit for the two MILP formulations (Table 4.2). The second column (Cplex Status) reports

OOM if the MILP solver ran out of memory. The column that is labelled, Best Objective, lists

the best lower bound obtained at termination. The total solution time at termination for all the

30 instances is reported in the succeeding column (Total CPU Time). Additionally, the Relative

Gap column presents the relative gap (%) between the upper and lower bound on the optimal

value reported by Cplex at termination.

Out of the 30 instances, 18 instances ran out of memory (8 GB) without discovering any feasi-

ble integer solution when solved using the OG formulation. The OG formulation has a weaker

linear relaxation as compared to the REV formulation. Additionally, it has an exponential num-

ber of decision variables which causes the branch and bound tree to explode. We believe this is

the reason for OOM status. Additionally, for the 18 instances that ran out of memory, the total

solution time represents the time at which the problem was terminated due to memory limits. In

contrast, the REV formulation stays within memory limits and finds at least one feasible integer

solution for all 30 instances. Additionally, REV formulation finds the optimal solution in 15

instances (within the time limit), while the OG formulation terminates with optimality in only

six instances. We observe that REV formulation is much faster (up to 15 times) and memory

efficient as compared to the OG formulation. We now move our discussion towards the a short

study on sensitivity of performance parameters with respect to some of the input data.

4.4.3 Sensitivity analysis of Cplex run performance parameters

We discuss the sensitivity of the performance parameters, namely, the Gap (%) and the total

CPU time of the Cplex run with respect to the different input parameters. The Gap (%) is cal-

culated with respect to the upper bound reported by Cplex. The primary input parameters con-

sidered for this study are the total number of cargoes, the total number of ports, the maximum

number of sailing legs, and the number of discharge ports of the onboard cargoes. Moreover,
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Table 4.2: Comparison of problem status, best integer solution, total solution time and relative

gap between the original and the revised formulation.

Instances Cplex Status Best Objective Total CPU Time Relative Gap

OG REV OG REV OG (sec) REV (sec) OG (%) REV (%)

INST_1_1 Optimal Optimal 1904910 1904910 5651 412 0.01 0.01

INST_5_9 Optimal Optimal 995262 995262 72102 31006 0.01 0.01

INST_6_1 Feasible Optimal 1537990 1537990 86400 25274 54.563 0.01

INST_8_18 OOM Optimal No Sol 2269880 718 20858 Inf 0.01

INST_9_22 OOM Feasible No Sol 3239300 594 86400 Inf 53.261

INST_10_10 Feasible Feasible 407682 372226 86400 86400 607.687 689.32

INST_12_7 OOM Feasible No Sol 1172500 779 86400 Inf 104.12

INST_13_17 OOM Optimal No Sol 2801950 1054 2288 Inf 0.01

INST_16_4 OOM Optimal No Sol 1512150 1538 15294 Inf 0.01

INST_17_4 OOM Feasible No Sol 1829870 834 86400 Inf 109.954

INST_19_27 Feasible Feasible 3821410 4684360 86400 86400 82.4 37.607

INST_21_7 OOM Feasible No Sol 1531150 14 86400 Inf 314.955

INST_22_3 OOM Feasible No Sol -281065 70 86400 Inf 1220.24

INST_23_10 OOM Feasible No Sol 2951890 30 86400 Inf 132.28

INST_24_22 OOM Feasible No Sol 793339 30 86400 Inf 695.712

INST_25_18 OOM Optimal No Sol 3769140 37 70888 Inf 0.01

INST_29_20 OOM Optimal No Sol 3798930 270 75667 Inf 0.01

INST_30_20 OOM Optimal No Sol 2219180 110 43172 Inf 0.01

INST_31_9 OOM Feasible No Sol 5863370 747 86400 Inf 15.953

INST_32_1 OOM Feasible No Sol 2450400 33 86400 Inf 109.332

INST_33_8 OOM Feasible No Sol 991297 33 86400 Inf 771.241

INST_34_18 OOM Feasible No Sol 581309 1 86400 Inf 1035.6

INST_35_22 OOM Feasible No Sol -585672 34 86400 Inf 1740.83

INST_38_7 Optimal Optimal -1167910 -1167910 6477 5420 0.01 0.01

INST_39_17 Optimal Optimal 1218010 1218010 16594 1014 0.01 0.01

INST_40_27 Optimal Optimal 623656 623656 1640 750 0.01 0.01

INST_41_11 Feasible Feasible 25338.7 200491 86400 86400 3081.64 0.05

INST_42_4 Feasible Optimal -811647 -781745 86400 32743 51.717 0.01

INST_43_4 Optimal Optimal 2836360 2836360 76294 15602 0.01 0.01

INST_44_11 Feasible Optimal 470923 505503 86400 36092 199.387 0.01
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some secondary input parameters like the total number of compartments, the ship speed, the

draft constant, the fuel cost, the time charter cost, and the average compartment volume were

also considered during this study.

Figure 4.12: This figures presents the sensitivity analysis of the Cplex performance parameters with

respect to the total number of cargoes, total legs, and the total number of onboard cargo discharge ports.

Analysis using multiple linear regression was performed to explore the effects of the input

parameters on the performance parameters. Some of the primary input parameters significantly

affect the performance parameters. Figure 4.12 helps us illustrate this claim. However, the

performance parameters seem to be insensitive to the secondary input parameters. Figure 4.12

classifies the test instances into different categories based on the input parameters. The vertical

axis in these figures presents the average of the performance parameters. For example, the first

chart in Figure 4.12 differentiates the test instances based on the total number of cargoes on the

horizontal axis. Similarly, the vertical axis presents the average Gap (%).

In Figure 4.12, Chart 3 and 4 show that both the average solution quality and the average total

CPU time worsen with the increase in the maximum number of sailing legs. Both the Cplex

performance parameters deteriorate with the increase in the maximum number of legs.

Charts 5 and 6 in Figure 4.12 illustrate that the increase in the total number of onboard cargo

discharge ports significantly improves the Gap (%) and the total CPU time for the Cplex runs.

This effect is correct because the total number of onboard cargo discharge ports reduces the

flexibility of the route of the chemical tanker. As per the problem definition, all onboard cargoes
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must be delivered. Consequently, their corresponding discharge ports have to be visited. Thus,

a higher number of different discharge ports of onboard cargoes reduces the number of new

ports on the route of the ship. This reduces the feasible region of the problem. Additionally,

our sensitivity study showed that the performance parameters were not affected by the number

of ports or the number of compartments.

This chapter discussed the MILP formulation and numerical experiments related to the s-PDP-

TWTAC. It also discussed the design and construction of the instance generator. However, even

the improved MILP formulation is insufficient to be used in a real-world tactical setting. As

such, the next chapter discusses different heuristics designed to solve the s-PDP-TWTAC.
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Chapter 5

Neighbourhood search heuristics for the

s-PDP-TWTAC

In this section, we present different neighbourhood-search heuristics. Each of them has two

phases. Phase 1 of the heuristics generates one or more initial solutions for Phase 2. Sub-

sequently, Phase 2 implements a search strategy to improve the initial solutions further. We

implement different strategies for Phase 1 and Phase 2 of the heuristics.

Chapter 5 is structured as follows. We first describe the two important sub-routines, namely,

insertNewCargo and portRemove. These two sub-routines form the core of the search strat-

egy (Phase 2) used by all the heuristics. insertNewCargo can be thought of as a local search

step, which helps generate different feasible solutions within the same neighbourhood, while

portRemove helps change the neighbourhood. Subsequently, this chapter presents a detailed

discussion presenting all the heuristics. The neighbourhood search heuristics are divided into

two main categories. LPNS and LPNS+ heuristics depend on the linear relaxation to generate

initial solutions. As such, we classify them as linear relaxation guided neighbourhood search

heuristics. On the other hand Heuristic 1, Heuristic 2, Heuristic 3, and GRASP heuristic de-

pend on an integer programming relaxation to generate the initial solution during Phase 1. As
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Table 5.1: This table presents a high-level summary of the heuristics discussed in this chapter

LPNS+ H1 H2 H3 GRASP

Core-subroutine 1:

insertNewCargo

This sub-routine tries to improve a given solution by inserting a new

cargo into it. If phase 2 of all the heuristics is viewed as an

iterated local search strategy, then this sub-routine is the local search

component within Phase 2.

Core-subroutine 2:

portRemove

This sub-routine tries to randomise a given solution by removing

a port from the route of the ship. This sub-routine primarily helps the

heuristics jump out of local optimal solutions. Within the scope of an

iterated local search, this sub-routine can be viewed as an perturbation step.

The above sub-routines form the core on which the second phase of the heuristics are constructed.

Phase 1

LP is solved, followed

by an MILP

to generate a

single initial solution.

An MILP is solved

over a restricted set

of ports to generate

a single initial solution.

A relaxed MILP is

solved to fix the route

of the chemical tanker.

The s-PDP-TWTAC

MILP is solved for

this fixed route to generate

a single initial solution.

The discharge ports

of the onboard cargoes

will always be part

of an feasible solution.

As such, route

permutations are

generated from these

ports. Solutions

corresponding to each

route permutation is

an initial solution.

Multiple restricted MILPs of

the s-PDP-TWTAC

are solved to generate

multiple initial solutions.

Phase 2

Improves the phase 1

solution using the

iterated local search strategy.

Improves the phase 1

solution using the

iterated local search strategy.

Improves the phase 1

solution using the

iterated local search strategy.

Every initial solution

is improved using the

iterated local search strategy.

For all other heuristics,

the insertNewCargo

sub-routine inserts

cargoes greedily, while

for GRASP it follows

a greedy random approach.

Note: The differences in the implementations of the Phase 1 and Phase 2 of the heuristics are described in details in the succeeding sections.

a result, these heuristics are grouped together as integer programming guided neighbourhood

search heuristics. Table 5.1 gives a high level summary of the heuristics discussed in this chap-

ter. Next, we discuss the two core sub-routines.

5.1 Core sub-routines

Phase 2 of our heuristics primarily improves the initial solutions using two core sub-routines,

namely, the insertNewCargo sub-routine and the portRemove sub-routine. The insertNewCargo

sub-routine tries to improve the solution greedily based on profit, while the portRemove sub-

routine tries to randomize the local search space. A single iteration of Phase 2 involves either

the inserting of a new cargo or the removing of a port from the chemical tanker’s route. We first

discuss the two core sub-routines in the next two Sections 5.1.1 and 5.1.2.
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5.1.1 Core sub-routine 1: insertNewCargo

The first sub-routine is the insertNewCargo sub-routine. In a single iteration, this sub-routine

identifies a profitable cargo to service. Additionally, if a profitable cargo is identified, this sub-

routine also updates the schedule of the chemical tanker to incorporate the pickup and delivery

of the new cargo. It starts by classifying cargoes into four categories and generating a list

of potential cargoes (NU1). Set NU1 is a subset of unassigned cargoes (NU ) and excludes all

cargoes that are already loaded on the chemical tanker in the present solution.

Category +PD cargoes are the ones for which the pickup port and the discharge port are not part

of the tanker route in the current solution. For a Category +D cargo, the pickup port is already

part of the current route but not its discharge port. Similarly, for a cargo in Category +P, its pick

port has to be added to the route of the chemical tanker. Finally, a cargo included in Category +/0

has both its pickup port and its discharge port on the route of the chemical tanker. As a result,

no new port associated with the cargo needs to be added. For Category +/0 cargoes, their pickup

and discharge ports should satisfy the precedence constraint in order to be able to pick them up.

The precedence constraint states that the pickup port has to be visited before the discharge port.

In our problem, the maximum number of sailing legs is fixed. The maximum number of ports

that can be inserted into the present route of the chemical tanker is equal to the number of

dummy ports (DP) on the route. A dummy port is an artificial port assigned to a sailing leg if a

real port is yet to be assigned. As an artificial location, the dummy port is at zero nautical miles

from all other ports and has no associated port cost when assigned to the route. As a result, set

NU1 can include Category +PD cargoes only if the number of DP is greater than 1. Similarly,

cargoes in categories +D and +P are included in set NU1 only if the number of DP is greater

than 0.

Inserting a new cargo into the present solution entails the inserting of the corresponding pickup

and discharge ports of that cargo. As such, for every cargo j ∈ NU1, we generate a list of

feasible positions. A position is represented as a tuple that consists of the cargo number, the

pickup sailing leg, the discharge sailing leg, profit and the cargo category. The pickup sailing

leg and the discharge sailing leg are the sailing legs during which the new cargo should be

picked up and discharged. As a result, one cargo can have multiple feasible positions. Profit is
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defined as the change in the present solution’s objective function value if the cargo is picked up

during the pickup sailing leg and discharged during the discharge sailing leg. The final element

of the position tuple indicates the category of the cargo.

A position is feasible if it passes through four different feasibility checks. First, we check for

sufficient chemical tanker capacity at each port on the route of the chemical tanker. The capacity

of the chemical tanker is calculated based on the volume of empty compartments. Second, we

check whether the pickup port of the cargo to be inserted can be reached within the pickup time

window of the cargo. Next, we ensure that inserting the position does not violate the pickup

time windows of already loaded cargoes. Before performing the fourth feasibility check, the

feasible positions are sorted into a descending order of profit, and all the positions with negative

profit are discarded.

The final feasibility check is conducted to ensure that the position does not violate the compartment-

related constraints. To simplify each iteration, we assume that all the pre-existing cargo-

compartment allocations are fixed. Thus, we solve the mixed-integer program (MIP) only for

decision variables that are indexed on the cargo to be inserted. The decision to fix the pre-

existing allocations is primarily to reduce the time complexity of the mixed integer program

solved to generate these allocations. Some initial experiments were performed to generate an

entirely new cargo-compartment allocation. However, this substantially added to the overall

solving time of each MIP.

Readers can also observe that the MIP (Equation (5.1) - (5.10)) is solved to accept the first

feasible cargo-compartment allocation by setting the objective function to zero. However, in

order to generate better quality allocations, two alternate objective functions were also used in

initial experimentations. These objectives tried to minimize the total number of changeovers

(bk jh) or the total number of compartment utilization (ck jh). Both these objectives drastically

increased the solution time to even generate a single feasible cargo-compartment allocation.

Moreover, we did not notice any improvement in the overall quality of the solutions generated

by the heuristics. However, as the alternative objectives don’t affect feasibility, they could be

used as a form of solution polishing to provide an equivalent solution to the best found at the

end of the main algorithm in which cargo plans have been optimised according to secondary

criteria relating to stability, handling cost, or other considerations.

We solve the following MIP to generate a feasible cargo-compartment allocation plan. The

84



following MIP is a special case of the s-PDP-TWTAC formulation. Let J represent the cargo

number of the input cargo. Let K′ be the set of sailing legs between the pickup leg and the

discharge leg of the new cargo. Additionally, let K be the set of all sailing legs. NC and NH be

the set of all cargoes and set of cargo holds/compartments of the chemical tanker, respectively.

Set NC has a special cargo indexed as 0 with weight 0 and no compatibility restrictions.

The MIP (Equation (5.1) - (5.10)) fixes all variables of the s-PDP-TWTAC formulation except

ck jh, wk jh, bk jh and rk jh. ck jh is binary and takes the value 1 if cargo j is stored in cargo hold h

at the end of sailing leg k. wk jh is real-valued, and denotes the actual weight of cargo j stored

in cargo hold h at the end of leg k. bk jh and rk jh are both binary. bk jh is 1 if cargo j at the end of

leg k replaces any other cargo in compartment h. Similarly, rk jh takes the value 1 if at the end

of leg k cargo j is removed from the cargo hold h.

Objective function:

Minimise z = 0 (5.1)

Subject to:

∑
h∈NH

ckJh ≥ 1 ∀k ∈ K′, (5.2)

∑
j∈NC

ck jh = 1 ∀k ∈ K,h ∈ NH , (5.3)

c(k−1)Jh +bkJh = ckJh + rkJh ∀k ∈ K′\{0},h ∈ NH , (5.4)

wkJh ≤V H
h ρJckJh ∀k ∈ K′,h ∈ NH , (5.5)

∑
h∈NH

wkJh =WJ ∀k ∈ K′, (5.6)

−α ≤ ∑
h∈NH

∑
j∈NC\{0}

wk jhιh ≤ α ∀k ∈ K′, (5.7)

−β ≤ ∑
h∈NH

∑
j∈NC\{0}

wk jhκh ≤ β ∀k ∈ K′, (5.8)

bkJh ≤ ckJh ∀k ∈ K′\{0},h ∈ NH , (5.9)

rkJh ≤ c(k−1)Jh ∀k ∈ K′,h ∈ NH . (5.10)

Constraint (5.2) states that the input cargo J has to be assigned to at least one compartment
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between its pickup and discharge legs. Constraint (5.3) makes sure that every compartment is

either empty or has, at the most, one cargo assigned to it. Constraint (5.4) models changeovers.

It tracks the swapping of cargoes within the chemical tanker’s compartments. Constraint (5.5)

ensures that the compartment capacity is not exceeded. Constraint (5.6) ensures that the quantity

of a cargo that is distributed in multiple compartments during a sailing leg is equal to the total

weight of the cargo. Constraints (5.7) and (5.8) ensure that the maximum allowable trim and

heel moments are not exceeded. Constraints (5.9) and (5.10) ensure that bk jh and rk jh are not

free variables. Constraint (5.9) ensures that bk jh is zero if cargo J was not assigned to the

compartment in the present leg. Constraint (5.10) ensures that the rk jh can take value 1 if and

only if cargo J was assigned to the compartment during the last leg. The cargo-compartment

and cargo-cargo incompatibilities are enforced in pre-processing by fixing the bounds of the

ck jh variables. The insertNewCargo sub-routine is presented Algorithm 2.

Algorithm 2: insertNewCargo(data, s)

cargo_by_category := generatePotentialCargoes;

Declare: position_list;

for cargo in cargo_by_category do

createPositionTuple(cargo);

populate(position_list);

if isNotEmpty(position_list) then

sortByProfit(position_list);

for position in position_list do

if profit > 0 and compartmentAllocationExists then

generateNewSchedule(position, s);

else

return s;

We further explain the insertNewCargo sub-routine with the help of an example. Figure 5.1

presents a toy-sized example and an initial solution. The port network is a complete bidirec-

tional graph that consists of seven ports. The chemical tanker is at port Shanghai at the begin-

ning of the time horizon. A maximum of four ports can be inserted into the chemical tanker’s

route. Let NO consist of Cargo 5, while NU equals {1,2,3,4}. Relevant cargo-related informa-
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tion is presented in Figure 5.1. For simplicity, we consider a chemical tanker with five stainless

steel compartments with volumes, as shown in Figure 5.1.

Figure 5.1: This figure represents a toy sized instance of the s-PDP-TWTAC along with an

initial solution s0 for that instance.

Phase 1 of the Heuristic H1 generates the initial solution, s0, as shown in Figure 5.1. The chem-

ical tanker starts from Shanghai and travels to Singapore during sailing leg 1. Moreover, Cargo

5 is delivered at its discharge port, Singapore. During the first sailing leg, Cargo 5 (volume 400)

is stored in Compartment 3. The objective function of s0 is 1658.33 units. The chemical tanker

capacity available at leg zero is 800 units (equal to the volume of empty compartments).

Based on s0, Phase 2 of the heuristic assigns Cargo 1 in Category +P, Cargo 2 in Category +/0,

Cargo 3 in Category +D, and Cargo 4 in Category +PD. Further, position(s) are created for each

of the four cargoes. As mentioned earlier, a position is represented as a tuple that consists of the

cargo number, the pickup leg, the discharge leg, the profit and the cargo category. Figure 5.2

presents all seven feasible positions for the four feasible cargoes. Figure 5.2 illustrates the

updated solutions when cargoes from each of the categories are inserted into s0. The middle

row presents the initial solution, s0. The top and bottom rows show the updated solutions

obtained by inserting the most profitable position for each cargo.

For example, the most profitable position for Cargo 1 is (1, 1, 1, 6846, +P). Position (1, 1, 1,

6846, +P) states that Cargo 1 should be picked up and discharged during the first sailing leg.

The profit that is obtained by inserting Position (1, 1, 1, 6846, +P) in s0 is 6846 units. Finally, it
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Figure 5.2: Core sub-routine 1: insertNewCargo is illustrated in this figure, which constitutes

the local search strategy incorporated in Heuristics LPNS+, H1, H2, H3, and GRASP.

also states that Cargo 1 belongs to Category +P. The block in the first row and the first column

represents the updated solution that results from the inserting Position (1, 1, 1, 6846, +P) into

s0. Port Hong Kong (pickup port of Cargo 1) is inserted during the initial solution’s first sailing

leg. Additionally, keeping in mind the precedence constraint, the pickup port is placed before

the discharge port. The discharge port of Cargo 3 (Singapore) is already on the route of the

chemical tanker. In the updated schedule, the chemical tanker travels from Shanghai to Hong

Kong and ends its voyage in Singapore. Cargo 3 is picked up in Hong Kong, and both Cargo 5

and Cargo 3 are delivered in Singapore. Further, the objective function of the updated solution

is 8464.17 units.

5.1.2 Core sub-routine 2: portRemove

The second core sub-routine is the portRemove sub-routine that modifies the existing solution

by removing one port from the present route of the chemical tanker. There are two conditions

under which the portRemove sub-routine is invoked. First, the number of iterations since the
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last port removal should be equal to the number of pre-defined iterations, and second, the insert-

NewCargo sub-routine is unable to generate any new feasible positions for the present solution.

The port to be removed from the route of the chemical tanker is randomly selected using uniform

distribution. However, it cannot be a discharge port of an on-board cargo. Once a port is

removed, the updated route of the chemical tanker is generated without altering the sequence

of other ports. Removing a port from the present route of the chemical tanker affects the arrival

times of other ports, as well as the cargo pickups and drop-offs that are associated with it. As

such, all unassigned cargoes that are already allocated to the chemical tanker have to be re-

assigned. As a result, we construct a new solution with the updated route of the chemical tanker

and with only on-board cargoes being delivered. The construction of the updated route of the

chemical tanker still involves the generating of a feasible cargo-compartment allocation for the

on-board cargoes. A simple way to generate an allocation plan for the on-board cargoes is by

solving the MILP defined by Equations (5.1) - (5.10).

Since solving an MILP may be time-consuming, we employ an alternative strategy to generate

a feasible cargo-compartment allocation plan for the on-board cargoes NO. For heuristics 1 and

3, the original sequence of ports from s0 remains unchanged throughout the heuristic. Con-

sequently, for every new route that is generated by eliminating a port, the cargo-compartment

allocations for the on-board cargoes can be calculated directly from s0. This alternative strategy

enables us to generate cargo-compartment allocations at a much faster rate.

Let the set of discharge ports of on-board cargoes be P, and its compliment be Pc. The ports that

appear on the updated route of the chemical tanker belong either to P or Pc. For all ports, p∈ P,

the cargo-compartment allocation is equal to the allocation at port p, in the initial solution s0.

For all the ports, p′ ∈ Pc, the cargo allocation is calculated as follows. Let port p ∈ P be the

last visited discharge port of on-board cargo before port p′ in the updated route of the chemical

tanker. Then, the cargo-compartment allocation at the port, p′, in the updated solution, is equal

to the cargo-compartment allocations at the port, p, in the initial solution, s0.

Figure 5.3 illustrates the portRemove sub-routine. Given the present solution (s), we first iden-

tify the ports that can be removed. Excluding the immediate destination (PI) of the chemical

tanker, and the discharge port of Cargo 5, we are left with ports Jasaan and Bangkok. Port

Bangkok is eliminated randomly from the route of the chemical tanker along with unassigned

Cargo 4. Subsequently, the updated solution (s′) is constructed as shown in Figure 5.3. The
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Figure 5.3: Core sub-routine 2: portRemove is illustrated in this figure, which is a part of the

local search strategy incorporated in Heuristics LPNS+, H1, H2, H3, and GRASP.

objective function of s′ is 491.67 units. The set P includes ports Shanghai and Singapore, while

set Pc includes port Jasaan. Thus, corresponding to the cargo-compartment arrangement in the

initial solution, Cargo 5 is stored in the third compartment at port Shanghai, while the chemical

tanker is empty at port Singapore. Additionally, at port Jasaan, the cargo-compartment arrange-

ment is the same as that at port Shanghai. Thus, Cargo 5 remains in Compartment 3 throughout

the entire voyage.

The insertNewCargo sub-routine constructs an updated solution, s′, by identifying and adding

new positions to the present solution, s. The portRemove sub-routine identifies a port to be re-

moved from the present solution, s. It then constructs an updated solution, s′, by eliminating the

selected port and all the loaded unassigned cargoes from the present solution, s. Having under-

stood the two core sub-routines, we now present our heuristics. The heuristics can be broadly

divided into linear relaxation guided neighbourhood search heuristics, and integer relaxation

guided neighbourhood search heuristics.
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5.2 Linear relaxation guided neighbourhood search heuris-

tics

5.2.1 LPNS heuristic

Linear programming based neighbourhood search (LPNS) heuristic is a preliminary construc-

tion heuristic proposed to find a good feasible solution. Our heuristic first solves a linear pro-

gramming (LP) relaxation of the MILP. Solving an LP is usually much faster than MILP. If

the LP relaxation is infeasible, MILP is also infeasible. Otherwise, we fix a large number of

variables and solve a much smaller MILP. LPNS is a modification of the Relaxation Enforced

Neighbourhood Search (RENS) heuristic introduced by Berthold (2007), and the Relax and Fix

(RaF) heuristic implemented by Rodrigues et al. (2016) and Giavarina dos Santos et al. (2020).

According to Giavarina dos Santos et al. (2020), the RaF heuristic is effective on problems that

can be divided into n sets of integer variables. For example, Rodrigues et al. (2016) define the

sets of variables (to relax) based on time intervals. On the other hand, Giavarina dos Santos

et al. (2020) divide the variables based on heirarchy of decisions like routing variables, cargo

assignment variables and so on. The n sets of variables are disjoint sets. In every iteration,

the RaF heuristic solves the MIP formulation by relaxing a set of integer variables. Solutions

generated in the previous iterations are provided as initial solution to the solver. According

to Giavarina dos Santos et al. (2020), some constraints are also relaxed for every iteration to

reduce the problem complexity. However, as constraints are relaxed a heuristic is required to

repair any infeasible solution that is generated on solving the sub-problems.

There are some similarities between the RaF heuristic implementations and LPNS because all

of them solve a relaxation to provide insight for the overall problem. Additionally, similar to

Giavarina dos Santos et al. (2020), we divide the decision variables into different sets based on

a heirarchy of decisions. Unlike Rodrigues et al. (2016) and Giavarina dos Santos et al. (2020)

we solve the linear programming (LP) relaxation, which relaxes all of the integer variables and

includes all problem constraints. Additionally, instead of relaxing, we fix a subset of integer

variables to reduce the complexity of the MIP formulation.
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Berthold (2007) also implement a heuristic which uses the LP relaxation to reduce the problem

complexity of the MIP formulation. Based on the LP solution, the MIP is solved over this

restricted feasible region to generate a local optimum. Consequently, we introduce an adaption

of the RENS heuristic, which solves the revised formulation over a restricted feasible region.

The feasible region is restricted by updating the bounds of a subset of integer variables based

on the LP solution.

The LPNS bound update rule is derived from the structural analysis of the problem. Specif-

ically, the update rule eliminates ports (except the dummy port (|NP|)) that are not visited by

the chemical tanker in the LP optimal solution. Let (l,u,z,c,w,b,r) be the LP relaxation of

the revised formulation presented in Section 4.2. Let, Ukpp′ = 1 be the upper bound on zkpp′ .

Mathematically, the upper bounds are updated as follows:

Bound update Rule:

I f ∑
k′∈K\{0}

∑
p′∈NP\{|NP|}

(zk′pp′+ zk′p′p) = 0,

T hen ∑
k′∈K\{0}

∑
p′∈NP\{|NP|}

(Uk′pp′+Uk′p′p) = 0 ∀p ∈ NP\{|NP|}.

Constraint (4.5) ensures that any feasible solution of the LP relaxation will always contain

discharge ports of the onboard cargoes. As a result, LPNS will terminate with at least one

feasible solution if the optimal solution of the LP relaxation is found.

There are multiple reasons that make this heuristic a viable option for our problem. The primary

reason being that the revised formulation(4.2) has a tighter linear relaxation than the previous

formulation presented in the literature. Since its LP relaxation is closer to the convex hull of

MILP feasible region, its neighbourhood should provide a reasonable starting solution.

A unique feature of the LPNS heuristic is the bound update rule that is based on the problem

structure. As part of the structural analysis, we tried to fix various groups of decision variables.

Once certain groups of variables were fixed, we analysed their effect on parameters like the

total solution time, the number of nodes explored, and the initial relative gap. We carried out

certain experiments that fixed the ports to visit (not the order in which these ports should be

visited), or the entire ship route was fixed, or the cargoes to be served were fixed. Restricting
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Figure 5.4: Flowchart for the important steps of the LPNS heuristic.
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other decision did not lead to a substantially simplified MILP. Out of the three decision sets,

fixing either the cargoes or the ship’s route made the ship’s moment extremely restrictive in

the temporal plane. Additionally, we observed that a significant number of route defining con-

straints (Constraints 4.2 - 4.7) were active in the optimal basis of the linear relaxation in all of

the benchmark instances.

Furthermore, we observed that restricting the feasible set of ports (not the sequence in which

these ports should be visited) significantly reduced the MILP termination time. Additionally,

letting MILP decide the sequence of ports increased the feasible region of the problem substan-

tially when compared to fixing the exact route of the ship. Figure 5.4 presents the flowchart for

the LPNS heuristic.

5.2.2 LPNS+ heuristic

The LPNS+ heuristic, which is an extension of the LPNS heuristic. The first phase of LPNS+

generates an initial solution using the LPNS heuristic. The second phase of the LPNS+ heuristic

tries to improve the Phase 1 initial solution by using a local search strategy. Phase 2 of the

LPNS+ heuristic is exactly same as the Phase 2 of the Heuristic, H2, which is described in

Section 5.3.2. We will discuss the Phase 2 of both, the LPNS+ and the Heuristic, H2 later in

Section 5.3.2.

5.3 Integer relaxation guided neighbourhood search heuris-

tics

5.3.1 Heuristic H1

Phase 1 of Heuristic H1 generates an initial seed solution by solving the MILP formulation of

the s-PDP-TWTAC over a restricted set of ports. Phase 2 of the heuristic tries to improve the

initial solution using a local search strategy, which performs cargo insertions and port removals.

94



The Heuristic H1 terminates when Phase 2 reaches the maximum number of iterations or if no

improvement in the objective function value is observed for a fixed number of iterations.

The primary goal of Phase 1 is to generate a good feasible solution for the revised formulation of

the s-PDP-TWTAC as quickly as possible. Our past experiments showed that fixing the routing

variables (zkpp′) significantly reduces the total solution time of the problem. In the light of this

and by considering the problem definition, Phase 1 employs a simple strategy to build an initial

solution. By definition, all the on-board cargoes have to be compulsorily delivered within the

planning horizon. As a result, a feasible route can always be created from the discharge ports

of on-board cargoes, NO.

The initial seed solution is generated such that only the on-board cargoes are delivered. As

such, in the initial seed solution we only allow cargo-compartment assignments for the onboard

cargoes to be non-zero, while all the decision variables related to un-assigned cargoes are set

to zero. Phase 1 of the heuristic solves the s-PDP-TWTAC MILP formulation. The optimal

solution generated at the end of the first phase acts as an initial seed solution (s0) for Phase 2.

Let s0 be the initial solution that is generated by Phase 1. The second phase of the heuristic be-

gins by initializing the maximum number of iterations (max_iter) and the present iteration (iter)

= 1, temporary solution (s′) = s0, the best solution (s∗) = s0 and the no-improvement counter

(no_improv) = 0. The no-improvement counter keeps a track of the successive number of itera-

tions during which the heuristic fails to improve s∗, where s∗ is the best solution discovered by

the heuristic so far. The interval between two successive calls of the portRemove sub-routine is

defined as port_remove_interval. The temporary solution, s′, is updated during each iteration,

while s∗ is updated only if an improved solution is found. We then invoke the insertNewCargo

sub-routine, which tries to improve s′. However, if the insertNewCargo sub-routine fails to im-

prove s′, then the portRemove sub-routine is executed. Both, the insertNewCargo sub-routine

and the portRemove sub-routines are presented in Section 5.1.1 and 5.1.2, respectively.

The Heuristic H1 terminates if the maximum iteration limit is reached. It also terminates if

no_improv equals 5, or if the heuristic cycles back to s0. We present the flow chart of Heuristic

H1 in Figure 5.5. We present the experimental results that pertain to Heuristic H1 in Section

5.4. In the next section, we discusses the second heuristic.
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Figure 5.5: This figure illustrates the flowchart for Heuristic H1.
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5.3.2 Heuristic H2

The first phase of Heuristic H2 generates an initial solution (s0), while the second phase tries to

improve s0 further. Recall that Phase 1 of the Heuristic H1 uses a simple strategy to generate an

initial solution. It restricts the set of feasible ports to discharge ports of the on-board cargoes,

and disallows picking up of any unassigned cargo. A significantly different strategy is imple-

mented in Heuristic H2 to generate s0. There are certain other secondary differences in Phase 2

of both the heuristics, which will be discussed later in this section.

Phase 1 of the Heuristic H2 is motivated by the heuristic presented by Ladage et al. (2021).

The LPNS heuristic that is proposed by Ladage et al. (2021) is a neighbourhood-search method

guided by the LP relaxation of the s-PDP-TWTAC problem. The LPNS heuristic generates

feasible solutions to the MILP formulation by solving the MILP on a restricted neighbourhood.

The rule to define the neighbourhood eliminates ports (except the dummy port (|NP|)) that are

not visited by the chemical tanker in the LP optimal solution. Let (l,u,z,c,w,b,r) be the LP

relaxation of the s-PDP-TWTAC MILP formulation. Let, Ukpp′ = 1 be the upper bound on zkpp′ .

Mathematically, the upper bounds are updated as follows:

LPNS Heuristic update Rule:

For p ∈ NP\{|NP|},

I f zk′pp′ = zk′p′p = 0 ∀k′ ∈ K\{0}, p′ ∈ NP\{|NP|}

then Uk′pp′ =Uk′p′p = 0 ∀k′ ∈ K\{0}, p′ ∈ NP\{|NP|}

Phase 1 of the Heuristic H2 starts by solving an MIP relaxation (not an LP relaxation) of the

original MILP formulation. After several experiments, we arrived at a relaxation by dropping

the chemical tanker balancing constraints, the draft constraints, the cargo-cargo incompatibility

constraints, the one-cargo-per-compartment constraints, the compartment capacity constraints,

and the changeover constraints. We refer to this relaxation as the relaxed MIP. The relaxed

MIP is terminated after a few minutes, and the MIP feasible solution is then used to enforce the

following bound update rule.

The relaxed MIP bound update rule: Let zkpp′ ∈ {0,1} be the routing variable that takes

value 1 if at the end of leg k the chemical tanker travelled from port p to p′. Similarly, let zkpp′
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be the corresponding values obtained by solving the relaxed MIP. Let, Ukpp′ be the upper bound

on zkpp′ . Mathematically, each Ukpp′ is updated as follows:

Ukpp′ = zkpp′ ∀k ∈ K\{0}, p ∈ P\{|P|}, p′ ∈ P\{|P|}.

The bound update rule uses the relaxed MIP to fix the chemical tanker’s route. This signifi-

cantly reduces the number of decision variables in the MILP formulation of the s-PDP-TWTAC

problem. Subsequently, s0 is generated by solving the MILP formulation for the fixed route.

However, if the relaxed MIP fails to generate at least one feasible solution within the stipulated

CPU time limit, we use Phase 1 of the Heuristic H1 to generate an initial solution (s0).

The initial solution (s0), generated at the end of Phase 1 is improved in the second phase. The

only difference between the second phase of both the heuristics is the design of the portRemove

sub-routine. Recall that the portRemove sub-routine presented in Section 5.1.2 calculates the

cargo-compartment arrangement based on the initial solution. This is only possible because of

the absence of unassigned cargoes in s0.

Unlike Heuristic H1, Heuristic H2 Phase 1 can potentially generate an initial solution that de-

livers unassigned cargoes. Consequently, the portRemove sub-routine has to generate a feasible

cargo-compartment allocation plan for the on-board cargoes which is independent of s0. This

plan is generated by solving the MILP that is defined by Equations (5.1) - (5.10) such that j = J

is replaced by j ∈ NO. Additionally, K′ is replaced by K′j, where K′j is the set of sailing legs be-

tween leg 0 and the discharge leg of cargo j ∈ NO. In conclusion, Heuristic H2 tries to generate

an initial solution of a better quality during Phase 1. Figure 5.6 presents a flowchart of the first

phase of the second heuristic. Subsequently, Phase 2 of the second heuristic tries to improve the

initial solution with a local search strategy.

Although Heuristic H1 and Heuristic H2 perform reasonably well, they get stuck at the local

optimum for many instances. A widely accepted methodology to avoid the local optimum is to

generate multiple initial seed solutions. However, generating initial solutions that are of a good

quality for the s-PDP-TWTAC problem is a difficult task. Our final heuristic tries to generate

different initial seed solutions.
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Figure 5.6: This figure illustrates the flowchart for the first phase of Heuristic H2. Phase 1

generates an initial solution for the heuristic.
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5.3.3 Heuristic H3

Phase 1 of Heuristic H3 is responsible for generating the initial solutions, while Phase 2 tries to

improve it. Let the set of all initial solutions be S0. However, unlike Heuristic H1 and Heuristic

H2, our third heuristic can generate multiple initial solutions, which enables the heuristic to

explore a larger feasible region.

The strategy introduced to generate S0 stems from the fact that all on-board cargoes have to be

compulsorily delivered. Hence, any feasible route for the s-PDP-TWTAC problem will always

include the discharge ports of the on-board cargoes (NP
1 ). Therefore, we construct S0 using n!

different routes (permutations) that are generated from the set, NP
1 . One promising strategy to

select initial route from the set NP
1 would be to generate solutions for each initial routes, and

then sort them ascending order of cost. However, this strategy is computationally too expensive.

As such, to reduce complexity, we randomly select routes to generate initial solutions till the

termination criteria is reached.

For a given route of the chemical tanker, we construct an initial solution, s ∈ S0, as follows.

For a given route, the discharge ports and by extension the discharge legs of onboard cargoes

are already known. To simplify the generation of the solution, we enforce the condition that

no unassigned cargo can be picked up. Finally, to complete the solution we generate cargo-

compartment allocation plans at the end of every sailing leg by solving the MILP defined by

Equations (5.1) - (5.10) for on-board cargoes.

Following the construction of S0, we move on to Phase 2 of the heuristic. Phase 2 of the

Heuristic H3 and the Heuristic H1 are similar. The insertNewCargo and the portRemove core

sub-routines implemented in Phase 2 of the third heuristic are as described in Sections 5.1.1 and

5.1.2, respectively. However, minor modifications to these sub-routines enable the heuristic to

iterate through S0.

We begin by setting the number of iterations between two successive calls to the portRemove

sub-routine within the solve function. As explained earlier, the heuristic starts by generating n!

initial routes. Let R be the set of all the initial routes. We construct an initial solution (s0) from

the first route r ∈ R. We initialise a temporary solution (s′) and the best solution (s∗) with s0.

The primary while loop terminates when there are no initial routes to construct a new s0. The de-
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Algorithm 3: H3(port_remove_interval)

generateInitialRoutes();

s0 = constructFirstInitialSolution;

Initialise: s′, s∗ = s0, next_port_removal := port_remove_interval, iter := 1;

while withinTimeLimit or allInitialRoutesNotExplored do

call destroyRepair;

if betterObjFound then

update Solution;

else

if allInitialRoutesExplored then

return s∗;

else

construct NewInitialSolution;

reset ImprovementCounter;

goto whileLoopStart;

increment NoImprovementCounter;

if noImprovement for 5 iters then

if allInitialRoutesExplored then

return s∗;

else

construct NewInitialSolution;

reset ImprovementCounter;

goto whileLoopStart;

return s∗;

if iter == next_port_removal then

call portRemove;

update portRemoveCounter;

return s∗;
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Algorithm 4: destroyRepair(s′, iter, next_port_removal, port_remove_interval)

call insertNewCargo;

if sameSolutionFound then

call PortRemove;

update portRemoveCounter;

else

update Solution;

return newSolution;

stroyRepair sub-routine updates the temporary solution s′ with the help of the core sub-routines

that are described in Section 5.1.1 and 5.1.2. The solution is updated only if the new solution

improves the objective function, else we perform some additional checks: First, if the heuristic

has cycled back to the most recent s0 and if the set R is empty, then the heuristic terminates. If

the heuristic cycles back to the most recent value of s0 and the set R 6= /0, we update the value of

s0 and s′ and go back to the start of the main while loop. Algorithms 3 and 4 present the pseudo

codes for the third heuristic and the destroyRepair sub-routine, respectively.

Second, the heuristic terminates if a better solution has not been discovered for five iterations

and the set R = /0. However, if the set R is non-empty, then a new initial solution is constructed

and the destroyRepair sub-routine is applied to it. After a fixed number of iterations the solution

is randomized by invoking the portRemove sub-routine. The heuristic terminates if there are no

new initial routes to be explored.
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5.3.4 GRASP heuristic

Algorithm 5: GRASPNewCargo(data, s)

cargo_by_category := generatePotentialCargoes;

for cargo in cargo_by_category do

createPositionTuple(cargo);

populate(position_list);

if isNotEmpty(position_list) then

flipBiasedCoin with p(H)=customProb;

if HEADS then

sortByCustomPDF(position_list);

else

sortByProfit(position_list);

for position in position_list do

if cargoCompartmentAllocationExists then

s′ = generateNewSchedule(position, s);

return s′;

else

return s;

In this section, we introduce a greedy random adaptive search procedure (GRASP) heuristic,

which is a modification of the Heuristic, H3. This modification enables GRASP to scan the

search space more effectively. Recall that the improvements between the solutions of Phase 1

and Phase 2 for all the heuristics mentioned above is dependent on the sequence in which new

cargo positions are inserted into the existing solution. The insertNewCargo sub-routine that

is employed by Heuristics H1, H2, H3, and LPNS+ inserts the cargo positions in a greedy

deterministic manner into the solution of Phase 1; this enables quick solutions that are also

of a high quality. However, the completely greedy deterministic method of inserting cargo

positions restricts the solution search space that is explored by the heuristics. Additionally, a

greedy deterministic sequence of cargo additions has a low probability of identifying the optimal

solution.
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Keeping this in mind, we propose a GRASP heuristic that determines the sequence of cargo

insertions in a greedy random manner. This ensures that even for a single Phase 1 solution, the

heuristic can discover difference sequences in which to insert different cargo positions. Addi-

tionally, the GRASP heuristic has a non-zero probability of discovering the optimal solution for

any instance. The main difference between GRASP and other heuristics described above lies

in the implementation of the insertNewCargo sub-routine. To avoid ambiguity, we refer to the

cargo insertion function of the GRASP heuristic as the GRASPNewCargo sub-routine.

Similar to the insertNewCargo sub-routine, we generate all the feasible cargo positions in the

GRASPNewCargo sub-routine as well. However, a biased coin flip decides whether the cargo

positions are sorted in a greedy deterministic way or by using a custom probability distribution

function (PDF). The custom PDF is defined such that a higher profit cargo position has a higher

probability of being placed first in the sorted list of cargo positions. The GRASPNewCargo sub-

routine ends by inserting the first cargo position from the sorted list, which generates a feasible

cargo-compartment plan. Additionally, let p(H) be the probability of the biased coin turning

heads. Setting p(H) = 0 is equivalent to Heuristic, H3, while p(H) = 1 tries to insert every new

cargo in a greedy random way. Algorithm 5 outlines the pseudocode of the GRASPNewCargo

sub-routine.

Heuristic, H3, terminates if all the initial solutions (or initial routes) are explored exactly once

because each initial route leads to the same final feasible solution. On the other hand, the

GRASP heuristic continues to cycle through the initial routes until the time limit is reached.

Table 5.2 lists the similarities and differences between heuristics LPNS+, H1, H2, and H3. Col-

umn Criteria lists the different parameters that are used to compare the four different heuristics.

The first criterion specifies the maximum number of solutions that can be generated and passed

to the second phase of the heuristic. The next criterion Methodology to obtain initial solution

specifies the optimization problem solved to obtain the initial solution(s).

The rows, three to seven, specify the different parameters that are related to Phase 2. The

criteria Cargo-compartment plan generation presents the method that is used to obtain cargo-

compartment plans during Phase 2. Heuristics LPNS+ and H2 solve an MILP, while H1 and

H3 generate allocations from the Phase 1 solution. The succeeding criteria specify the num-

ber of iterations between two successive calls to the portRemove sub-routine, the number of

ports removed during every portRemove sub-routine call, and the maximum number of feasible
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solutions for the s-PDP-TWTAC that can be generated during the second phase of the heuristic.

Table 5.2: Comparison table highlighting the major similarities and differences between the

LPNS+, H1, H2, H3, and GRASP heuristics.

Comparison table summarising the similarities and differences between different heuristics

LPNS+ H1 H2 H3 GRASP

Possible solutions

generated at

end of Phase 1

1 1 1 >= 1 >= 1

Phase 1 (P1)
Methodology

to generate

the initial solution

LP followed

by restricted MILP

of the s-PDP-TWTAC

Restricted MILP

of the

s-PDP-TWTAC

Relaxed MILP

followed by restricted MILP

of the s-PDP-TWTAC

Multiple restricted MILP

of the

s-PDP-TWTAC

Multiple restricted MILP

of the

s-PDP-TWTAC

Cargo-compartment

plan generation
MILP

Generated using

P1 solution
MILP

Generated using

P1 solution

Generated using

P1 solution

Cargo added

per iteration
1 1 1 1 1

Cargo addition

methodology
Deterministic Deterministic Deterministic Deterministic Greedy Random

Port remove

interval
Equal across heuristics

Port removed

per interval
1 1 1 1 1

Port removal

methodology
Random Random Random Random Random

Phase 2 (P2)

Feasible solution

generated for

the s-PDP-TWTAC

>= 1 >= 1 >= 1 >= 1 >= 1

All the heuristics that are discussed in this section start by generating an initial solution(s). The

heuristics then try to improve it with a local search strategy (Phase 2). Phase 2 tries to improve

the initial solution by either inserting a new cargo or removing a port from the chemical tanker’s

route. In the next section, we present the empirical results of our experiments.

5.4 Computational results

5.4.1 Empirical study: Cplex vs. LPNS heuristic

All the 200 test instances were used to perform this empirical computational study. The pri-

mary goal of this experiment is to present the results of solving the s-PDP-TWTAC revised

formulation with the LPNS heuristic. The LPNS heuristic is run for a CPU time of 86,400

seconds. LPNS heuristic also terminates if the Cplex reported relative gap (%) is less than 0.01
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%. We also make some preliminary comparisons between the Cplex run and the heuristic run.

Further, we discuss the sensitivity of some of the performance parameters with respect to the

input parameters used to generate the test instances. The performance parameters include the

Gap (%) and the total CPU time (sec) of both the Cplex run and the LPNS heuristic run. The

comparison is aimed at understanding why the MILP solver takes a long time. A solver might

be slow because it is not able to find a good solution early on. It might also be slow because

it is unable to prove that the solution is optimal. Even though the LPNS heuristic finds better

quality solutions faster for several instances, the Cplex run can solve the problem exactly for

some others. Further, the Cplex run also generates an upper bound for the overall problem that

the LPNS heuristic does not.

We report some of the solution statistics in Tables A.2 and A.1. As explained earlier, the first

four columns of Tables A.2 and A.1 give the instance set characteristics and the chemical tanker

characteristics, respectively. In Table A.2, Column Instance per set gives the number of test

instances (out of 200) that belong to each instance set. Similarly, in Table A.1, Column instance

per ship gives the number of test instances (out of 200) for every chemical tanker. In both tables,

Columns Avg. variables to Avg. Heur CPU time tabulate the corresponding solution statistics.

Table A.2 presents average solution statistics for every instance set. Likewise, Table A.1 report

solution statistics averaged for each of the chemical tankers.

We record four performance parameters, the Heur Gap (%), the Cplex Gap (%), the Cplex CPU

time (sec) and the Heur CPU time (sec). The Heur Gap (%) presents the percentage difference

between the upper bound obtained during the Cplex run, and the lower bound obtained from

the heuristic run. Moreover, the Cplex Gap (%) is the percentage difference between the Cplex

upper and lower bounds. Both the gaps (%) are with respect to the absolute values of the upper

bounds generated by Cplex. Lower the gap better is the performance of the run. The Cplex Gap

(%) and the Heur Gap (%) for a given instance are calculated as follows:

Cplex Gap (%) =
Cplex upper bound - Cplex best objective

Abs(Cplex upper bound)
×100

Heur Gap (%) =
Cplex upper bound - LPNS heuristic best objective

Abs(Cplex upper bound)
×100

Subsequently, the average performance measures reported in Tables A.2 and A.1 are calculated
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as follows.

Avg. Cplex Gap (%) =
Total Cplex Gap (%) for n instances

n

Avg. Heur Gap (%) =
Total Heur Gap (%) for n instances

n

Avg. Cplex CPU time (sec) =
Total Cplex run CPU time (sec) for n instances

n

Avg. Heur CPU time (sec) =
LPNS heuristic CPU time (sec) for n instances

n

Figure 5.7: Comparison of the Gap (%) and the CPU time (sec) of the Cplex and LPNS heuristic runs

as the problem difficulty (Cplex Gap (%)) increases.

Table A.2 reports n in Column Instances per set, while Table A.1 reports it in Column Instances

per ship. The heuristic run terminates with either no integer solution (Phase I OOM), local

optimal solution (Local Optimal) or a feasible integer heuristic solution (Phase II OOM or time

limit). The local optimal solution is the best possible solution that can be generated by the

heuristic without hitting the time limit or the memory limit. It may not be the optimal solution
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of the REV formulation.

Out of the 200 instances, our heuristic terminated due to local optimality in 157 instances, due

to feasibility and time limit (Phase II time limit or OOM) in 33 instances, and due to Phase I

OOM issue in 10 instances. A run terminates with Phase I OOM if memory is exhausted while

solving the linear relaxation of the problem. On the other hand, the Phase II time limit or OOM

termination occurs if the Phase II MILP does not terminate within the time limit or the solver

runs out of memory, respectively.

Figure 5.7 presents the Gap (%) and CPU time (sec) of both the runs. The horizontal axis plots

instances in increasing order of Cplex Gap (%). The Gap (%) of both the runs are plotted in

Chart 1, while the second chart plots the CPU time (sec) for both runs. We classify the 200 test

instances into two sets. Set I (118 instances) includes all the instances with Cplex Gap (%) less

than 1 %, while Set II (82 instances) includes all the instances with Cplex Gap (%) greater than

1 %.

The heuristic terminated with a solution equivalent to the Cplex optimal solution for 63 in-

stances, which are a subset of Set I. For these 63 instances, the total solution time reduced by

71.62 %. Within Set I, the Cplex run terminated with a lower Gap (%) when compared to the

heuristic run for 54 instances. For the instances in Set I, the total solution time of the heuristic

run increased for 6 instances with an average of 786.67 %, while it decreased for 112 instances

with an average of 79.87 %, when compared to the Cplex run.

Within Set II, the heuristic could not find a solution for 10 instances. For rest of the 72 instances

(within Set II), compared to the Cplex run, the heuristic run terminated with a better, same and

worst lower bound for 49, 3 and 20 instances, respectively. For Set II, an average Cplex gap of

59.95 % was observed. In comparison, the heuristic run resulted in an average gap (%) of 55.74

%. Moreover, the CPU time (sec) for the heuristic run decreased by 41.75 % when compared

to the Cplex run for the instances in Set II. In summary, Figure 5.7 shows that for instances in

Set I, Cplex finds better quality solutions than the heuristic. However, as the Cplex Gap (%)

increases the heuristic consistently finds better quality solutions compared to Cplex. Moreover,

for majority of the test instances, the heuristic run terminates faster than the Cplex run.

Further, we discuss the sensitivity of the performance parameters, namely; the Gap (%) and

the total CPU time of the LPNS heuristic runs related to the different input parameters. We
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Figure 5.8: The effect of the total number of cargoes and the maximum number of sailing legs on the

average performance parameters of the Cplex and LPNS heuristic runs.

also include the sensitivity results from Chapter 4 for comparison purposes. The Gap (%) of

both the runs is calculated with respect to the upper bound reported by Cplex. The primary

input parameters considered for this study are the total number of cargoes, the total number of

ports, the maximum number of sailing legs, and the number of discharge ports of the onboard

cargoes. Moreover, some secondary input parameters like the total number of compartments, the

ship speed, the draft constant, the fuel cost, the time charter cost, and the average compartment

volume were also considered during this study.

Analysis using multiple linear regression was performed to explore the effects of the input

parameters on the performance parameters. Some of the primary input parameters significantly

affect the performance parameters. Figures 5.8 and 5.9 help us illustrate this claim. However,

the performance parameters seem to be insensitive to the secondary input parameters. Figures

5.8 and 5.9 classify the test instances into different categories based on the input parameters.

The vertical axis in these figures presents the average of the performance parameters. For

example, the first chart in Figure 5.8 differentiates the test instances based on the total number

of cargoes on the horizontal axis. Similarly, the vertical axis presents the average Gap (%).
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Figure 5.9: The effect of the total number of onboard discharge ports on the average performance

parameters of the Cplex and LPNS heuristic runs.

In Figure 5.8, Chart 3 and 4 show that both the average solution quality and the average total

CPU time worsen with the increase in the maximum number of sailing legs. Similarly, both the

Cplex performance parameters deteriorate with the increase in the maximum number of legs.

Additionally, even though the average total CPU time for the heuristic run worsens with the

total number of cargoes, the solution quality does not.

Charts 1 and 2 in Figure 5.9 illustrate that the increase in the total number of onboard cargo

discharge ports significantly improves the Gap (%) and the total CPU time related to both the

runs. This effect is correct because the total number of onboard cargo discharge ports reduces

the flexibility of the route of the chemical tanker. As per the problem definition, all onboard

cargoes must be delivered. Consequently, their corresponding discharge ports have to be visited.

Thus, a higher number of different discharge ports of onboard cargoes reduces the number of

new ports on the route of the ship. This reduces the feasible region of the problem. Additionally,

our preliminary sensitivity analysis shows that the performance parameters were not affected

by the number of ports or the number of compartments. We discuss the experimental results

related to Heuristic H1 (H1), Heuristic H2 (H2), and Heuristic H3 (H3) in Section 5.4.2.

5.4.2 Empirical study of Heuristic H1, H2 and H3

We now discuss experiments related to the Heuristic, H1 (H1); Heuristic, H2 (H2); and Heuris-

tic, H3 (H3). We focus our discussions on the 173/200 instances for which an MILP solver
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Table 5.3: This table presents the termination status, Avg. Obj diff (%), average computation

time, average CPU time for phase 1 and phase 2, and improvements in solution quality related

to H1, H2 and H3

Parameters
Phase 1

status

Phase 2

status

Avg.

Obj Diff (%)

Avg. total

CPU time (sec)

CPU time

(Phase 1) (%)

CPU time

(Phase 2) (%)

Avg. Total

Improvements

Min Total

Improvements

Max Total

Improvements

H1 14 159 -330.36 8.97 72.64 27.36 4 1 9

H2 94 79 -324.72 184.56 96.7 3.3 2 1 10

Number

of

Instances H3 0 173 -333.42 28.24 9.11 90.89 4 1 14

(CPLEX) did not find an optimal solution. For these 173 instances, Table 5.3 tabulates some

key observations related to the three heuristics. Columns Phase 1 status and Phase 2 status

denote the number of instances that terminate with P1 and P2 status, respectively. Columns

Avg. Obj Diff (%) and Avg. total CPU time tabulate average objective difference (%) and the

total average CPU time for each of the heuristic. The Avg. Obj Diff (%) is calculated as follows.

Avg. Obj Diff (%) = Average(
(CPLEX_Obj - Heur_Obj)

ABS(CPLEX_Obj)
×100)

The next column presents the average total solution CPU time in seconds for each heuristic.

We also classify the instances into different CPU time buckets, as shown in Figure 5.10. The

next columns, CPU time (Phase 1) (%) and CPU time (Phase 2) (%) give the percentage of time

spent in each phase during each of the heuristic runs. The last three columns show the average,

minimum, and maximum total improvements, successively.

Figure 5.10: This figure shows the total CPU time required by Heuristics H1, H2, and H3 to

solve the test instances.

We observed that Phase 2 of the first Heuristic was able to improve Phase 1 solution for 159/173

instances. H2 found the best solution during Phase 1 for 94/173 instances. Similarly, Phase 2 of
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H3 improves Phase 1 solution for all 173 instances. Figure 5.10 and Table 5.3 report that H1 is

the quickest with an average CPU time of 8.97 seconds. Moreover, H2 and H3 terminate with

an average CPU time of 184.56 seconds and 28.24 seconds, respectively. H3 spends the least

total CPU time (%) to generate the initial solutions, while H2 spends 96.7 % of its total CPU

time generating the initial solution. All the heuristics find at least 1 feasible solution. Thus,

the minimum total improvement is 1. Moreover, on average, H2 required the least number of

improvements (2) to reach the best solution.

Further analysing Figure 5.11 shows that the first phase of H2 generates better quality initial

solutions for 129/173 instances when compared to Phase 1 of both H1 and H3. However,

Phase 1 of H2 is computationally much more expensive than Phase 1 of H1 and H3. As H3

generates multiple feasible solutions, we consider the first initial solution generated by H3 for

comparison. Figure 5.11 also shows the improvement between Phase 1 and Phase 2 of each of

the Heuristic H1, H2, and H3. Figure 5.11 indicates that the solution quality of H1 and H3 is

similar. As such, we performed the two sample Wilcoxon paired test, which empirically proves

that H3 generates statistically significant (p-value = 0.0045) better quality solution than H1.

Figure 5.11: This figure shows the solution improvement between Phase 1 and Phase 2 of

Heuristics H1, H2 and H3

Table A.3 presented in appendix tabulates all the experimental findings on H1, H2, and H3 runs

for each of the 200 test instances. It shows different heuristic related parameters like Phase 1

CPU time, total CPU time, objective function value of the first solution found, best solution
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objective value, and total solution improvements achieved by each heuristic for each of the 200

instances. In the next section, we compare the three heuristics (H1, H2, H3) to an MILP solver,

the GRASP heuristic and the LPNS+ heuristic run.

5.4.3 Comparison of H1, H2, H3 and GRASP to an MILP solver and

LPNS+ Heuristic runs

We combine the results obtained by sequentially solving the three heuristics (H1, H2, H3), and

refer to this combination heuristic as H1_H2_H3. We present a study comparing the outcomes

of H1, H2, H3, H1_H2_H3 and GRASP with MILP solver (IBM CPLEX) run and the LPNS+

heuristic run. The CPLEX runs results are obtained by solving the s-PDP-TWTAC MILP for-

mulation using CPLEX 12.7.1. The CPLEX run, the GRASP heuristic and the LPNS+ heuristic

run have a CPU time limit of 1800 secs.

Table A.4 summarizes the results for the CPLEX run, the LPNS+ heuristic run, the GRASP

heuristic run and the H1_H2_H3. Column CPLEX Status indicates the problem status reported

by CPLEX with a CPU time limit of 1800 seconds. The succeeding three columns, CPLEX

CPU Time, CPLEX Obj, and CPLEX Gap (%) contain the total CPU time, the objective func-

tion value, and the relative gap (%) reported by CPLEX. Columns LPNS+ Heur Obj and LPNS+

Heur CPU Time tabulate the objective function value and the total CPU time for the LPNS+

heuristic. Similarly, the succeeding two columns present the GRASP objective function value

and the GRASP objective difference (%). The objective difference (%) for a heuristic is calcu-

lated as follows:

Obj Diff (%) =
(CPLEX_Obj - Heur_Obj)

ABS(CPLEX_Obj)
×100

The next column, H1_H2_H3 Status, highlights the contribution of each of the heuristic for the

combination heuristic H1_H2_H3. For example, the H1_H2_H3 Status for Instance 1 is H2

Phase 1. This denotes that after sequentially running all three heuristics, the best solution was

the one obtained at the end of H2 Phase 1. The values in Column H1_H2_H3 CPU Time are

calculated by adding the total CPU times of H1, H2 and H3. The following column, H1_H2_H3

Obj reports the maximum of the best solution objectives obtained from Heuristics H1, H2 and

H3. The final column, H1_H2_H3 Obj Diff (%) gives a comparison between the best solutions
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obtained from the CPLEX run and H1_H2_H3 run.

After 1800 secs of CPU time, CPLEX terminated with an optimal solution for 27 instances

and a feasible solution for 156 instances. Moreover, for 17 instances, CPLEX could not find

a feasible solution within the allotted time limit. CPLEX reported an average relative gap of

8028 % for the 183 instances for which it found at least one feasible solution. For these 183

instances, CPLEX generated a solution within 1 % and within 100 % relative gap for 30 and 79

instances, respectively.

Figure 5.12: Number of instances sorted by Obj Diff (%). A negative Obj Diff (%) signifies that

a better objective value was obtained when compared to the CPLEX runs.

Next, we compare the solutions generated by H1, H2, H3, H1_H2_H3, LPNS+ and GRASP

heuristics. To establish a standard scale, we make comparisons with respect to the best solution

generated by CPLEX. Additionally, we focus this study on the same 173 instances for which

CPLEX couldn’t find the optimal solution within the time limit.

Figure 5.12 classifies the 173 instances in two parts based on Obj Diff (%). The Obj Diff (%)

calculates the difference (%) between the best solution generated by CPLEX and each of the
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heuristics. For a given instance, an Obj Diff (%) of less than zero indicates that a heuristic found

a better feasible solution than CPLEX. Part (A) presents all the instances with Obj Diff (%) <

0, while part (B) presents all the instances with Obj Diff (%) ≥ 0. The numbers in the legend

denote the total number of instances where a heuristic found a better (Figure 5.12A) or worse

(Figure 5.12B) solution.

Heuristic H1_H2_H3 finds better quality feasible solutions than CPLEX in 145 instances, which

is more than any other heuristics. Additionally, our experiments using the two sample Wilcoxon

paired test show that H1_H2_H3 generate statistically significant better quality solutions than

the CPLEX solver as well as the other heuristics discussed in this article. Heuristics H1, H2

and H3 also perform reasonably well by finding a better quality solution than CPLEX in 122,

132, and 124 instances, respectively. Moreover, the GRASP heuristic finds a better solution

than CPLEX in 130 instances.

Figure 5.13: Effect of Phase 2 on the Phase 1 solutions of the LPNS+ and GRASP heuristics

The GRASP heuristic finds better quality solutions than the H1_H2_H3 heuristic for 54/200

instances. As shown in Figure 5.12, the LPNS+ heuristic is the worst performing heuristic for

the assumed time limit. We also observe in Figure 5.13 that the Phase 2 local search does

not significantly improve the Phase 1 LPNS+ solution. However, the Phase 2 of the GRASP

heuristic improves the Phase 1 solution significantly.

The CPLEX run and the LPNS+ heuristic terminate with an average total solution time of 1664

seconds and 1384 seconds. The GRASP heuristic continues to explore the search space till the

given time limit of 1800 seconds. The average total solution time for Heuristic H1 is the lowest

with 8 seconds. Similarly, Heuristic H2 and H3 terminate with an average total solution time of

166 seconds and 30 seconds, respectively.

We now study the effects of different input parameters on the performance parameters of the
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Figure 5.14: Effect of input parameters on the average total CPU time and the average Obj Diff

(%) of different heuristics

heuristics, namely, the average total CPU time (sec) and the average Obj Diff (%). A sensitivity

analysis was carried out with respect to different input parameters such as total cargoes, total

sailing legs, total discharge ports of on-board cargoes, and total compartments. We observe that

the average total CPU time of the LPNS+ heuristic is significantly affected by the total cargoes

and the total sailing legs. The average total CPU time of Heuristic H2 also increases with the

increase in the total number of cargoes. However, the average total CPU time of the Heuristics,

H1 and H3, does not show any observable change upon increase in the total cargoes and the

total sailing legs.

Further, we see that the average Obj Diff (%) of all neighbourhood search heuristics decreases

with the increase in the total sailing legs, and increases with the increase in the number of

discharge ports of on-board cargoes. We should note that the size of the feasible region of the

MILP increases with the increase in the total number of sailing legs, and the decrease in the

discharge ports of on-board cargoes. In the light of this, a possible conclusion is that, as the size

of the feasible region increases, it is difficult for an MILP solver to produce solutions that are

of a good quality, while the heuristics consistently find solutions of a good quality. Other input
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parameters did not show any observable effect on the performance parameters.

This chapter presented six heuristics developed to tackle the s-PDP-TWTAC problem. Detailed

discussed around the methodology, and construction of these heuristics was also presented.

Moreover, a empirical study was performed to verify the performance of these heuristics. The

next chapter will divert the discussion towards the multi-period cargo assignment problem (mp-

CAP), and discuss two frameworks adopted to solve the mp-CAP.
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Chapter 6

The multi-period cargo assignment

problem (mp-CAP)

6.1 Problem description

The presence of multiple compartments provides added flexibility to transport multiple chem-

icals. However, it also makes the problem more complicated. In the literature, this specific

problem of assigning cargoes to compartments during a single sailing leg is called the cargo-

assignment problem (CAP). CAP generates a feasible plan for a given set of cargoes and com-

partments. The cargo-compartment plan must adhere to compatibility, stability, and compart-

ment capacity constraints. Some other modelling constraints like at most one cargo can be

assigned to a compartment, cargo has to be assigned to at least one compartment, and the total

weight of cargo distributed in all compartments should be equal to the total available weight

of the cargo, need to be respected. Some recent publications that discuss the chemical tanker

scheduling problem while addressing the difficulties originating due to the cargo-assignment as-

0Contents of Chapter 6 have been submitted to, and are under review by Springer as a book chapter.
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pect of the problem are Neo et al. (2006), Hvattum et al. (2009), Wang et al. (2018), Giavarina

dos Santos et al. (2020), and Ladage et al. (2021).

Here is a small example illustrating the mp-CAP. Assume that the chemical tanker (with four

compartments) visits three ports on its route and transports four chemicals during its voyage.

Cargo 1 remains on the tanker for all three ports. Cargo 2 is loaded at Port 1 and dropped off at

Port 3, while Cargo 3 is loaded at Port 2 and remains on the tanker at Port 3. Cargo 4 is loaded

at Port 2 and delivered at Port 3. Additionally, Cargo 1 and Cargo 4 are incompatible with each

other, while Cargo 2 and Cargo 3 are incompatible. Assume that incompatible cargoes cannot

be stored in neighbouring (vertically or horizontally adjacent) compartments.

Figure 6.1: A toy size instance, and a feasible solution of the multi-period cargo-assignment problem

(mp-CAP).

Figure (6.1) portrays a feasible solution generated by the mp-CAP. Cargo 1 remains assigned

to Compartment 1 through the tanker’s voyage. At the first port, Cargo 2 was stored in Com-

partment 4. Considering the incompatibilities among the cargoes, at Port 2, Cargo 2 had to

be reassigned to Compartment 3, while Cargo 3 and 4 were placed in Compartments 2 and

4, respectively. At Port 3, to maintain the balance of the tanker, Cargo 3 was reassigned into

Compartments 2, 3, and 4. The directed arrows in Figure (6.1) show the flow of cargoes from

one port to another. The readers should be able to see that the solution instance presented in

Figure (6.1) results in seven cargo swaps, namely, two at Port 1, three at Port 2, and two at Port

3. Note that for completeness, for the loading leg of the cargo, the number of changeovers is
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equal to the number of cargo-compartment assignments.

The mp-CAP is defined to generate a cargo-compartment assignment plan at each port on the

tanker’s voyage (route) while minimizing the total number of changeovers or cargo swaps.

The following section elaborates the mp-CAP further by presenting its mixed-integer linear

programming (MILP) formulation.

6.2 MILP formulation for the mp-CAP

The multi-period cargo-assignment problem (mp-CAP) minimizes the total number of cargo

changeovers throughout the voyage of the chemical tanker. A changeover is expensive as it

incurs tank cleaning costs, time, and labour costs throughout the voyage. The mp-CAP simulta-

neously generates a feasible cargo-compartment allocation plan for the chemical tanker’s entire

voyage. This would generate an assignment plan with the least number of changeovers, signif-

icantly reducing the associated costs while providing the necessary flexibility to the model for

future cargo assignments. Further, a mathematical formulation1 for the mp-CAP is presented

by the authors.

Sets:

K = Set of sailing legs,

NG = Set of all cargoes/goods assigned to the chemical tanker during the voyage,

NO
k = Set of cargoes/goods loaded on the chemical tanker at the end of leg k ∈ K,

K j = Set of sailing legs for cargo j ∈ NG is onboard the chemical tanker,

NI
j = Set of cargoes incompatible with cargo j ∈ NG,NI

j ⊂ NG,

NH = Set of compartments (cargo holds) in the ship,

NB
h = Set of neighbouring/bordering compartments for compartment h ∈ NH ,NB

h ⊂ NH ,

NX
h = Set of cargoes that cannot be stored in compartment h ∈ NH ,NX

h ⊂ NG.

Indices:

k = Index for sailing leg (Index 0 indicates that the chemical tanker is at its starting port),

1The formulation in this section is heavily derived from Ladage et al. (2021)
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j = Index for cargo,

h = Index for compartment (cargo hold).

Decision variables:

ck jh = 1 if the chemical tanker at the end of leg k∈K j carries cargo j∈NG in compartment

h∈NH (Binary),

wk jh = Weight of cargo j∈NG assigned to compartment h∈NH of chemical tanker at end

of leg k∈K j (Continuous),

bk jh = 1 if the chemical tanker at the end of leg k∈ K j replaces any cargo j∈NG (other than itself)

with cargo j∈NG\{0} in compartment h∈NH (Binary).

Parameters:

KL
j = Loading leg for cargo j ∈ NG,

KD
j = Unloading leg for cargo j ∈ NG,

CS = Cost per changeover/swap including cleaning, labour, etc. related to swapping cargoes

within compartments. Also represents the cost incurred if a cargo j∈NG\{0} is filled in

an empty compartment,

Wj = Weight of the cargo j ∈ NG,

ρ j = Density of the cargo j ∈ NG,

Vh = Volume of compartment h∈ NH ,

κh = Lateral distance from compartment h∈NH to the centre of the chemical tanker,

ιh = Longitudinal distance from compartment h∈NH to the centre of the chemical tanker,

α = Maximum absolute permissible trim causing moment of the chemical tanker,

β = Maximum absolute permissible heel causing moment of the chemical tanker,
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Objective Function:

Minimise z = CS
∑
k∈K

∑
j∈NG\{0}

∑
h∈NH

bk jh (6.1)

The objective function (6.1) minimizes the total changeover cost (CS) throughout the voyage of

the chemical tanker.

Set of constraints:

∑
h∈NH

ck jh ≥ 1 ∀ j ∈ NG,k ∈ K j, (6.2)

∑
j∈NO

k

ck jh ≤ 1 ∀k ∈ K,h ∈ NH , (6.3)

bk jh ≥ ck jh− c(k−1) jh ∀ j ∈ NG,k ∈ K j\{KL
j },h ∈ NH , (6.4)

bKL
j jh = cKL

j jh ∀ j ∈ NG,h ∈ NH , (6.5)

ck jh + ∑
j′∈{NI

j∩NO
k }

ck j′h′ ≤ 1 ∀k ∈ K, j ∈ NO
k ,h ∈ NH ,h′ ∈ NB

h , (6.6)

wk jh ≤V H
h ρ jck jh ∀ j ∈ NG,k ∈ K j,h ∈ NH , (6.7)

∑
h∈NH

wk jh =Wj ∀ j ∈ NG,k ∈ K j, (6.8)

−α ≤ ∑
h∈NH

∑
j∈NO

k

wk jhιh ≤ α k ∈ K, (6.9)

−β ≤ ∑
h∈NH

∑
j∈NO

k

wk jhκh ≤ β ∀k ∈ K. (6.10)

Constraint (6.2) states that for every cargo and for every leg it is on board the ship, the sum-

mation of assignment variables (ck jh) should at least be greater than equal to one. Essentially,

it means that cargo j ∈ NG has to be assigned to at least one compartment between its pickup

and discharge legs. K is the set of sailing legs, while NH is the set of compartments. Thus,

Constraint (6.3) ensures that during every sailing leg k ∈ K, for each compartment h ∈ NH at

most one assignment variable ck jh can be one. This ensures that a compartment can either be

empty or hold at most one cargo.

Constraint (6.4) models changeovers. It tracks the swapping of cargoes within the chemical

tanker’s compartments. For two consecutive sailing legs k and k− 1, for every cargo and for
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every compartment, Constraint (6.4) states that the changeover variable (bk jh) is 1 if cargo j is

assigned to compartment h in leg k (ck jh = 1) and was not assigned (c(k−1) jh = 0) to compart-

ment h in leg k− 1. Readers can observe that for any other combination of ck jh and c(k−1) jh,

variable bk jh becomes a free variable. However, the objective function forces it to zero. Con-

straint (6.5) defines the changeover variables for each cargo j and each compartment h. It is

defined for the loading leg of each cargo j.

Constraint (6.7) ensures that the compartment capacity is not exceeded. Essentially, it makes

sure that if a cargo j is assigned to a compartment h (ck jh = 1), then the quantity of that cargo

(wk jh) assigned to the compartment cannot exceed the compartment capacity (V H
h ρ j). Con-

straint (6.8) ensures that the quantity of a cargo that is distributed in multiple compartments

during a sailing leg is equal to the total weight of the cargo. Constraints (6.9) and (6.10) en-

sure that the maximum allowable trim and heel moments are not exceeded. Constraints (6.9) and

(6.10) are essential for the stability of the ship. These constraints ensure proper (stable) distribu-

tion of cargoes different compartments. The cargo-compartment are enforced in pre-processing

by fixing the bounds of the ck jh variables. If a cargo j cannot be stored in compartment h, then

for all sailing legs k ∈ K the upper bounds on variables ck jh are set to 0.

At this point, the readers are suggested to pause and study the MILP formulation carefully.

Remember the earlier statement about the presence of special structure as a motivation towards

employing DW decomposition and reformulation? Can the readers identify such structures

in the MILP formulation of the mp-CAP? The next section presents a DW reformulation and

column generation framework applied to the mp-CAP, which will help the readers address the

above questions.

6.3 Dantzig-Wolfe reformulation and column generation frame-

work for the mp-CAP

This section discusses the Dantzig Wolfe (DW) decomposition and reformulation of the mixed-

integer linear program (MILP) presented in Section 6.2. The unique structures in this problem

provide two advantages. First, the constraint set can be divided into nice and complicated

constraints. This is used to decompose the problem with a DW reformulation. This results in a

124



formulation with fewer constraints but an exponentially large number of decision variables. The

decomposed reformulation is solved within a column generation framework, also presented in

this section. A unique secondary structure helps the authors generate heuristic MILP solutions

at any iteration of the column generation procedure, without the Branch & Bound algorithm.

Observe the formulation presented in Section 6.2. The reader might observe that Constraint (6.4)

is the only constraint linking decisions from subsequent sailing legs. Ignoring this complicated

or linking constraint decomposes the problem into multiple sub-problems. Nonetheless, this is

not the only decomposition possible for the mp-CAP MILP formulation.

Another decomposition can be obtained by retaining Constraints (6.3), (6.6), (6.9) and (6.10) in

the master problem. Coincidentally, even this decomposition results in multiple sub-problems.

Similarly, there exist multiple decompositions based on the MILP formulation presented in

Section 6.2. However, readers will understand the multiple advantages of the problem decom-

position presented in this section as the discussion progresses. Interestingly, there even exists

a Bender’s decomposition for the mp-CAP MILP formulation. However, that discussion is be-

yond the scope of this chapter. Interested readers should refer to Chapter 8 of [Conforti et al.

(2014)], which provides an excellent overview of reformulations and relaxations in the context

of integer programming.

In this section, we present the decomposition that retains Constraints (6.4) and (6.5) in master

problem. The rest of the problem disintegrates into as many sub-problems as the number of

ports visited by the tanker on its voyage. Each sub-problem deals with generating a cargoes-

compartment assignment plan at each port. Such a special structure is known as a block diagonal

structure. This decomposition allows us to leverage this structure inherently present in the MILP

formulation. Any problem with a block diagonal structure can be decomposed into one master

problem and multiple sub-problems. The DW reformulation is presented in Sections 6.3.1 and

6.3.2.

6.3.1 Restricted master problem

This section presents the restricted master problem (RMP) of the DW reformulation for the

mp-CAP MILP formulation (6.2). Variable bk jh and λ v are both continuous variables bounded
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between zero and one. Constraints (6.4) and (6.5) are retained in the master problem. Let

{Vk|k∈K} be the set of all corner points of the feasible region (polytope) of the kth sub-problem.

Let V ′k ⊆Vk be the set of corner points present in the restricted master problem at any iteration.

{ f v
jh|k ∈ K, j ∈ NO

k ,h ∈ H,v ∈Vk} is used to denote a corner point. A corner point or a column

in the RMP is a cargo-compartment allocation plan for a port on the route of the tanker. During

any iteration, the maximum number of columns that can be added to the RMP is equal to the

number of sub-problems. As the readers can imagine, there are an exponential number of

feasible allocations or columns, which necessitates the use of column generation to solve this

reformulation.

λ v are the multipliers dictating the convex combinations of the corner points. Every unique

vector λ defines a unique cargo-compartment allocation plan. Based on Theorem (3.1), the

readers must observe that the authors substitute ck jh = ∑v∈V ′k
f v

jhλ v while formulating the below

master problem. The mathematical formulation of the RMP (linear) is as follows.

Objective Function:

Minimise zmp = CS
∑

j∈NG
∑

k∈K j

∑
h∈NH

bk jh (6.11)

Set of constraints:

∑
v′∈V ′

(k−1)

f v′
jhλ

v′− ∑
v∈V ′k

f v
jhλ

v ≥−bk jh ∀ j ∈ NG,k ∈ K j\{KL
j },h ∈ NH , (6.12)

∑
v∈V ′

KL
j

f v
jhλ

v = bKL
j jh ∀ j ∈ NG,h ∈ NH , (6.13)

∑
v∈Vk

λ
v = 1 ∀k ∈ K, (6.14)

λ
v ≥ 0 ∀k ∈ K,v ∈Vk. (6.15)

Objective function (6.11) is same as that of the original problem. It minimizes the total number

of changeovers throughout the voyage of the ship. Constraints (6.12) and (6.13) are the refor-

mulated constraints corresponding to Constraints (6.4) and (6.5), respectively. Constraint (6.12)

defines the changeover activity throughout the voyage of the tanker. For the loading leg (KL
j )

of the cargo j ∈ NG, Constraint (6.13) states that the number of changeovers (bKL
j jh) is equal to
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the convex combination of compartment assignments of cargo j ∈ NG. Constraint (6.14) is the

convexity constraint, which forces the sum of λ ’s for every k ∈ K to be equal to 1.

At every iteration, new decision variables λ v’s along with its corresponding new columns/corner

points { f v|v ∈ Vk,k ∈ K} are added to the RMP. If new columns were added, the RMP is re-

optimized for decision variables bk jh and λ v. The updated λ vector is passed to the sub-problem.

The formulation and implementation of these sub-problems are presented in the next section.

6.3.2 Dantzig-Wolfe sub-problem

The multi-period cargo-assignment problem (mp-CAP) has a block diagonal structure while

considering the proposed decomposition. This results in multiple sub-problems. Contrary to

traditional implementations of DW-CG frameworks, we solve integer sub-problems. Each sub-

problem generates partial columns during every iteration of the column generation procedure.

These partial columns are aggregated together to form columns entering the master problem.

Due to the exponential number of columns, the traditional DW relaxation and column genera-

tion often leads to slow convergence. As a result, some form of guidance towards generating

good quality columns is often introduced to accelerate the algorithm’s convergence. Some such

customization for the mp-CAP are also discussed further in this section.

Let λ̄ v (continuous, bounded between 0 and 1) the optimal solution to the master problem

and µ̄1
k jh, µ̄

2
KL

j jh, µ̄
3
k be the corresponding optimal dual values for Constraints (6.12), (6.13) and

(6.14), respectively. Let µLP
k jh be the dual values corresponding to Constraints (6.4) and (6.5)

obtained by solving the LP relaxation of the TAP formulation (Equations (6.1) - (6.10)). Sim-

ilarly, let µ3LP
k be the dual value associated with Equation (6.2). Decision variables ck jh are

binary variables, and take the value 1 if cargo j is assigned to compartment h during leg k. In

the below sub-problems NO denotes the onboard cargoes on the ship during that specific leg.

The sub-problem can be decomposed on the number of sailing legs. Thus, for a fixed k ∈ K the

sub-problem is as follows.
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Objective Function:

Minimise zk = ∑
j∈NG

∑
h∈H

∆k jhck jh (6.16)

∆k jh = αµ̄k jh +(1−α)µLP
k jh + cheur

k jh ∀k ∈ K, j ∈ NG,h ∈ NH ,α ∈ [0,1].

µ
3
k = αµ̄

3
k +(1−α)µ3LP

k

µ̄k jh =



µ̄2
KL

j jh− µ̄1
(k+1) jh, if |K j|> 1 and k = KL

j

µ̄2
KL

j jh, if |K j|= 1 and k = KL
j

µ̄1
k jh, if |K j|> 1 and k = |K j|

µ̄1
k jh− µ̄1

(k+1) jh, otherwise.

cheur
k jh =

0, if k = KL
j or c(k−1) jh = 1

Penalty Constant, otherwise.

Note: |K j| = 1 signifies that the cargo was picked up and immediately dropped off at the next

port. Additionally, columns are accepted into the master problem only if zk < µ3
k .

Set of constraints:

∑
h∈NH

ck jh ≥ 1 ∀ j ∈ NG, (6.17)

∑
j∈{NO

k ∪0}
ck jh = 1 ∀h ∈ NH , (6.18)

ck jh + ∑
j′∈{NI

j∩NO
k }

ck j′h′ ≤ 1 ∀ j ∈ NO
k ,h ∈ NH ,h′ ∈ NB

h , (6.19)

w jh ≤V H
h ρ jc̄ jh ∀ j ∈ NG,h ∈ NH , (6.20)
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∑
h∈NH

w jh =Wj ∀ j ∈ NG, (6.21)

∑
h∈NH

∑
j∈NO

k

ιhw jh ≥−α, (6.22)

∑
h∈NH

∑
j∈NO

k

ιhw jh ≤ α, (6.23)

∑
h∈NH

∑
j∈NO

k

κhw jh ≥−β , (6.24)

∑
h∈NH

∑
j∈NO

k

κhw jh ≤ β . (6.25)

Traditionally, the column generation framework is used to solve linear programs, which means

that both the master problem and the sub-problems are linear. However, in the proposed frame-

work, the master problem is linear, while the sub-problems are MILPs. These MILP sub-

problems generate only integer columns that enter into the master problem. As the procedure

progresses, only columns fulfilling the reduced cost criteria are accepted into the master prob-

lem, ensuring improvement in the objective function and termination of the algorithm.

Column generation theory also dictates that the sub-problem objective should minimize the

reduced cost equation to find columns with negative reduced cost. However, in the proposed

framework, the sub-problem objective function uses a customized cost co-efficient (∆) that im-

proves the convergence of the overall framework. The non-standard objective function (stabi-

lization and heuristic) is only used temporarily during some of the intermediate iterations. Other

iterations are solved using the original/true objective to ensure convergence. Thus, in theory, if

we let the algorithm run long enough, it will converge to the LP optimal solution.

The cost coefficient vector (∆) is generated as a linear combination of three sets of parameters.

The first set of parameters includes the duals (µ̄) generated by solving the LP master problem at

every iteration. These are the reduced cost coefficients. The second set of parameters contains

the dual values (µLP) generated from the LP relaxation of the TAP formulation. Vector (µLP)

corresponds to Constraints (6.5), (6.4) and (6.3). µLP help warm start the algorithm and guide

the search during the initial iterations. These also ensure that the lower bound (minimization

problems) generated by the DW relaxation is at least as good as the bound generated by the LP

relaxation. The idea of the stabilising initial process of column generation using the duals of the

primal master problem is similar to the one discussed by Amor et al. (2009). However, as the
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column generation algorithm progresses, the effect of µLP is reduced to let µ̄ dictate the search

direction.

The final set of parameters (cheur) are generated using a simple repair heuristic. These are

introduced to help guide the column generation process by transmitting information between

sub-problems. The columns generated from each of the sub-problems are passed into the master

problem. Traditionally, the sub-problems are solved without sharing any information between

them. Even though this enables solving these sub-problems in parallel, it does lead to slower

convergence.

For example, consider a small example. Remember that the overall objective is to minimize the

total number of changeovers. For simplicity, ignore the ship balancing criteria, and assume that

only one cargo needs to be assigned to a tanker (with two compartments) during two consecutive

sailing legs. Recall that a column generated by the sub-problems is nothing but different cargo-

compartment allocations for the tanker’s route. Consider two different columns that can be

generated. The first column gives an allocation that assigns the cargo to compartment one

during both the sailing legs. Alternatively, the second column defines an allocation that assigns

the cargo to compartment one during the first sailing leg and compartment two during the second

sailing leg.

The readers should be able to recognize that one of these columns is superior. Even though

both columns can enter the master problem, the first column is superior as it results in zero

changeovers. The cargo remains assigned to the same compartment during both legs. The cheur

parameters enable us to transmit this information between consecutive sub-problems.

Even though cheur helps transmit useful information across the sub-problems, it does have some

disadvantages. The cheur parameter can only be used if the sub-problems are solved sequentially.

Additionally, including the cheur within the objective function no longer guarantees convergence

for that iteration as the objective no longer represents the reduced cost. Thus, the repair heuristic

is only applied intermittently to guide the solution search. It is worth noting that as the heuristic

approach is only used intermittently, we are guaranteed to converge to at least the LP optimum

of the master problem. Additionally, the iterations for which the repair heuristic is applied need

not fulfil the reduced cost criteria.

The DW relaxation (RMP and SP) is solved until a termination criteria is met. The solution
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obtained at any iteration or even the optimal solution to the DW relaxation is not feasible for

the MILP formulation. This is because, for the original formulation, the decision variables bk jh

are still fractional. To generate integer solutions at the end of any iteration, one would need to

solve the Branch & Bound (B&B) tree by branching on the bk jh variables. This would generate

a feasible solution for the MILP from the corresponding DW relaxation solution. However, a

unique structure exists in the master problem, eliminating the need to solve the B&B tree. The

following section explores this unique structure of the master problem.

6.3.3 Master problem - shortest path problem representation

The master problem is solved as a linear program (LP) within the proposed solution frame-

work. Consequently, solving the restricted master problem to optimality produces a fractional

solution that is not feasible for the MILP formulation (Equations (6.1)-(6.10)) of the TAP. In

this section, we show that the restricted master problem (Section 6.3.1) can be represented as

the shortest path problem. This enables us to quickly generate a heuristic MILP solution for

the TAP from master problem columns at any iteration without applying the Branch & Bound

(B&B) procedure.

Let {Vk|k ∈ K} and { f vk |vk ∈ Vk} denote the set of corner points and a corner point for the

kth sub-problem, respectively. Let each corner point be represented by a vertex or node on the

directed graph. Directed edges can only exist between corner points of two consecutive sub-

problems. Moreover, let the edge weights represent the total changeovers (Bvk,v
′
k
) between any

two vertices. Simple arithmetic gives us the total number of changeovers (Bvk,v
′
k
) for any pair of

vertices (vk,v
′
k). An artificial origin node and a destination node are introduced to complete the

shortest path representation. The problem then becomes finding the shortest path (least number

of changeovers) between the origin node and the destination node.

Figure (6.2) presents a small example. Assume, that three ports are visited giving rise to three

sub-problems. At the present iteration, we have three corner points for each of the sub-problems.

Figure (6.2), vertex f 1,1 represents corner point f11 . Vertices O and D are the artificial origin

and destination nodes. The solution to the instance represented in Figure (6.2) is as follows.

Among the set of corner points, corner points (allocations) f21 -> f12 - > f23 result in the least
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Figure 6.2: The shortest path representation of the master problem presented in Section 6.3.1

number of changeovers i.e two. Thus, at any iteration in the column generation framework we

can generate a MILP solution for the TAP from a set of master problem columns.

The authors hope that the readers were able to improve their understanding of the DW reformu-

lation and the column generation algorithm with the help of a real-world example. The readers

must also realize that the practical implementation of these advanced optimization techniques

requires consideration of some additional parameters. Some of these parameters have already

been discussed in Section 3.2. In the next section, we will discuss some computational results

related to the mp-CAP.

6.4 Computational results

Computational experiments based on the above formulations are now described. Since these

problems require several inputs, this section starts by describing synthetically generated test

instances of the mp-CAP and other related chemical scheduling problems. While some of the

inputs are generated randomly, the range of random parameters are close to realistic values seen

in practice.
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6.4.1 Test instances for numerical experimentation

The test instances and an instance generator presented in Chapter 4 are the starting points for

computational work described in this section. As discussed in the previous chapters, the test in-

stances are divided into 44 instance sets depending on the different input characteristics. Inputs

include the total number of cargoes, the port network number, the maximum number of sailing

legs, the total planning time, and the cargo characteristics like total weight, density, loading

port, unloading port, pickup time windows, and compatibility criteria. The total number of

compartments in a tanker ranges from 16 to 52. For each instance, the total number of cargoes

is 40, 80, or 120. Every instance is named according to the instance set to which it belongs and

the chemical tanker that is used to generate the instance.

Since mp-CAP models a smaller set of decisions as compared to the general scheduling and

routing problem, the instance set and the solution sets together are used for inputs to mp-CAP.

The solution files for the S-PDP-TWTAC provide a list of cargo loaded on the tanker at every

port. The mp-CAP tries to assign these loaded cargoes to different compartments of the tanker.

Additionally, the chemical tanker scheduling problem is defined in such a way that the list of

cargoes used as an input for the mp-CAP has at least one feasible cargo-compartment allocation

plan for the mp-CAP formulations described in Sections 6.2 and its reformulation. The study

presented in the following section discusses fifteen instances selected from the above set.

6.4.2 Performance analysis of the MILP model and column generation

framework

This section discusses an empirical study conducted to test the mixed integer linear program-

ming (MILP) formulation and the Dantzig-Wolfe (DW) reformulation solved using the cus-

tomized column generation (CG) framework. Ideally, the CG framework would be embedded

in a Branch & Price-Cut tree, with the CG framework being used at every node of the tree. Im-

plementation of a user-defined Branch & Price-Cut tree requires knowledge of branching rules,

cutting planes, and tree pruning strategies, which are out of the scope of this chapter. Hence,

the CG framework presented here only solves the root node LP and does not solve the mp-CAP
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entirely.

The MILP and DW formulations are built using Julia 1.6 and JuMP. Julia was introduced by

Bezanson et al. (2017) and is a programming language suitable for scientific and engineering

applications. JuMP is a modelling language designed by Dunning et al. (2017) for mathematical

optimization in Julia. It enables easy construction of optimization models and allows one to call

optimization solvers, like Gurobi-9.1 used here from a Julia program. Source files and the fifteen

test instances have been provided2 as a GitHub repository. Interested readers can implement

these to further improve their understanding of the framework and recreate the results. The 15

test instances are solved in two ways:

• Using the Gurobi 9.1 MILP solver taking the mp-CAP formulation (Section 6.2) as an

input. The formulation is modelled in JuMP. In this chapter, we refer to these runs as

MILP runs.

• The root node of the CG framework (Section 6.3) implemented using JuMP. The master

problem and sub-problems are solved using Gurobi 9.1 MILP solver. In this chapter, we

refer to these runs as CG runs.

The MILP formulation and its LP relaxation are solved using the Gurobi Optimization (2022)

commercial solver. Tables 6.1 and 6.2 record important problem statistics and performance

parameters for the MILP runs, and CG runs. The total time limit for all instances is five minutes

wall clock time.

Table 6.1 presents the problem sizes and solving times for the MILP and CG runs. Initial

two columns give the Instance set and Ship number of the instances. Both these parameters

aggregate specific problem characteristics as explained in Section 6.4.1. The following two

columns present the total number of variables and constraints for the MILP runs. Columns

CG master vars and CG master constrs show the number of variables and constraints for the

master problem of the CG framework. Similarly, the following two columns tabulate the total

number of variables and constraints for all sub-problems. Column Sub-problems per iter gives

the number of sub-problems solved during each iteration of the CG runs, while the final two

columns report the wall clock time (in seconds) for the MILP runs, and the CG runs. The last

row of Table 6.1 gives the average value of every parameter for the 15 instances.

2https://github.com/anuragladage/mp-CAP.git
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Table 6.1: Problem size and solving time comparison for MILP, and CG framework solved at

root node

Instance

set

Ship

no

MILP

vars

MILP

constrs

CG

master

vars

CG

master

constrs

Sub-

problem

vars

Sub-

problem

constrs.

Sub-

problem

per iter

MILP

time

(sec)

CG

time

(sec)

2 9 2304 6004 106 208 294 1036 8 2 2

22 3 2304 5930 65 128 147 758 16 1 2

10 4 6336 15848 149 296 402 1616 16 2 3

14 17 4032 10492 177 352 510 1780 8 3 4

18 3 2640 7082 160 310 441 1534 11 91 6

6 1 12012 30618 376 750 1099 4274 11 4 8

2 1 11232 29194 478 952 1413 4894 8 54 22

13 18 21216 55310 1003 1992 2983 9834 8 81 22

15 9 3072 8498 573 496 735 2374 8 10 24

8 9 4224 11402 609 566 833 2742 11 5 32

23 18 24960 61956 537 1072 1570 5836 16 2 32

35 11 15360 38280 337 672 968 3896 16 22 35

33 10 24816 61492 535 1066 1562 5700 16 209 36

1 3 3072 8420 836 464 686 2204 8 19 37

3 7 12480 33516 784 128 147 758 16 5 51

Average 10004 25603 448 630 919 3282 12 34 21

135



Table 6.2: Comparison of upper and lower bounds generated by MILP runs and CG runs. Bound

diff (CG) gives the difference between upper and lower bounds generated during CG runs

Lower bounds Upper boundsInstance

set

Ship

no CG root LP value Diff CG root MILP Obj Diff

Bound

diff (CG)

2 9 450 350 100 450 450 0 0

22 3 200 200 0 200 200 0 0

10 4 350 350 0 350 350 0 0

14 17 300 300 0 350 300 50 50

18 3 300 250 50 350 350 0 50

6 1 400 350 50 400 400 0 0

2 1 450 450 0 450 450 0 0

13 18 950 850 100 950 950 0 0

15 9 650 400 250 850 650 200 200

8 9 650 400 250 850 650 200 200

23 18 500 500 0 500 500 0 0

35 11 400 400 0 400 400 0 0

33 10 550 550 0 550 550 0 0

1 3 400 200 200 650 400 250 250

3 7 600 500 100 650 650 0 50

Table 6.1 shows that the average number of variables and constraints are significantly less for the

CG runs compared to the MILP runs. Remember that the CG framework uses a delayed column

generation procedure, which only generates columns as and when required. This results in a

significant reduction in the number of variables. The reduction in the number of constraints is a

property of the DW reformulation. Table 6.1 also shows that the average times taken by MILP

runs and CG runs are 34 seconds and 21 seconds, respectively.

Table 6.2 presents the upper and lower bounds generated during the MILP runs, and the CG

runs. CG and MILP runs terminate optimally within the time limit for all 15 instances. Like

Table 6.1, the first and second columns tabulate the instance set number and the ship number.

Following two columns, tabulate the lower bounds generated during the CG and MILP runs.

Column LB diff shows the difference between these two lower bounds. A positive value (eight
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instances) in Column LB diff gives instances for which the CG runs found a tighter lower bound

than the LP relaxation.

The upper bounds of the CG and MILP runs, and the difference between these upper bounds

are tabulated in the following three columns. Zero value in the Column UB diff signifies that the

CG framework could find the optimal solution for the mp-CAP MILP formulation for eleven in-

stances. The CG framework discovered these optimal solutions at the root node. Column Bound

diff (CG) presents the difference between the upper and lower bounds generated during the CG

runs. Recall that the CG upper bounds are generated from the shortest path representation of the

master problem, while the CG lower bounds are the optimal master problem objective value.

Observe the six instances with positive values in this column. For all of these six instances, to

prove optimality, the CG framework has to be embedded into a Branch & Price-Cut tree.

These instances can be bifurcated into two sets. Four out of six of these instances also have

a positive value in Column UB diff. For these four instances, optimality could not be proved

because at the root node, the upper bound is higher than the optimal solution (MILP Obj).

This is because the CG lower bounds are constructed from a fractional combination of optimal

columns (fractional bk jh variable values). In contrast, the CG upper bounds are constructed

from optimal integer columns (binary bk jh variable values). On the other hand, for Instances

INST_18_3 and INST_3_7, the optimality could not be proved as the lower bounds are lower

than the optimal solution (MILP Obj).

This chapter presented the mp-CAP problem, which is often solved as part of various schedul-

ing problems faced in the chemical tanker industry. We discussed two different frameworks

for solving the mp-CAP, namely, a MILP framework, and a DW-CG framework. Advantages,

disadvantages, and insights obtained by using both the frameworks was also outlined in this

chapter. In the next chapter, we will summarise the research carried out as part of our Ph.D. the-

sis, and also present important conclusions that will help other researchers continue the research

in this field.
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Chapter 7

Summary and Conclusions

We present an improved formulation for the single-ship chemical tanker scheduling problem.

Our revised formulation substantially reduces the number of decision variables and constraints.

The revised formulation performs better than the existing formulation that is available in the

literature in terms of memory requirements, solution quality and Cplex solution time. The

linear relaxation of the revised formulation is also tighter than the one presented in the litera-

ture. We hope other researchers will use our instance generator and the library of instances to

improve the models and solution techniques. In its entirety, Cplex found the s-PDP-TWTAC

MILP formulation considerably challenging due to the large search space of the problem. As a

result, we moved our focus to neighbourhood search heuristics, which could find good quality

neighbourhoods, and reduce the Cplex search tree.

The heuristics presented by us can be classified into two groups: linear programming guided

neighbourhood search heuristics (LPNS, LPNS+) and integer programming guided neighbour-

hood search heuristics (H1, H2, H3, GRASP). LPNS heuristic tries to define an initial search

neighbourhood from the LP relaxation of the problem. We fortify the LPNS heuristic with a lo-

cal search strategy to improve the quality of the solutions. We call this heuristic LPNS+. LPNS

and LPNS+ heuristics reduce the total solution time of the problem compared to the MILP for-
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mulation. We show that the LPNS heuristic consistently finds better quality lower bounds than

the Cplex run as the problem complexity (Cplex gap (%)) increases. However, for medium to

large instances, the LP relaxation is the bottleneck restricting the overall performance of the

heuristic.

To further explore the problem structure and complexity, we performed a sensitivity analysis

on the performance parameters obtained from Cplex and the LPNS heuristics. The sensitivity

analysis helps us conclude that the Cplex and LPNS heuristic performances deteriorate with the

increase in the number of sailing legs and the total number of cargoes. Cplex and the LPNS

heuristic performance also improves with the number of different discharge ports for onboard

cargoes. A preliminary study showed that all other inputs to the instance generator did not

significantly affect the gaps and total solution time (both runs). However, an additional study

using a significantly higher number of test instances is required to discover better inputs to

performance relationships. Solving a higher number of test instances will enable us to perform

a robust and unbiased statistical analysis that might help us discover compounded effects of

different input parameters affecting the solution time and quality.

Heuristic H1 generates a naive initial solution (s0). Subsequently, the second phase of H1 im-

proves s0 by either inserting new cargoes or modifying the chemical tanker’s route. The second

heuristic uses a more sophisticated relax-and-fix strategy to generate s0. Phase 1 of the second

heuristic finds better quality initial solutions than Phase 1 of the first heuristic. Heuristic H3

increases the size of the feasible region that can be explored by generating multiple initial so-

lutions. Readers might recall, that initial routes are randomly selected from a set of all possible

initial routes. We believe that significant improvement can be achieved if some useful strategy

is implemented to select more promising routes instead of an random approach. This would

significantly improve the quality of initial solution and help in quicker overall convergence.

Finally, we propose a combination of the three heuristics, which maximises the overall per-

formance of the heuristics. For 188/200 test instances, Heuristic H1_H2_H3 finds a solution

within one percent of the solutions generated during the Cplex run. Compared to the Cplex run,

there is a significant decrease in the average total solution time of Heuristic H1_H2_H3.

We also discuss the multi-period cargo-assignment problem (mp-CAP), its MILP formulation

and its Dantzig Wolfe (DW) reformulation in this thesis. The presence of easy and complicated

constraints, along with the shortest path type unique structure, motivates applying the DW refor-
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mulation to the mixed-integer linear programming (MILP) formulation. The DW reformulation

represents the problem defined by the original objective function and complicated constraints in

terms of the corner points or vertices of the feasible region defined by the easy set of constraints.

Such a reformulation has multiple advantages.

First and foremost, it reduces the total number of constraints in the problem. The DW refor-

mulation helps us break the symmetry in the problem. This symmetry occurs due to similar

allocations with the same objective value. The DW reformulation also helps us decompose the

problem into master and multiple sub-problems. These multiple sub-problems disintegrate into

separate problems, thus allowing us to solve them in parallel. The master problem also helps us

exploit a unique shortest path structure within the mp-CAP. This eliminates the need to solve

the Branch and Bound tree to get a MILP solution from a given set of master problem columns.

However, the Dantzig Wolfe reformulation generally results in an exponential number of deci-

sion variables or columns. This necessitates using delayed column generation, which generates

columns as and when required. The experiments showed that the CG framework could find

good MILP solutions using fewer variables. Moreover, the DW formulation solved using the

CG framework found tighter lower bounds than the LP relaxation.

For bigger instances, the CG framework can converge extremely slowly. In practice, the CG

framework needs to be embedded within a Branch & Price-Cut tree. This would require a

very fast convergence of the CG framework. Thus, fast heuristic approaches to generate good

quality solutions to the sub-problems or tighter sub-problem formulations are a couple of ways

to improve this framework further. Additionally, a problem-specific Branch & Price-Cut tree

implementation will help leverage all the advantages of the DW formulation.

A further study of the symmetric solutions could be a promising research avenue to discover

stronger cuts. The problem’s symmetry increases with the increase in the number of com-

partments. The right cuts would enable the CG framework to avoid symmetric solutions and

significantly boost its convergence. Another promising research avenue could be to introduce

stronger cover cuts for the mp-CAP MILP formulation at each node of the Branch & Price-Cut

tree. A study related to the ship’s compartment structure and cargo characteristics could help

discover cover cuts that can limit the total number of cargoes assigned to the ship as a function

of empty compartments. Other avenues include generating reasonable heuristic solutions for

sub-problems and an improved sub-problem objective function that can improve the quality of
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columns entering the master problem.

Interested researchers could also study some extensions of the mp-CAP. A critical extension of

the mp-CAP arises by including a more realistic version of the compatibility constraints. For

example, the current definition of mp-CAP considers cargo-compartment incompatibility as a

function of compartment material. However, cargo-compartment incompatibility also results

from cargo stored in a compartment in the preceding sailing legs. Incorporating this into the

model will change the structure of the problem and might impact the DW-CG framework.

It should be noted that even though the mp-CAP is individually is very interesting problem, the

primary motivation for studying the mp-CAP is to better understand its problem structure. This

would help us improve the integration of the mp-CAP into the s-PDP-TWTAC. While designing

the neighbourhood search heuristics for the s-PDP-TWTAC, it was noticed the simple greedy

heuristics for the mp-CAP sub-problem were ineffective. However, given its special structure,

if future researchers are able to improve the convergence rate and solution time of the DW-

CG framework, it could be used as part of the neighbourhood search heuristics. It would not

only help solve multiple sub-problems in parallel, but also help effectively tackle the symmetry

problem hindering the heuristics designed for the s-PDP-TWTAC.

Further, researchers could also solve the s-PDP-TWTAC as a two level optimisation problem.

A solution can be generated without the cargo-compartment plan (adjusted s-PDP-TWTAC

formulation). This solution can be used as an input to the mp-CAP DW-CG framework. If

the input solution is infeasible, a cover cut making the the present combination of cargoes

infeasible can be added to adjusted s-PDP-TWTAC formulation. If at least one feasible solution

is obtained then the DW-CG framework can be solved to optimality to generate a solution for

the s-PDP-TWTAC. This framework could also be used to generate good initial solutions for

the s-PDP-TWTAC.

An important practical extension of the s-PDP-TWTAC is to include time windows for both

pickup as well as deliveries. This is generally the case in the real world. In general, introduc-

ing time-windows on discharge of cargoes should make the problem more difficult. However,

one could also tighten the formulation by introducing precedence constraints between cargoes

resulting from their discharge time-windows. As such, further investigation is needed to under-

stand the effect of introducing different types of cargo-related time windows.
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The instance generator presented in Chapter 4 can also be improved in multiple ways improve

its usage, accuracy and practicality. Statistical analysis and experiments can be employed to

detect any unwanted biases that be occurring within the data. Presently, the instance generator

partially relies on randomly generated data. These could potentially be replaced by real data

leading to better overall accuracy of the optimization algorithms. Moreover, the data set can

also be extended to include different types of bulk cargoes as well as different type of tankers.

This would make the instance generator more usable.

Chemicals play an important role in everyone’s lives. Many household and commercial prod-

ucts like sanitisers, petrol, diesel, and medicines are made of chemicals. Notably, during the

pandemic crisis, these products’ timely transportation and availability was critical. These chem-

icals are transported across ports with the help of chemical tankers. Our research aimed to im-

prove the scheduling of these chemical tankers. We presented a MILP formulation and some

heuristics for the s-PDP-TWTAC.

One important simplifying assumption has been to simplify the in-port operations of the chem-

ical tankers. Including the berthing operations in the problem definition would make the prob-

lems more realistic. Also, the industry enforces softer time-window constraints on pick-ups and

deliveries and a penalty cost for missing these windows. As such, comparing the effects of hard

and soft time-window constraints on the complexity of s-PDP-TWTAC is another avenue for

future research.

We also present a multi-period cargo-to-compartment assignment problem (mp-CAP). The mp-

CAP forms an essential part of a chemical tanker’s scheduling operations. The presence of

domain-specific constraints, a multi-period approach, and flexibility to re-arrange cargoes in

compartments makes this assignment problem unique. We discussed a decomposition approach

for this problem. It is important to remember that different problems have different decomposi-

tions and implementation hurdles than those discussed in this chapter. It is often impossible to

predict whether one approach will be faster or yield better results than others. Dantzig-Wolfe

reformulation is one promising approach, but it must be used carefully to be effective.

Even though there are multiple assumptions simplifying the research problems, we believe

these, along with the related heuristics, can be used as part of a decision support system to

generate real-time schedules for chemical tankers. Additionally, tanker operators often have

to generate schedules for their entire fleet, which requires solving a multi-ship version of the
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s-PDP-TWTAC. A critical constraint that makes the multi-ship solution different is that cargo

has to be optimally assigned to one or many chemical tankers. Although, in most cases, cargo

is not split between multiple tankers. This restricts the multi-ship scheduling problem from dis-

integrating into multiple single ships scheduling problems. Our heuristics could enable future

researchers to improve the tractability of the multi-ship chemical tanker scheduling problem.

We hope our research can be improved further by future researchers and proves an important

milestone in automating the scheduling process of chemical tankers.

144



Appendix A

Appendix

A.1 Computation Tables

Table A.1: Ship data combined with average (per ship) statistics related to Cplex and heuristic

runs of the revised formulation

Ship

numbers

Ship

name

Draft constant

(tonnes)

Total

compartments

Ship speed

(knots)

Instances

per ship

Avg.

variables

Avg.

constraints

Avg. Cplex

gap (%)

Avg. heur

gap (%)

Avg. Cplex

CPU time (sec)

Avg. Heur

CPU time (sec)

1 BOW MEKKA 11176 52 14.3 16 148233 205209 20.78 19.18 41222.12 25090.25

3 BOW HECTOR 8154 16 14.2 15 82946 57522 17.43 26.97 41849 9133.67

4 BOW SANTOS 5027 22 14.1 18 103885 87223 29.21 34.03 49803.89 21144.22

7 BOW FAGUS 11176 52 14.3 18 160705 211473 22.03 21.48 46607.94 27238.88

8 BOW ATLANTIC 4541 24 13.6 16 105609 112466 34.74 37.67 52575.31 18861.38

9 BOW KISO 8793 16 13.8 16 187126 235564 21.15 23.54 39526.56 10960.44

10 BOW FORTUNE 10915 47 14.3 17 78678 63175 22.09 16.16 42259.41 16540.25

11 BOW SAGA 10262 40 14.6 17 146181 177033 22.02 22.13 46645.71 22842.81

17 BOW ARCHITECT 7691 28 14.5 13 125817 169780 29.04 30.09 47945.46 27024.69

18 BOW CEDAR 11176 52 14.3 15 204315 237503 31.08 16.82 50513 28112.42

20 BOW LIND 13416 29 13.7 11 108811 151759 24.6 20.99 50484.27 34533.27

22 BOW FIRDA 10915 47 14.3 19 120954 121219 43.95 27.94 59761.16 37577.53

27 BOW HERON 9450 31 14.5 9 96451 100068 13.05 15.52 26950.22 10811.44
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Table A.2: Instance set data combined with the average (per instance set) statistics related to

Cplex and heuristic runs of the revised formulation

Instance

set

Total

cargoes

Network

number

Total

legs

Onboard cargoes

discharge port

Instances

per set

Avg.

variables

Avg.

constraints

Avg. Cplex

gap (%)

Avg. heur

gap (%)

Avg. Cplex

CPU time (sec)

Avg. heur

CPU time (sec)

1 40 1 7 1 6 42024 55806 0.01 3.25 1448.83 366.83

2 40 2 7 1 6 92933 58744 0.01 10.16 1681.83 14530.67

3 40 3 7 1 8 43871 54630 0.01 7.92 970.25 127.88

4 40 4 7 1 4 45443 50718 0.01 7.66 2600 4358.5

5 40 1 10 1 5 48653 58368 0.01 8.47 32214.4 6831.6

6 40 2 10 1 6 134869 81700 3.71 3.67 44494.67 1866

7 40 3 10 1 6 59822 61954 0.01 1.42 40243.83 9357

8 40 4 10 1 6 70401 82240 0.01 0.01 15380.5 2397.83

9 40 1 15 1 5 99074 130647 24.8 20.79 86400 70942.6

10 40 2 15 1 4 193238 92981 101.22 96.37 86400 22569.25

11 40 3 15 1 3 113211 134061 45.25 30.72 86400 86400

12 40 4 15 1 2 112603 131483 46.19 40.92 86400 77056.5

13 80 1 7 1 4 80353 115966 0.01 13.99 2498 738.75

14 80 2 7 1 4 133313 121179 0.01 0.01 13012.75 1903

15 80 3 7 1 5 84426 117185 0.01 1.04 6140.8 3676.4

16 80 4 7 1 3 70428 92405 0.01 8.04 8695.67 1076

17 80 1 10 1 6 96019 131734 17.5 20.21 73734.83 12582.5

18 80 2 10 1 6 184214 157150 35.43 37.19 80524.83 14011.67

19 80 3 10 1 3 137923 191019 43.48 45.35 86400 48502.33

20 80 4 10 1 4 109692 144237 26.04 31.32 71406.75 5128.75

21 80 1 15 1 4 163157 235329 83.68 81.54 86400 86400

22 80 2 15 1 6 262573 198540 100.18 90 86400 37930

23 80 3 15 1 5 193277 261004 68.95 61.75 86400 76789

24 80 4 15 1 1 230100 312487 87.43 86.67 86400 86400

25 120 1 7 1 3 145451 217521 0.01 0.01 34131 17464.33

26 120 2 7 1 4 158509 165233 0.01 35.7 25290.25 3549.5

27 120 3 7 1 4 98466 134518 0.01 3.53 14367.5 6825.5

28 120 4 7 1 6 142529 206488 0.01 2.57 24387.83 9310.83

29 120 1 10 1 3 166199 285232 27.11 28.46 82822.33 67004.67

30 120 2 10 1 6 253056 275936 61.66 53.16 79195.33 20739

31 120 3 10 1 6 144424 203485 27.54 31.04 86400 34733

32 120 4 10 1 3 187376 279155 52.74 53.07 86400 36389.67

33 120 1 15 1 6 234597 337592 82.46 66.87 86400 73790.67

34 120 2 15 1 4 370090 395842 90.65 82.87 86400 86400

35 120 3 15 1 5 271205 390792 91.68 60.31 86400 86400

36 120 4 15 1 5 241076 324114 82.79 78.08 86400 53841.33

37 40 1 7 4 1 51325 81826 0.01 0.01 503 68

38 40 2 7 4 5 90619 57397 0.01 5.9 2208.4 127.8

39 40 3 7 4 2 55011 61616 0.01 0.01 1000 574.5

40 40 4 7 4 2 53026 64121 0.01 3.45 659.5 172.5

41 40 1 10 4 5 60526 81055 0.02 4.36 41816.4 21566.6

42 40 2 10 4 5 131062 76950 0.01 1.99 28926 1101

43 40 3 10 4 7 65225 77953 3.2 3.37 20168.57 2177.43

44 40 4 10 4 6 67204 83903 0.01 9.69 32624.83 2976.33
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Table A.3: Results obtained from H1, H2 and H3 computational runs

Instance
Instance

Name
Status

Phase 1 CPU

Time (sec)

Total CPU

Time (sec)

First Sol

Objective (USD)

Best Sol

Objective (USD)

Total

Improvements

H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3

1 INST_1_1 P2 P1 P2 1 19 0 2 19 2 27816.8 1904910 27816.8 1904110 1904910 1904360 4 1 4

2 INST_1_3 P2 P1 P2 0 24 0 0 24 1 291092 2044990 291092 1975100 2044990 1975100 5 1 5

3 INST_1_4 P2 P1 P2 0 20 0 1 20 1 232705 2311570 232705 2188270 2311570 2188270 4 1 4

4 INST_1_7 P2 P1 P2 1 28 0 2 29 2 621564 2501350 621564 2500750 2501350 2500550 4 1 4

5 INST_1_8 P2 P2 P2 1 31 0 2 83 2 -87950.9 402773 -87950.9 1390110 432056 1390210 3 2 3

6 INST_1_22 P2 P1 P2 1 29 0 1 30 1 188470 2047180 188470 2046530 2047180 2046680 4 1 4

7 INST_2_1 P1 P1 P2 2 80 0 2 80 2 1034470 1034470 1034470 1034470 1034470 1034470 1 1 1

8 INST_2_3 P2 P1 P2 1 181 7 1 279 31 -639184 -496982 -639184 -497081 -496982 -497081 2 1 2

9 INST_2_9 P2 P1 P2 1 86 0 1 86 1 355220 449231 355220 449231 449231 449231 2 1 2

10 INST_2_10 P2 P2 P2 1 181 0 2 181 2 -507001 -507000 -507001 -416145 -400331 -400280 2 3 3

11 INST_2_11 P2 P1 P2 1 108 0 2 108 2 165042 375249 165042 364185 375249 364235 5 1 5

12 INST_2_18 P2 P1 P2 2 48 0 2 48 2 312440 398917 312440 398716 398917 398616 2 1 2

13 INST_3_4 P2 P1 P2 0 27 0 1 28 1 647718 1693030 647718 1908630 1693030 1908530 4 1 4

14 INST_3_7 P2 P1 P2 1 21 0 2 21 2 198926 1789680 198926 1704240 1789680 1704240 5 1 5

15 INST_3_8 P2 P1 P2 1 59 0 1 60 1 158911 1255950 158911 1082680 1255950 1082680 3 1 3

16 INST_3_9 P2 P2 P2 0 53 0 1 53 1 933798 484189 933798 1552090 1115640 1552090 3 5 3

17 INST_3_10 P2 P1 P2 1 18 0 1 18 1 445499 1830600 445499 1796980 1830600 1796930 4 1 4

18 INST_3_11 P2 P1 P2 1 18 0 1 19 1 1064760 3130260 1064760 2003370 3130260 2003420 5 1 5

19 INST_3_20 P2 P1 P2 1 27 0 3 27 3 1382970 2024440 1382970 1920780 2024440 1920780 3 1 3

20 INST_3_22 P2 P1 P2 1 20 0 1 21 1 812570 2604940 812570 1967110 2604940 1967110 5 1 5

21 INST_4_3 P2 P1 P2 0 64 0 1 65 1 35165.2 960599 35165.2 538691 960599 538841 3 1 3

22 INST_4_10 P2 P1 P2 1 39 0 1 40 1 749486 809402 749486 809302 809402 809302 2 1 2

23 INST_4_11 P1 P1 P2 1 68 0 1 69 1 72803.7 357419 72803.7 72803.7 357419 72803.7 1 1 1

24 INST_4_17 P1 P1 P2 1 63 0 1 64 1 535150 995349 535150 535150 995349 678455 1 1 4

25 INST_5_3 P2 P1 P2 0 183 5 1 183 22 565841 1158380 565841 1156290 1158380 1156240 5 1 5

26 INST_5_4 P2 P1 P2 1 184 0 1 184 1 310879 1094640 310879 816153 1094640 816253 2 1 2

27 INST_5_7 P2 P2 P2 1 183 0 2 184 2 238379 878770 238379 946176 940882 946126 5 3 5

28 INST_5_8 P2 P2 P2 1 182 0 1 183 1 275491 957024 275491 1556530 987876 1556580 5 3 5

29 INST_5_9 P2 P2 P2 0 181 0 1 182 1 413883 156535 413883 875248 552316 875198 3 5 3

30 INST_6_1 P1 P2 P2 2 181 0 2 182 2 1537990 1516510 1537990 1537990 1537990 1537990 1 2 1

31 INST_6_3 P2 P1 P2 1 182 9 1 183 31 1051200 1091800 1051200 1234530 1091800 1234530 2 1 2

32 INST_6_4 P1 P1 P2 1 187 0 1 188 2 231178 600615 231178 231178 600615 231178 1 1 1

33 INST_6_7 P1 P1 P2 3 182 0 3 182 3 918408 918408 918408 918408 918408 918408 1 1 1

34 INST_6_22 P1 P1 P2 2 181 0 2 182 3 1136620 1136620 1136620 1136620 1136620 1136620 1 1 1

35 INST_6_27 P1 P1 P2 2 181 0 2 181 2 558365 558365 558365 558365 558365 558365 1 1 1

36 INST_7_3 P2 P2 P2 1 180 0 1 181 1 915953 1438070 915953 1512550 1512600 1512550 4 2 4

37 INST_7_4 P2 P1 P2 1 184 0 1 185 1 803895 1733290 803895 1473740 1733290 1473740 5 1 5

38 INST_7_9 P2 P1 P2 1 181 0 1 181 1 25562.6 884124 25562.6 49356.6 884124 49306.6 2 1 2

39 INST_7_10 P2 P2 P2 2 216 0 3 217 3 900702 1408390 900702 1371930 1453030 1371930 5 3 5

40 INST_7_11 P2 P1 P2 1 190 0 2 191 2 306110 1085730 306110 643162 1085730 643162 5 1 5

41 INST_7_17 P2 P1 P2 1 184 0 2 185 2 522785 1136150 522785 883794 1136150 1010190 5 1 7

42 INST_8_9 P2 P1 P2 1 181 5 1 300 22 874483 2977610 874483 2123850 2977610 2123850 4 1 4
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Instance
Instance

Name
Status

Phase 1 CPU

Time (sec)

Total CPU

Time (sec)

First Sol

Objective (USD)

Best Sol

Objective (USD)

Total

Improvements

H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3

43 INST_8_10 P2 P1 P2 1 182 0 2 182 2 1149810 3064160 1149810 1920860 3064160 1921060 3 1 3

44 INST_8_18 P2 P1 P2 1 183 0 2 184 2 766519 2195940 766519 1473800 2195940 1473800 3 1 3

45 INST_8_20 P2 P1 P2 1 181 0 1 182 2 1243620 1793960 1243620 1410380 1793960 1410380 3 1 3

46 INST_8_22 P2 P1 P2 1 184 1 2 185 2 385564 2660010 385564 2320450 2660010 2320350 4 1 4

47 INST_8_27 P2 P1 P2 1 183 0 1 183 1 510847 1758740 510847 1393910 1758740 1393910 3 1 3

48 INST_9_11 P2 P1 P2 1 181 1 2 182 3 2229840 3974400 2229840 4027080 3974400 4027080 5 1 5

49 INST_9_17 P2 P1 P2 1 188 0 2 188 2 2819510 4532440 2819510 4641690 4532440 4641690 5 1 5

50 INST_9_18 P2 P1 P2 2 194 1 3 195 4 3127430 4807560 3127430 4706640 4807560 4706940 4 1 4

51 INST_9_20 P2 P1 P2 1 183 0 2 184 3 1105860 3508920 1105860 2217130 3508920 2217130 4 1 4

52 INST_9_22 P2 P1 P2 2 202 1 3 203 4 1763120 3745750 1763120 3539430 3745750 3539430 5 1 5

53 INST_10_4 P2 P2 P2 2 181 0 2 182 2 -168298 -238864 -168298 143141 7379.57 143141 2 2 2

54 INST_10_8 P2 P2 P2 2 181 0 3 182 3 -488536 -488537 -488536 78248.1 78247.6 78148.1 2 2 2

55 INST_10_9 P2 P2 P2 2 181 0 2 182 2 -384618 -384617 -384618 -206519 -206419 -206519 2 2 2

56 INST_10_10 P2 P2 P2 3 182 0 4 183 4 -641762 -641762 -641762 46214.1 45963.7 46114.1 3 3 3

57 INST_11_1 P2 P1 P2 3 313 0 4 314 4 881360 2452580 881360 1936510 2452580 1936360 3 1 3

58 INST_11_4 P2 P2 P2 1 181 0 2 182 2 574565 1728430 574565 1986650 1748950 1986650 5 2 5

59 INST_11_22 P2 P1 P2 2 227 0 3 228 3 349300 2455990 349300 1348410 2455990 1348410 3 1 3

60 INST_12_7 P1 P1 P2 3 183 0 3 183 4 1172500 1172500 1172500 1172500 1172500 1172500 1 1 1

61 INST_12_8 P2 P1 P2 1 196 0 2 197 2 1008720 1545780 1008720 1547330 1545780 1547330 4 1 4

62 INST_13_11 P2 P1 P2 1 42 0 2 43 3 1125700 3560080 1125700 2279480 3560080 2279480 5 1 5

63 INST_13_17 P2 P1 P2 1 27 0 2 27 2 398968 2801900 398968 1699260 2801900 1699260 5 1 5

64 INST_13_18 P2 P1 P2 2 63 0 3 64 3 1176260 2728980 1176260 2564190 2728980 2564190 5 1 5

65 INST_13_27 P2 P1 P2 1 23 0 2 24 2 301883 2829210 301883 2657470 2829210 2657470 5 1 5

66 INST_14_10 P2 P1 P2 3 203 1 3 205 4 946874 1183290 946874 1036090 1183290 1036040 3 1 3

67 INST_14_17 P1 P1 P2 2 182 0 2 183 2 1339480 1014410 1339480 1339480 1014410 1339480 1 1 1

68 INST_14_18 P2 P2 P2 2 182 0 3 184 3 1030070 1557740 1030070 1742350 1727530 1742500 4 4 4

69 INST_14_20 P2 P1 P2 2 122 0 2 122 2 473192 1334810 473192 705726 1334810 473192 4 1 1

70 INST_15_7 P2 P1 P2 2 41 0 3 43 3 865861 2348320 865861 2347620 2348320 2347620 4 1 4

71 INST_15_8 P2 P1 P2 1 127 1 1 128 1 376490 1647270 376490 1409240 1647270 1409240 3 1 3

72 INST_15_9 P2 P1 P2 1 31 0 1 32 1 1101260 2660630 1101260 2660130 2660630 2660130 5 1 5

73 INST_15_10 P2 P1 P2 1 53 0 2 54 2 376737 1909440 376737 1847950 1909440 1847950 4 1 4

74 INST_15_22 P2 P1 P2 2 81 0 3 82 3 1324310 2650910 1324310 1895250 2650910 1895350 5 1 5

75 INST_16_1 P2 P1 P2 2 92 0 3 93 3 598058 1942460 598058 884296 1942460 1231280 4 1 4

76 INST_16_3 P2 P1 P2 1 182 8 1 241 27 1828360 2360040 1828360 2073280 2360040 2073280 2 1 2

77 INST_16_4 P2 P1 P2 1 183 1 1 184 1 537889 1043050 537889 1156990 1043050 1156940 2 1 2

78 INST_17_3 P2 P1 P2 1 183 1 1 184 2 842428 2429840 842428 2983160 2429840 2983110 4 1 4

79 INST_17_4 P2 P1 P2 1 185 0 2 186 2 283566 1207800 283566 1865080 1207800 1865080 5 1 5

80 INST_17_7 P2 P2 P2 3 190 0 4 190 5 1404640 4434100 1404640 4421780 4459870 4421680 5 2 5

81 INST_17_8 P2 P2 P2 1 186 1 2 187 2 728576 2869200 728576 3850350 3713820 3850350 5 2 5

82 INST_17_9 P2 P1 P2 1 181 0 1 182 2 1259500 3200970 1259500 4122910 3200970 4122910 5 1 5

83 INST_17_10 P2 P1 P2 2 198 0 4 200 4 980699 4036640 980699 3971120 4036640 3971120 5 1 5

84 INST_18_3 P2 P2 P2 2 181 7 2 320 29 1542680 -55018.3 1542680 1584170 1542680 1584170 2 10 2

85 INST_18_11 P2 P2 P2 3 182 1 4 183 4 1098300 1821090 1098300 2167000 2107300 2167000 3 2 3
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Instance
Instance

Name
Status

Phase 1 CPU

Time (sec)

Total CPU

Time (sec)

First Sol

Objective (USD)

Best Sol

Objective (USD)

Total
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H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3

86 INST_18_17 P2 P2 P2 2 182 0 3 183 3 564794 564793 564794 1761070 1761070 1761020 4 4 4

87 INST_18_18 P2 P2 P2 4 184 1 5 188 6 1028520 1661930 1028520 2049360 1805870 2049360 5 4 5

88 INST_18_20 P2 P2 P2 3 185 0 3 189 3 997316 1104220 997316 1371000 1230670 1371000 2 3 2

89 INST_18_22 P2 P2 P2 4 197 1 5 200 5 1804230 1930230 1804230 2790120 2439700 2790120 4 4 4

90 INST_19_18 P2 P2 P2 3 204 1 4 207 5 312736 2516450 312736 2405320 2908200 2405170 4 3 4

91 INST_19_22 P2 P2 P2 3 202 1 4 204 5 805615 2784930 805615 2625540 3412740 2625540 5 3 5

92 INST_19_27 P2 P2 P2 2 182 0 3 183 3 914161 3090040 914161 2960940 3105150 2960940 5 3 5

93 INST_20_8 P2 P2 P2 1 182 1 2 183 2 143723 659309 143723 1242030 958721 1242130 3 4 3

94 INST_20_9 P2 P1 P2 1 182 0 2 196 2 801170 2300810 801170 2080170 2300810 2080120 4 1 4

95 INST_20_10 P2 P1 P2 2 186 1 3 187 4 260210 806529 260210 1537910 806529 1537910 4 1 4

96 INST_20_11 P1 P1 P2 2 185 0 2 186 2 1105800 1764550 1105800 1105800 1764550 1105800 1 1 1

97 INST_21_1 P2 P2 P2 4 385 1 7 387 8 401488 799847 401488 1445970 1011660 1445970 5 3 5

98 INST_21_3 P2 P2 P2 1 186 0 3 189 3 372018 1174330 372018 1211650 1608970 1211650 4 5 4

99 INST_21_4 P2 P2 P2 2 181 0 5 186 4 83134.5 5325.68 83134.5 1776880 1359710 2144440 7 8 7

100 INST_21_7 P2 P2 P2 4 348 1 7 355 8 200597 242945 200597 1515880 456186 1515680 5 4 5

101 INST_22_3 P1 P2 P2 3 182 0 3 182 3 -281065 -281065 -281065 -281065 -281065 -281065 1 2 1

102 INST_22_4 P2 P1 P2 3 183 0 4 183 4 18641.4 18641.5 18641.4 456472 18641.5 456422 2 1 2

103 INST_22_7 P2 P2 P2 7 185 0 8 188 8 884086 884087 884086 1132560 1132560 1132560 3 3 3

104 INST_22_8 P2 P2 P2 4 183 0 4 184 4 187709 187708 187709 235231 187709 187709 2 2 1

105 INST_22_9 P2 P2 P2 3 182 0 5 184 5 -236626 -236626 -236626 149051 148951 148901 3 3 3

106 INST_22_22 P2 P2 P2 6 185 1 7 189 8 43738.9 43739.6 43738.9 503482 237974 503482 3 2 3

107 INST_23_10 P2 P2 P2 3 183 0 7 185 8 1264520 1249800 1264520 3273630 3143980 3333040 6 5 7

108 INST_23_11 P2 P2 P2 3 183 0 5 188 6 1972740 998861 1972740 3448570 2610230 3448570 5 4 5

109 INST_23_17 P2 P2 P2 2 182 0 7 186 5 1555200 1423770 1555200 3284210 3118420 3087570 9 9 7

110 INST_23_18 P2 P2 P2 5 185 0 7 189 9 1338780 1103440 1338780 2320470 2762670 2320470 5 5 5

111 INST_23_20 P2 P2 P2 2 188 0 8 199 8 146925 258610 146925 1542080 720529 1542030 5 2 5

112 INST_24_22 P2 P2 P2 5 237 1 6 246 7 -26263.4 381811 -26263.4 1174020 908608 1174020 3 6 3

113 INST_25_10 P2 P1 P2 3 87 0 4 89 5 57155 3063670 57155 2391080 3063670 2391080 5 1 5

114 INST_25_11 P2 P1 P2 2 182 0 3 183 3 342154 2196220 342154 1805080 2196220 1805080 4 1 4

115 INST_25_18 P2 P1 P2 3 204 1 5 208 5 558820 3768240 558820 2373930 3768240 2373930 4 1 4

116 INST_26_1 P2 P1 P2 4 189 0 7 191 7 -310712 1151120 -310712 534773 1151120 534623 3 1 3

117 INST_26_3 P2 P1 P2 2 181 0 2 182 2 97291.1 418869 97291.1 597366 418869 597366 3 1 3

118 INST_26_4 P2 P2 P2 2 184 0 2 184 3 -32027.8 -19807.8 -32027.8 304092 -608.168 304242 4 2 4

119 INST_26_7 P2 P1 P2 4 183 1 6 186 5 -40802.9 629816 -40802.9 666506 629816 666556 2 1 2

120 INST_27_3 P2 P1 P2 1 182 8 2 249 30 305338 2200070 305338 1981320 2200070 1981320 5 1 5

121 INST_27_4 P2 P2 P2 1 131 0 2 135 3 190892 989487 190892 2566370 1016180 2566370 5 2 5

122 INST_27_7 P2 P1 P2 4 107 1 7 111 7 765546 3794670 765546 1617370 3794670 2424440 5 1 5

123 INST_27_8 P2 P1 P2 1 81 0 3 82 3 64923.6 3016620 64923.6 2413350 3016620 2413350 5 1 5

124 INST_28_1 P2 P1 P2 3 172 0 5 173 6 214015 2656510 214015 2486220 2656510 2486220 5 1 5

125 INST_28_10 P2 P1 P2 3 186 0 5 187 6 581943 2293760 581943 2546540 2293760 2546540 5 1 5

126 INST_28_11 P2 P1 P2 2 181 0 4 182 4 622658 2902840 622658 2582420 2902840 2582420 5 1 5

127 INST_28_17 P2 P1 P2 2 181 0 3 182 3 112475 2518210 112475 2517610 2518210 2517610 5 1 5

128 INST_28_18 P2 P1 P2 3 189 1 5 190 6 655030 2206160 655030 1696910 2206160 1696910 4 1 4
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129 INST_28_22 P2 P1 P2 3 273 0 5 275 5 443632 1911850 443632 1601740 1911850 1601690 4 1 4

130 INST_29_1 P2 P1 P2 4 247 1 7 250 8 207156 3061130 207156 2717970 3061130 2717770 5 1 5

131 INST_29_20 P2 P1 P2 2 182 0 16 184 16 1431050 3206750 1431050 2809990 3206750 2809990 5 1 5

132 INST_29_22 P2 P1 P2 4 233 0 6 234 7 314870 3984000 314870 3754420 3984000 3754270 5 1 5

133 INST_30_1 P2 P2 P2 6 191 0 7 192 8 442284 226355 442284 982316 249591 982316 2 2 2

134 INST_30_10 P2 P2 P2 5 183 1 6 186 7 277834 608530 277834 1125880 787528 1125780 3 3 3

135 INST_30_11 P2 P2 P2 5 183 0 6 184 6 329722 329723 329722 647196 647346 647246 2 2 2

136 INST_30_17 P2 P2 P2 3 184 0 4 186 4 382658 335440 382658 906216 474367 906216 4 3 4

137 INST_30_18 P2 P2 P2 5 184 1 7 186 9 819613 819613 819613 1482630 1482630 1482630 3 3 3

138 INST_30_20 P2 P2 P2 3 183 0 5 192 5 469123 706907 469123 935620 1021850 935570 2 2 2

139 INST_31_1 P2 P1 P2 5 229 1 9 231 10 594876 4209650 594876 4144670 4209650 4144670 6 1 6

140 INST_31_3 P2 P1 P2 1 185 0 2 186 2 302876 4552600 302876 2810310 4552600 2810310 4 1 4

141 INST_31_4 P2 P2 P2 2 183 0 3 184 3 574374 4615680 574374 3596660 5262960 3596660 5 2 5

142 INST_31_7 P2 P1 P2 5 200 1 7 202 8 787571 6215470 787571 4238980 6215470 4238980 5 1 5

143 INST_31_8 P2 P2 P2 2 208 0 5 210 5 78936.9 975898 78936.9 3022880 1031620 3022930 4 2 4

144 INST_31_9 P2 P2 P2 1 192 0 4 194 3 362730 3129630 362730 3445800 3166080 3399680 8 2 6

145 INST_32_1 P2 P1 P2 4 211 1 7 213 7 -591496 2348340 -591496 2281840 2348340 2282090 5 1 5

146 INST_32_4 P2 P2 P2 2 190 1 3 192 4 797581 778434 797581 2830380 1124060 2830380 5 2 5

147 INST_32_7 P2 P1 P2 5 193 1 7 195 7 403077 2851050 403077 2444780 2851050 2444630 5 1 5

148 INST_33_8 P2 P2 P2 3 182 1 5 185 6 487014 16767.6 487014 3442600 2196430 3442700 5 6 5

149 INST_33_9 P2 P2 P2 2 182 6 3 188 28 1982310 1762740 1982310 4730440 3674710 4808250 5 5 5

150 INST_33_10 P2 P2 P2 6 185 1 10 193 10 1096290 1010460 1096290 3208890 3583190 3208890 5 6 5

151 INST_33_11 P2 P2 P2 5 183 0 8 187 9 1270160 999337 1270160 3330830 3052370 3330830 5 5 5

152 INST_33_17 P2 P2 P2 3 183 0 5 185 6 1259970 1180680 1259970 3290010 2892910 3290010 5 5 5

153 INST_33_22 P2 P2 P2 6 252 0 10 255 11 1049160 672234 1049160 3008080 682222 3008080 5 2 5

154 INST_34_18 P2 P2 P2 10 186 1 12 189 13 -46952.6 -46952.8 -46952.6 1315880 1315730 1315780 3 3 3

155 INST_34_20 P2 P2 P2 6 184 0 15 195 17 1016620 1016620 1016620 1257600 1257600 1257550 3 3 3

156 INST_34_22 P2 P2 P2 8 186 1 10 189 10 498676 498676 498676 1258830 1258830 1258830 3 3 3

157 INST_34_27 P2 P2 P2 6 182 1 8 186 9 434630 434629 434630 1081880 1081830 1081830 3 3 3

158 INST_35_11 P2 P2 P2 5 185 0 9 204 9 1031060 790292 1031060 4309370 2860430 4309370 5 5 5

159 INST_35_17 P2 P2 P2 3 183 0 6 190 6 1350200 1054830 1350200 4562780 3552100 4562780 5 5 5

160 INST_35_18 P2 P2 P2 7 185 1 11 190 12 991927 660439 991927 3147030 2979500 3147030 5 5 5

161 INST_35_20 P2 P2 P2 4 184 1 25 195 23 295438 -133999 295438 2499200 2193450 2499200 5 4 5

162 INST_35_22 P2 P2 P2 6 186 1 10 195 11 934061 901181 934061 4115810 2721460 4115810 5 4 5

163 INST_36_4 P2 P2 P2 3 181 0 5 184 5 1491290 1491290 1491290 4093030 4093030 4093030 5 5 5

164 INST_36_7 P2 P2 P2 8 194 1 17 199 19 1201350 227403 1201350 3642830 1307320 4381280 5 5 7

165 INST_36_8 P2 P2 P2 3 183 0 5 185 5 752528 721752 752528 2694340 2683420 2694440 3 3 3

166 INST_36_9 P2 P2 P2 2 182 0 5 192 5 958893 -92074.1 958893 3170960 1854000 3170710 4 10 4

167 INST_36_22 P2 P2 P2 7 189 1 11 196 11 1679350 1552210 1679350 4813040 4777380 4813040 5 6 5

168 INST_37_1 P2 P1 P2 7 21 14 8 21 67 148258 1050390 148108 1032260 1050390 1032410 3 1 3

169 INST_38_7 P1 P1 P2 80 171 17 80 174 129 -1169140 -1167910 -2355170 -1169140 -1167910 -1186610 1 1 4

170 INST_38_8 P2 P1 P2 9 183 40 10 258 134 -399686 -139291 -1639370 -338086 -139291 -139841 2 1 6

171 INST_38_9 P2 P1 P2 5 181 12 5 181 46 -1298300 -1037770 -2517640 -1141050 -1037770 -1140900 2 1 4
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172 INST_38_10 P2 P1 P2 10 76 24 10 77 127 -950941 -835398 -1293270 -836898 -835398 -836798 4 1 9

173 INST_38_11 P2 P1 P2 14 74 41 14 75 176 -395754 -334712 -436240 -335863 -334712 -335613 2 1 3

174 INST_39_17 P2 P1 P2 2 30 19 2 55 84 263963 1218010 197729 1158140 1218010 1153130 3 1 4

175 INST_39_18 P2 P1 P2 18 28 33 18 35 120 35151.7 983150 -33224.3 933641 983150 934241 3 1 5

176 INST_40_18 P2 P1 P2 15 22 22 16 26 90 -109640 749710 -152504 646374 749710 658663 3 1 3

177 INST_40_27 P2 P1 P2 3 31 21 3 31 79 -228471 623607 -228971 494082 623607 494082 3 1 3

178 INST_41_7 P2 P1 P2 24 195 42 25 196 223 -175890 1806540 -448257 941310 1806540 1395720 4 1 10

179 INST_41_8 P2 P1 P2 32 148 81 33 149 434 -332989 1589510 -610235 1424880 1589510 1291850 5 1 12

180 INST_41_9 P2 P1 P2 12 182 54 14 205 247 542101 658734 260141 792936 658734 857170 3 1 8

181 INST_41_10 P2 P1 P2 11 187 7 11 193 41 72856.8 1211140 -190525 1062440 1211140 1078090 3 1 6

182 INST_41_11 P2 P1 P2 31 264 33 31 265 172 164335 98323.6 -92239.9 171688 98323.6 171688 2 1 7

183 INST_42_1 P2 P1 P2 48 185 24 49 200 132 -1361370 -1326110 -3686330 -813193 -1326110 -797390 4 1 14

184 INST_42_3 P2 P2 P2 6 181 36 7 260 147 -987528 -743510 -1012110 -658783 -659033 -658733 2 2 3

185 INST_42_4 P2 P2 P2 19 181 63 19 181 259 -1134990 -1227020 -1718010 -782295 -837644 -782095 2 4 5

186 INST_42_7 P1 P2 P2 113 182 16 113 193 162 -1366870 -1406350 -3357040 -1366870 -1367070 -1375440 1 3 6

187 INST_42_27 P2 P2 P2 9 182 47 9 183 179 -85406.3 38620.4 -107878 213014 76079.9 287393 2 2 3

188 INST_43_1 P2 P1 P2 20 132 29 21 132 144 273589 2278900 91439.2 1842150 2278900 1842350 5 1 14

189 INST_43_4 P2 P1 P2 10 183 30 10 183 150 540412 1632370 229237 2351740 1632370 2352040 3 1 8

190 INST_43_7 P2 P1 P2 27 104 29 28 110 144 569615 3103460 344677 2266330 3103460 2331400 5 1 7

191 INST_43_8 P2 P1 P2 17 181 64 19 182 302 194720 1645880 -22384.8 1690230 1645880 1910890 5 1 10

192 INST_43_9 P2 P1 P2 33 181 26 33 182 149 1399060 3408130 1055700 3046340 3408130 2988300 4 1 13

193 INST_43_22 P2 P1 P2 12 183 12 13 184 71 17286.4 2330230 -357600 1379450 2330230 1379500 4 1 7

194 INST_43_27 P2 P1 P2 16 181 55 16 181 190 368163 2503570 -132317 1525780 2503570 1823470 3 1 12

195 INST_44_1 P2 P1 P2 301 187 21 301 187 364 324026 1105890 -444642 1105790 1105890 1106090 3 1 7

196 INST_44_11 P2 P1 P2 2 185 0 2 186 2 102717 231915 40935.9 505303 231915 505303 2 1 3

197 INST_44_17 P2 P1 P2 4 359 20 4 359 82 157508 901716 110254 687377 901716 730186 2 1 7

198 INST_44_20 P1 P2 P2 21 181 26 22 235 144 1207710 1710010 813072 1207710 1711500 1704130 1 2 7

199 INST_44_22 P2 P1 P2 56 194 10 56 195 88 -349823 751151 -757983 590690 751151 590740 2 1 5

200 INST_44_27 P1 P1 P2 6 132 38 6 133 163 -632559 820885 -633059 -632559 820885 782557 1 1 7

Table A.4: Heuristic H1_H2_H3 comparison with the CPLEX run the GRASP heuristic and the

LPNS heuristic
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1 Optimal 388 1904910 0 1904910 372 1904360 0.0289 H2 Phase 1 23 1904910 0

2 Optimal 577 2044990 0.01 2043390 30 1969210 3.7056 H2 Phase 1 25 2044990 0

3 Optimal 907 2311570 0.01 2311570 167 2188270 5.334 H2 Phase 1 22 2311570 0

4 Optimal 1371 2501350 0 2501350 895 2348750 6.1007 H2 Phase 1 33 2501350 0

5 Feasible 1800 1380550 57.01 1390410 392 1390210 -0.6997 H3 Phase 2 87 1390210 -0.6997

6 Feasible 1800 1588510 33.72 2047180 633 2046680 -28.8428 H2 Phase 1 32 2047180 -28.8742

7 Optimal 730 1034470 0 1034470 65 1034470 0 H1 Phase 1 84 1034470 0
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8 Feasible 1800 -496981 246.14 -496981 186 -497081 0.0201 H2 Phase 1 311 -496982 0.0002

9 Optimal 719 449231 0.01 449231 58 449231 0 H1 Phase 2 88 449231 0

10 Feasible 1800 -399880 197.13 -399730 181 -400280 0.1 H3 Phase 2 185 -400280 0.1

11 Feasible 1800 375250 0.02 374473 1800 364235 2.9354 H2 Phase 1 112 375249 0.0003

12 Optimal 647 398916 0 398916 468 398616 0.0752 H2 Phase 1 52 398916 0

13 Optimal 960 2542040 0.01 2475070 118 2474670 2.6502 H1 Phase 2 30 1908630 24.9174

14 Optimal 744 1789680 0.01 1727460 181 1602960 10.4332 H2 Phase 1 25 1789680 0

15 Feasible 1800 1590210 28.3 1083080 296 1109640 30.2205 H2 Phase 1 62 1255950 21.0199

16 Feasible 1800 1540130 18.67 1552240 94 1552090 -0.7766 H1 Phase 2 55 1552090 -0.7766

17 Optimal 383 1830600 0.01 1801200 143 1796930 1.8393 H2 Phase 1 20 1830600 0

18 Optimal 524 3130260 0 3130210 83 2254910 27.9641 H2 Phase 1 21 3130260 0

19 Optimal 341 2024440 0.01 2024340 97 1920780 5.1204 H2 Phase 1 33 2024440 0

20 Optimal 491 2604940 0.01 2207470 76 1967110 24.4854 H2 Phase 1 23 2604940 0

21 Optimal 1267 960599 0.01 841207 134 538841 43.9057 H2 Phase 1 67 960599 0

22 Optimal 1452 809402 0 809402 708 809302 0.0124 H2 Phase 1 42 809402 0

23 Feasible 1800 438153 0.02 437903 555 72803.7 83.384 H2 Phase 1 71 357419 18.426

24 Feasible 1800 995348 0.03 995348 1800 678455 31.8374 H2 Phase 1 66 995349 -0.0001

25 Feasible 1800 1009490 169.12 1115760 1800 1170160 -15.916 H2 Phase 1 206 1158380 -14.749

26 Feasible 1800 1396690 139.93 1386210 1800 1180980 15.4444 H2 Phase 1 186 1094640 21.6261

27 Feasible 1800 947076 135.64 944126 1150 946126 0.1003 H1 Phase 2 188 946176 0.095

28 Feasible 1800 1641750 92.03 1559440 1800 1555880 5.2304 H3 Phase 2 185 1556580 5.1878

29 Feasible 1800 800062 295.37 920038 1800 919938 -14.9833 H1 Phase 2 184 875248 -9.3975

30 Feasible 1800 1537990 61.75 1537990 1680 1537990 0 H1 Phase 1 186 1537990 0

31 Feasible 1800 1051200 151.05 1291070 1800 1234530 -17.4401 H1 Phase 2 215 1234530 -17.4401

32 Feasible 1800 559717 202.89 637565 872 231178 58.6973 H2 Phase 1 191 600615 -7.3069

33 Feasible 1800 918408 107.84 -85457.5 1803 918408 0 H1 Phase 1 188 918408 0

34 Feasible 1800 1136620 127.53 1136620 1150 1136620 0 H1 Phase 1 187 1136620 0

35 Feasible 1800 558365 186.6 558365 418 558365 0 H1 Phase 1 185 558365 0

36 Feasible 1800 1372960 41.16 1562260 1512 1512550 -10.1671 H2 Phase 2 183 1512600 -10.1707

37 Feasible 1800 1498180 45.6 1659850 1800 1515810 -1.1768 H2 Phase 1 187 1733290 -15.693

38 Feasible 1800 743440 101.37 831957 1800 49306.6 93.3678 H2 Phase 1 183 884124 -18.9234

39 Feasible 1800 1221910 65.77 989611 1800 1567220 -28.2599 H2 Phase 2 223 1453030 -18.9147

40 Feasible 1800 625505 173.65 1063840 1800 628664 -0.505 H2 Phase 1 195 1085730 -73.5766

41 Feasible 1800 880645 107.11 972015 1800 970539 -10.2077 H2 Phase 1 189 1136150 -29.0134

42 Feasible 1800 1762630 126.22 3000330 795 2997330 -70.0487 H2 Phase 1 323 2977610 -68.93

43 Feasible 1800 2636650 52.7 3064160 1800 1921060 27.1401 H2 Phase 1 186 3064160 -16.2141

44 Feasible 1800 1385620 144.15 707783 1800 1473850 -6.3675 H2 Phase 1 188 2195940 -58.4807

45 Feasible 1800 1751950 66.52 1811590 489 1410380 19.4966 H2 Phase 1 185 1793960 -2.3979

46 Feasible 1800 1715380 109.76 2674590 1800 2320350 -35.2674 H2 Phase 1 189 2660010 -55.0683

47 Feasible 1800 1965690 84.34 1909250 1800 1997110 -1.5984 H2 Phase 1 185 1758740 10.5281

48 Feasible 1800 15862.4 33408.5 2229840 1800 4130450 -25939.2501 H1 Phase 2 187 4027080 -25287.5832

49 Feasible 1800 2819510 107.28 2719020 1800 4711300 -67.0964 H1 Phase 2 192 4641690 -64.6275

50 Feasible 1800 3127430 93.02 No Sol NA 4739840 -51.557 H2 Phase 1 202 4807560 -53.7224
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51 Feasible 1800 1105860 366.93 1105860 1800 2873140 -159.8105 H2 Phase 1 189 3508920 -217.3024

52 Feasible 1800 1763120 186.27 No Sol NA 3616750 -105.1335 H2 Phase 1 210 3745750 -112.4501

53 Feasible 1800 -168298 2480.64 -168298 1800 143141 -185.0521 H1 Phase 2 186 143141 -185.0521

54 Feasible 1800 -777712 611.5 -488536 1800 78148.1 -110.0485 H1 Phase 2 188 78248.1 -110.0613

55 Feasible 1800 -384618 806.44 -206369 765 -206519 -46.3054 H2 Phase 2 186 -206419 -46.3314

56 Feasible 1800 -935979 431.93 -641762 1800 560027 -159.8333 H1 Phase 2 191 46214.1 -104.9375

57 Feasible 1800 343183 1079.25 No Sol NA 2406520 -601.2352 H2 Phase 1 322 2452580 -614.6566

58 Feasible 1800 1011610 427.5 793403 1800 2412360 -138.4674 H1 Phase 2 186 1986650 -96.385

59 Feasible 1800 349300 1477.99 No Sol NA 2258490 -546.576 H2 Phase 1 234 2455990 -603.1177

60 Feasible 1800 1172500 107.16 No Sol NA 1172500 0 H1 Phase 1 190 1172500 0

61 Feasible 1800 1008720 201.82 1008720 1800 1552960 -53.9535 H1 Phase 2 201 1547330 -53.3954

62 Optimal 1659 3560140 0 3017060 591 2471470 30.5794 H2 Phase 1 48 3560080 0.0017

63 Feasible 1800 2760940 14.15 2270060 586 1848750 33.0391 H2 Phase 1 31 2801900 -1.4836

64 Feasible 1800 2729130 15.93 2566540 1785 2564390 6.0364 H2 Phase 1 70 2728980 0.0055

65 Optimal 513 2829210 0.01 2829210 121 2692880 4.8187 H2 Phase 1 28 2829210 0

66 Feasible 1800 911419 141.12 No Sol NA 1036090 -13.6788 H2 Phase 1 212 1183290 -29.8294

67 Feasible 1800 1339480 74.23 1339480 654 1339480 0 H1 Phase 1 187 1339480 0

68 Feasible 1800 1372190 83.92 No Sol NA 1740640 -26.8512 H3 Phase 2 190 1742500 -26.9868

69 Optimal 898 1334810 0 1334760 147 473192 64.5499 H2 Phase 1 126 1334810 0

70 Feasible 1800 2348220 10.44 2348270 1800 2100980 10.5288 H2 Phase 1 49 2348320 -0.0043

71 Feasible 1800 1539390 58.46 1551110 1800 1409240 8.4546 H2 Phase 1 130 1647270 -7.008

72 Feasible 1800 2121590 38.58 2660680 229 2622290 -23.6002 H2 Phase 1 34 2660630 -25.4074

73 Feasible 1800 1909490 12.17 1909390 1800 1847950 3.2229 H2 Phase 1 58 1909440 0.0026

74 Feasible 1800 2454910 29.98 2493250 1800 1962520 20.0574 H2 Phase 1 88 2650910 -7.984

75 Feasible 1800 1803340 45.91 No Sol NA 953172 47.1441 H2 Phase 1 99 1942460 -7.7146

76 Feasible 1800 2349230 61.88 2097960 168 2073280 11.7464 H2 Phase 1 269 2360040 -0.4602

77 Feasible 1800 1340410 93.06 1417780 764 1277030 4.7284 H1 Phase 2 186 1156990 13.6839

78 Feasible 1800 2905890 83.76 2775360 1800 2983210 -2.6608 H1 Phase 2 187 2983160 -2.6591

79 Feasible 1800 833438 443.16 1039490 1800 1995230 -139.3975 H1 Phase 2 190 1865080 -123.7815

80 Feasible 1800 3304800 91.29 No Sol NA 4421680 -33.7957 H2 Phase 2 199 4459870 -34.9513

81 Feasible 1800 1077950 449.53 No Sol NA 3156140 -192.7909 H1 Phase 2 191 3850350 -257.1919

82 Feasible 1800 3152950 105.42 4664760 1800 4554510 -44.4523 H1 Phase 2 185 4122910 -30.7636

83 Feasible 1800 4056620 45.36 No Sol NA 3971120 2.1077 H2 Phase 1 208 4036640 0.4925

84 Feasible 1800 1542680 219.43 1584270 888 1584170 -2.6895 H1 Phase 2 351 1584170 -2.6895

85 Feasible 1800 1098300 375.87 No Sol NA 2396910 -118.2382 H1 Phase 2 191 2167000 -97.3049

86 Feasible 1800 1250730 243.32 1014250 1800 1762980 -40.9561 H1 Phase 2 189 1761070 -40.8034

87 Feasible 1800 1028520 371.49 No Sol NA 2049360 -99.2533 H1 Phase 2 199 2049360 -99.2533

88 Feasible 1800 1074100 242.05 1387890 1163 1371000 -27.6417 H1 Phase 2 195 1371000 -27.6417

89 Feasible 1800 2384260 123.68 No Sol NA 2858790 -19.9026 H1 Phase 2 210 2790120 -17.0225

90 Feasible 1800 1651450 298.15 No Sol NA 2584470 -56.497 H2 Phase 2 216 2908200 -76.0998

91 Feasible 1800 1599940 360.64 No Sol NA 3955260 -147.213 H2 Phase 2 213 3412740 -113.3042

92 Feasible 1800 3109360 122.36 2506510 1800 2766700 11.0203 H2 Phase 2 189 3105150 0.1354

93 Feasible 1800 1342410 235 No Sol NA 1262570 5.9475 H3 Phase 2 187 1242130 7.4701
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94 Feasible 1800 1935140 158.17 2592510 976 2065020 -6.7117 H2 Phase 1 200 2300810 -18.8963

95 Feasible 1800 464859 835.71 No Sol NA 1537910 -230.8337 H1 Phase 2 194 1537910 -230.8337

96 Feasible 1800 1635200 160.33 No Sol NA 1105800 32.3752 H2 Phase 1 190 1764550 -7.9103

97 Feasible 1800 -630808 19198.1 No Sol NA 1587770 -351.7042 H1 Phase 2 402 1445970 -329.2251

98 No Sol 1800 NA NA No Sol NA 1440190 Inf H2 Phase 2 195 1608970 Inf

99 Feasible 1800 -626875 1101.2 No Sol NA 1946780 -410.5531 H3 Phase 2 195 2144440 -442.0841

100 Feasible 1800 200597 70019.7 No Sol NA 1625090 -710.1268 H1 Phase 2 370 1515880 -655.6843

101 No Sol 1800 NA NA No Sol NA -281065 Inf H1 Phase 1 188 -281065 Inf

102 Feasible 1800 -1128010 13985.4 No Sol NA 456422 -140.4626 H1 Phase 2 191 456472 -140.467

103 No Sol 1800 NA NA No Sol NA 1132560 Inf H1 Phase 2 204 1132560 Inf

104 Feasible 1800 -822230 18625.3 No Sol NA 187709 -122.8293 H1 Phase 2 192 235231 -128.6089

105 Feasible 1800 -1285040 12322.2 No Sol NA 203696 -115.8513 H1 Phase 2 194 149051 -111.5989

106 Feasible 1800 -1233860 11198.1 No Sol NA 503482 -140.8054 H1 Phase 2 204 503482 -140.8054

107 Feasible 1800 1264520 12535.9 No Sol NA 3696170 -192.2983 H3 Phase 2 200 3333040 -163.5814

108 No Sol 1800 NA NA No Sol NA 4382480 Inf H1 Phase 2 199 3448570 Inf

109 No Sol 1800 NA NA No Sol NA 3070260 Inf H1 Phase 2 198 3284210 Inf

110 Feasible 1800 1338780 10509.1 No Sol NA 2373100 -77.2584 H2 Phase 2 205 2762670 -106.3573

111 Feasible 1800 146925 2662.97 146925 1800 1169120 -695.7257 H1 Phase 2 215 1542080 -949.5695

112 Feasible 1800 -26263.4 616263 No Sol NA 1603160 -6204.1602 H1 Phase 2 259 1174020 -4570.1752

113 Feasible 1800 2905960 34.41 No Sol NA 2324540 20.0078 H2 Phase 1 98 3063670 -5.4271

114 Feasible 1800 2108860 81.31 1064810 1800 1795930 14.8388 H2 Phase 1 189 2196220 -4.1425

115 Feasible 1800 1958750 157.08 No Sol NA 2373930 -21.1962 H2 Phase 1 218 3768240 -92.3798

116 Feasible 1800 -376931 759.78 No Sol NA 534673 -241.849 H2 Phase 1 205 1151120 -405.3928

117 Feasible 1800 445145 436.4 878299 464 747135 -67.8408 H1 Phase 2 186 597366 -34.1958

118 Feasible 1800 43489 4622.9 43489 1800 304242 -599.5838 H3 Phase 2 189 304242 -599.5838

119 Feasible 1800 666656 299.54 No Sol NA 834192 -25.1308 H3 Phase 2 197 666556 0.015

120 Feasible 1800 2051540 53.49 No Sol NA 1981320 3.4228 H2 Phase 1 281 2200070 -7.2399

121 Feasible 1800 1652410 141.24 No Sol NA 2538420 -53.6193 H1 Phase 2 140 2566370 -55.3107

122 Feasible 1800 435201 883.03 No Sol NA 2424440 -457.0851 H2 Phase 1 125 3794670 -771.935

123 Feasible 1800 3016570 9.63 No Sol NA 2435980 19.2467 H2 Phase 1 88 3016620 -0.0017

124 Feasible 1800 2596450 44.21 No Sol NA 2655410 -2.2708 H2 Phase 1 184 2656510 -2.3132

125 Feasible 1800 847292 334.28 No Sol NA 2546340 -200.5269 H1 Phase 2 198 2546540 -200.5505

126 Feasible 1800 1511550 163.09 No Sol NA 2529440 -67.3408 H2 Phase 1 190 2902840 -92.0439

127 Feasible 1800 1662840 97 No Sol NA 2129590 -28.0694 H2 Phase 1 188 2518210 -51.4403

128 Feasible 1800 1214570 207.1 No Sol NA 1953690 -60.8545 H2 Phase 1 201 2206160 -81.6412

129 Feasible 1800 1357050 180.59 No Sol NA 2466310 -81.7405 H2 Phase 1 285 1911850 -40.8828

130 Feasible 1800 -1463270 546.77 No Sol NA 2684440 -283.4549 H2 Phase 1 265 3061130 -309.1979

131 Feasible 1800 2739540 81.3 1431050 1800 2754570 -0.5486 H2 Phase 1 216 3206750 -17.0543

132 Feasible 1800 -1214980 13930.3 No Sol NA 3929570 -423.4267 H2 Phase 1 247 3984000 -427.9066

133 Feasible 1800 442284 819.73 No Sol NA 984465 -122.5866 H1 Phase 2 207 982316 -122.1007

134 Feasible 1800 277834 1400.49 No Sol NA 1225630 -341.1375 H1 Phase 2 199 1125880 -305.2348

135 No Sol 1800 NA NA No Sol NA 770858 Inf H2 Phase 2 196 647346 Inf

136 No Sol 1800 NA NA No Sol NA 1054700 Inf H1 Phase 2 194 906216 Inf
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137 Feasible 1800 819613 18506.4 No Sol NA 1594950 -94.5979 H1 Phase 2 202 1482630 -80.8939

138 Feasible 1800 1135600 214.63 637085 1800 935570 17.6145 H2 Phase 2 202 1021850 10.0167

139 Feasible 1800 594876 1194.2 No Sol NA 4177150 -602.1884 H2 Phase 1 250 4209650 -607.6517

140 Feasible 1800 977618 653.14 No Sol NA 4084410 -317.792 H2 Phase 1 190 4552600 -365.6829

141 Feasible 1800 2839780 152.89 No Sol NA 4290460 -51.0842 H2 Phase 2 190 5262960 -85.3298

142 Feasible 1800 72150.2 268204 No Sol NA 5220430 -7135.5032 H2 Phase 1 217 6215470 -8514.6262

143 Feasible 1800 775975 839.84 No Sol NA 3132100 -303.6341 H3 Phase 2 220 3022930 -289.5654

144 Feasible 1800 362730 1848.38 No Sol NA 4077050 -1023.9903 H1 Phase 2 201 3445800 -849.9628

145 Feasible 1800 2071230 162.81 No Sol NA 2399110 -15.8302 H2 Phase 1 227 2348340 -13.379

146 Feasible 1800 1269260 458.18 No Sol NA 2866080 -125.8072 H1 Phase 2 199 2830380 -122.9945

147 Feasible 1800 -1247660 15045.7 No Sol NA 2444630 -295.9372 H2 Phase 1 209 2851050 -328.5118

148 No Sol 1800 NA NA No Sol NA 3461100 Inf H3 Phase 2 196 3442700 Inf

149 Feasible 1800 1982310 12115.1 No Sol NA 4709760 -137.5895 H3 Phase 2 219 4808250 -142.5579

150 Feasible 1800 -1107590 21982.1 No Sol NA 3325550 -400.251 H2 Phase 2 213 3583190 -423.5123

151 Feasible 1800 641618 38220.1 No Sol NA 4029260 -527.9843 H1 Phase 2 204 3330830 -419.1298

152 No Sol 1800 NA NA No Sol NA 3637780 Inf H1 Phase 2 196 3290010 Inf

153 Feasible 1800 -473234 55944.5 No Sol NA 3588190 -858.2274 H1 Phase 2 276 3008080 -735.6433

154 No Sol 1800 NA NA No Sol NA 1315780 Inf H1 Phase 2 214 1315880 Inf

155 No Sol 1800 NA NA No Sol NA 1257550 Inf H1 Phase 2 227 1257600 Inf

156 No Sol 1800 NA NA No Sol NA 1258830 Inf H1 Phase 2 209 1258830 Inf

157 No Sol 1800 NA NA No Sol NA 970715 Inf H1 Phase 2 203 1081880 Inf

158 Feasible 1800 -946642 28317.9 No Sol NA 4519120 -577.3843 H1 Phase 2 222 4309370 -555.227

159 Feasible 1800 1350200 19893.8 No Sol NA 5006040 -270.7628 H1 Phase 2 202 4562780 -237.9336

160 No Sol 1800 NA NA No Sol NA 3412440 Inf H1 Phase 2 213 3147030 Inf

161 No Sol 1800 NA NA No Sol NA 2444380 Inf H1 Phase 2 243 2499200 Inf

162 Feasible 1800 -585672 44015.3 No Sol NA 4496880 -867.8154 H1 Phase 2 216 4115810 -802.75

163 Feasible 1800 1491290 18475.3 No Sol NA 4049910 -171.5709 H1 Phase 2 194 4093030 -174.4624

164 Feasible 1800 1201350 21785.3 No Sol NA 3453510 -187.4691 H3 Phase 2 235 4381280 -264.6964

165 No Sol 1800 NA NA No Sol NA 3318120 Inf H3 Phase 2 195 2694440 Inf

166 Feasible 1800 958893 27860.9 No Sol NA 2999000 -212.7565 H1 Phase 2 202 3170960 -230.6897

167 No Sol 1800 NA NA No Sol NA 5027930 Inf H1 Phase 2 218 4813040 Inf

168 Optimal 536 1050390 0.01 1050390 72 1038670 1.1158 H2 Phase 1 96 1050390 0

169 Feasible 1800 -1506970 107.94 -1188860 450 -1186610 -21.2586 H2 Phase 1 383 -1167910 -22.4995

170 Optimal 1050 -139291 0.01 -139291 99 -139841 0.3949 H2 Phase 1 402 -139291 0

171 Feasible 1800 -1037770 85.77 -1133860 40 -1140900 9.9377 H2 Phase 1 232 -1037770 0

172 Optimal 1074 -835348 0 -836649 67 -836798 0.1736 H2 Phase 1 214 -835398 0.006

173 Optimal 371 -334713 0 -335813 32 -335613 0.2689 H2 Phase 1 265 -334713 0

174 Optimal 964 1218010 0.01 1218010 352 1174460 3.5755 H2 Phase 1 141 1218010 0

175 Optimal 886 983149 0 983149 787 907711 7.6731 H2 Phase 1 173 983149 0

176 Optimal 537 749711 0 749661 253 658663 12.1444 H2 Phase 1 132 749711 0

177 Optimal 691 623656 0 580702 93 494082 20.7765 H2 Phase 1 113 623607 0.0079

178 Feasible 1800 1837280 30.88 1424910 1800 1310690 28.6614 H2 Phase 1 444 1806540 1.6731

179 Feasible 1800 1223400 72.08 1344020 1800 1229670 -0.5125 H2 Phase 1 616 1589510 -29.9256
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Table A.4 continued from previous page

Instance
CPLEX

Status

CPLEX

CPU

Time (sec)

CPLEX

Obj

CPLEX

Gap (%)

LPNS+

Obj

LPNS+

CPU

Time (sec)

GRASP

Obj

GRASP

Obj

Diff (%)

H1_H2_H3

Status

H1_H2_H3

CPU

Time (sec)

H1_H2_H3

Obj

H1_H2_H3

Obj

Diff (%)

180 Feasible 1800 2025430 58.2 2257820 1800 857170 57.6796 H3 Phase 2 466 857170 57.6796

181 Feasible 1800 1103200 79.75 557813 1800 1078090 2.2761 H2 Phase 1 245 1211140 -9.7843

182 Feasible 1800 -27097.4 3630.82 71763 1800 171688 -733.5958 H1 Phase 2 468 171688 -733.5958

183 Feasible 1800 -1505380 90.82 -575912 1297 -654078 -56.5506 H3 Phase 2 381 -797390 -47.0307

184 Feasible 1800 -658483 133.01 -658483 227 -656040 -0.371 H3 Phase 2 414 -658733 0.038

185 Feasible 1800 -859602 110.64 -781745 1323 -782095 -9.0166 H3 Phase 2 459 -782095 -9.0166

186 Feasible 1800 -1475460 82.46 -1366870 1800 -1375440 -6.7789 H1 Phase 1 468 -1366870 -7.3597

187 Feasible 1800 167856 537.69 287943 753 287393 -71.214 H3 Phase 2 371 287393 -71.214

188 Feasible 1800 1385190 99.91 2279000 1035 1684890 -21.636 H2 Phase 1 297 2278900 -64.5189

189 Feasible 1800 1650410 99.46 2331610 1800 2344330 -42.0453 H3 Phase 2 343 2352040 -42.5125

190 Feasible 1800 1998970 71.5 2891190 1800 2242210 -12.1683 H2 Phase 1 282 3103460 -55.253

191 Feasible 1800 1570660 101.04 1701370 1800 1960160 -24.7985 H3 Phase 2 503 1910890 -21.6616

192 Feasible 1800 3794790 17.9 4074500 463 3039620 19.9002 H2 Phase 1 364 3408130 10.1892

193 Feasible 1800 2170220 42.05 2214380 1800 1637380 24.5523 H2 Phase 1 268 2330230 -7.373

194 Feasible 1800 1939060 55.02 2503620 575 2221140 -14.5473 H2 Phase 1 387 2503570 -29.1126

195 Feasible 1800 187014 1282.24 804014 1800 1391960 -644.3079 H3 Phase 2 852 1106090 -491.4477

196 Feasible 1800 257320 482.82 505503 1366 505303 -96.3714 H1 Phase 2 190 505303 -96.3714

197 Feasible 1800 699417 196.66 730336 1139 730186 -4.3992 H2 Phase 1 445 901716 -28.9239

198 Feasible 1800 1676770 25.94 1719000 361 1704130 -1.6317 H2 Phase 2 401 1711500 -2.0712

199 Feasible 1800 200486 1237.09 666576 1800 957317 -377.4982 H2 Phase 1 339 751151 -274.6651

200 Optimal 733 820885 0 820885 117 799981 2.5465 H2 Phase 1 302 820885 0

A.2 Thesis contributions

This thesis makes theoretical and practical contributions to the field of chemical tanker schedul-

ing problems. It introduces a MILP formulation, an instance generator, a set of benchmark

instances, and multiple neighbourhood search heuristics for the s-PDP-TWTAC. It also dis-

cusses the mp-CAP and a DW-CG framework for the mp-CAP. Research published as part of

this thesis is as follows:

1. Research Paper: A revised formulation, library and heuristic for a chemical tanker schedul-

ing problem. Authors: Anurag Ladage, Davaatseren Baatar, Mohan Krishnamoorthy,

Ashutosh Mahajan. Published in 2021 by Computers & Operations Research journal.

2. Springer book chapter: Optimization in the chemical tanker industry: A multi-period

cargo-assignment problem. Authors: Anurag Ladage, Ashutosh Mahajan, Andreas Ernst,

Mohan Krishnamoorthy. Accepted in 2023.
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