
Development of a Solver for Mixed-Integer
Quadratically Constrained Quadratic

Optimization

Submitted in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

by

Vora Mustafa Makbul
(Roll No. 184190001)

Supervisors:

Prof. Ashutosh Mahajan

Industrial Engineering and Operations Research

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

2023

Dedicated to Hussaina.

Thesis Approval

This thesis entitled Development of a Solver for Mixed-Integer Quadratically
Constrained Quadratic Optimization by Vora Mustafa Makbul is approved

for the degree of Doctor of Philosophy.

Examiners:

. .

. .

. .

. .

Supervisor: Chairperson:

. .

Date:

Place:

Declaration

I declare that this written submission represents my ideas in my own words and where others

ideas or words have been included, I have adequately cited and referenced the original sources.

I also declare that I have adhered to all principles of academic honesty and integrity and have

not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I

understand that any violation of the above will be cause for disciplinary action by the Institute

and can also evoke penal action from the sources which have thus not been properly cited or

from whom proper permission has not been taken when needed.

Date:
Vora Mustafa Makbul

Roll No. 184190001

Abstract

This thesis describes the development of mglob, a general purpose solver for Mixed Integer

Quadratically Constrained Quadratic Optimization (MIQCQO) problems. MIQCQO problems

appear in several important applications. MIQCQO is a nonconvex nonlinear problem, which

makes it challenging to find a globally optimal solution. Typically, spatial Branch-and-Bound

algorithm is used for solving MIQCQO problems, which mglob also uses. Minotaur

framework is used for implementing mglob. Minotaur framework provides several routines

for reading and storing optimization problems, doing tree search, solving relaxations, etc.,

that are useful for solvers like mglob. We describe some algorithmic components we have

developed for mglob and how well they perform on benchmark instances.

First, we describe three presolving techniques implemented in mglob. Presolving is a

preprocessing step done in many general purpose solvers for mathematical optimization. It

simplifies the problem and collects important information about the problem that can be used

to solve the problem faster.

(i) The first technique converts a given quadratic function into a Dictionary of Keys format

of coefficients of the quadratic function (qf). We study the effectiveness of these

representations on function evaluation and gradient evaluation. Our results show that

qf takes significantly less time in almost all instances except for a few instances with a

special structure.

(ii) We describe an algorithm to detect convexity for separable quadratic functions that help

detect convexity faster. Since MIQCQO are nonconvex problems in general, identifying

convex problems or convex constraints in the problems can be beneficial to design specific

algorithms for these problems.

(iii) We implement Feasibility Based Bound Tightening (FBBT), a specialized FBBT

algorithm for univariate quadratic expression, and Optimality Based Bound Tightening

i

(OBBT) in mglob. Tighter variable bounds provide stronger relaxation for MIQCQO

problems, which helps solve the problem faster. We study the effects of these three

bound tightening techniques on the performance of the solver. Our tests show that doing

OBBT at the root node can tighten the bounds of the variables significantly, and we can

solve more instances than when OBBT is switched off.

Next, we describe a novel method to generate cutting planes for quadratically constrained

optimization problems. The method uses information from the simplex tableau of a linear

relaxation of the problem in combination with McCormick estimators. The method is

guaranteed to cut off a basic feasible solution of the linear relaxation that violates the quadratic

constraints in the problem as long as finite bounds on all variables are available. These cutting

planes are computationally cheap and do not require any special structure in the input problem.

The cuts generated by the method are the well-known Reformulation Linearization Technique

(RLT) cuts. The procedure produces a large number of violated cuts. Several variants for

selecting good cuts are tested. Instead of adding many cuts, one can also add auxiliary variables

and a few cuts. Computational testing on benchmark test instances shows that, on average,

upto 30% of the gap from the optimal can be closed.

Lastly, we describe five branching strategies for spatial branching of MIQCQO problems.

Once a node in a branch-and-bound tree is solved and the solution is not feasible to the

problem, we decide to branch. Typically, several variables are available for branching, and tree

size greatly depends on the variable selected for branching. In the first branching strategy, we

develop a distance measure that can be used to estimate the violation of a point and describe

a maximum violation branching strategy. We then describe strong branching for spatial

branching. Then, we develop a new branching strategy similar to strong branching, called

bt-strong branching, that tightens bounds on variables using FBBT based approaches before

strong branching for every candidate. This strategy gives a better estimate of lower bound

update and takes fewer nodes than other branching strategies. The fourth branching strategy is

bt-estimate branching. In this strategy, we first do bound tightening and then estimate lower

bound update based on reduced costs for variables whose bounds get updated. This strategy

is fast because no linear programs are solved. Finally, we combine these strategies into a

reliability branching type setup called bt-reliability branching. We observe that bt-reliability

branching performs better than other branching strategies described.

In the end, we benchmark the current state of our solver against SCIP and Gurobi. We

ii

also compare our solver against an older version of mglob to see the combined effects of all

the techniques described here.

iii

iv

Contents

Abstract i

List of Tables ix

List of Figures xi

List of Algorithms xiii

1 Introduction 1

1.1 Convex vs Nonconvex Optimization . 4

1.1.1 Convex Sets and Convex functions . 5

1.1.2 Local Minimum vs Global Minimum 7

1.1.3 Separation . 8

1.2 Linear Optimization . 9

1.2.1 Structure and Properties of LO . 10

1.2.2 Simplex Method . 10

1.3 Mixed Integer Linear Optimization . 12

1.3.1 Branch-and-Bound Algorithm . 13

1.3.2 Cutting Plane Algorithm . 14

1.4 Mixed Integer Quadratically Constrained Quadratic Optimization 15

1.5 Relaxation Techniques for MIQCQO . 16

1.5.1 McCormick Relaxation . 16

1.5.2 Underestimators, Overestimators and αBB Relaxation 18

1.5.3 Reformulation Linearization Technique 20

1.5.4 Semidefinite Programming Relaxation 21

1.6 Spatial Branch and Bound . 21

v

1.7 Software for Optimization . 25

1.7.1 LO, MILO and convex MINLO . 25

1.7.2 MIQCQO and nonconvex MINLO . 25

1.7.3 Modeling Tools . 26

1.8 Minotaur framework for MIQCQO . 26

1.9 Contributions and Outline of the Thesis . 29

2 Presolving Techniques 33

2.1 Representation of a Quadratic function . 34

2.1.1 Computational Graphs . 35

2.1.2 Dictionary of keys . 38

2.1.3 Computational Results . 39

2.2 Convexity Detection . 40

2.2.1 qf as a graph . 40

2.2.2 Convexity detection using subgraphs of the qf 41

2.3 Bound Tightening . 43

2.3.1 Literature Review . 44

2.3.2 Feasibility Based Bound Tightening 45

2.3.3 FBBT for a univariate quadratic expression 48

2.3.4 Adding Default Bounds . 50

2.3.5 Optimality Based Bound Tightening 50

2.3.6 Computational Results . 51

2.4 Conclusion . 53

3 Cutting Planes for Quadratically Constrained Optimization Problems 55

3.1 Properties of McCormick Estimators . 57

3.2 Literature review . 59

3.3 A Procedure for generating cuts . 61

3.3.1 Canonical form of the relaxation . 61

3.3.2 Standard form of linear relaxation . 64

3.4 Analogy with Gomory’s fractional cuts . 70

3.5 Adding new variables and connections with RLT 71

3.6 Computational results . 74

vi

3.6.1 Cuts in original space of variables . 76

3.6.2 Adding variables . 81

3.7 Conclusion and Future Work . 84

4 Branching Strategies 85

4.1 What is a branching strategy? . 86

4.2 Literature Review . 88

4.3 Branching strategies for nonconvex problems 89

4.3.1 Maximum Violation Branching . 90

4.3.2 Strong Branching . 91

4.3.3 Bt-strong Branching . 92

4.3.4 Bt-estimate Branching . 94

4.3.5 Bt-reliability Branching . 96

4.4 Computational Results . 98

4.5 Conclusion and Future Work . 103

5 Conclusion and Future Work 105

5.1 Performance of mglob . 106

5.2 Future Work . 109

References 111

List of Publications and Presentations 127

Acknowledgments 129

vii

viii

List of Tables

2.1 Partial derivative evaluation of the objective function of (nvs03) with respect to x1 37

2.2 Average time for function and gradient evaluation by CG and qf 40

2.3 Summary of results comparing bound tightening techniques 53

3.1 Under- and over-estimators that are tight at the edges of the box B = [x1,x1]×
[x2,x2] for the function f (x) = x1x2 . 58

3.2 Underestimators/overestimators based on the weights from the reduce cost of

the variables . 77

3.3 Average gap closed after adding the cuts on set T1. 78

3.4 Comparison of SCIP and Algorithm 3.1 for T1 instances 80

3.5 Comparison of SCIP and Algorithm 3.1 for T2 instances 81

3.6 Average gap closed and relative size of the problem after adding auxiliary

variables on set T1 . 82

4.1 Effect of selecting different branching variables 87

4.2 Summary of results comparing different branching strategies 100

5.1 Comparison of mglob current, mglob 0.2.2, SCIP, and Gurobi 108

ix

x

List of Figures

1.1 Schematic of the pooling problem described by Haverly [88] 3

1.2 Examples of convex and nonconvex sets . 5

1.3 Examples of a convex (left) and a nonconvex (right) function 6

1.4 B&B tree for the MILO problem in (1.7) . 14

1.5 Relaxation of y = x2 before branching . 22

1.6 Relaxation of y = x2 after branching at x = 0.5 22

1.7 Algorithmic framework of mglob . 27

2.1 Computational graph of (nvs03) . 36

2.2 Objective function evaluation at x̂ = (6,3) for the CG of (nvs03) 37

2.3 Representing qf (2.1) as a graph . 41

2.4 Relaxation of y = x2,x∈ [x,x] shaded in gray and relaxation of y = x2,x∈ [x′,x′]
shaded in blue . 44

3.1 Cuts generated for Example 3.10. 68

3.2 Profile of gap closed by one round of cuts on T1. 79

3.3 Profile of gap closed by adding auxiliary variables. 83

4.1 Performance profile of different branching strategies based on pace. 103

xi

xii

List of Algorithms

1.1 Spatial branch and bound . 23

2.1 An algorithm to find subgraphs of a qf . 42

3.1 Cut generating algorithm . 65

4.1 Scoring for Maximum Violation Branching 91

4.2 Scoring for Strong Branching . 93

4.3 Scoring for bt-estimate Branching . 95

4.4 Algorithm for bt-reliability Branching . 97

4.5 Scoring for Reliable Candidates . 98

4.6 Scoring for Unreliable Candidates . 99

xiii

Chapter 1

Introduction

Mixed-Integer Quadratically Constrained Quadratic Optimization (MIQCQO) refers to a

class of mathematical optimization problems where the maximum degree of objective function

and constraints is two. A general MIQCQO problem is written as

min
x

xT Q0x+ cT
0 x

subject to xT Qkx+ cT
k x≤ bk k = 1, . . . ,m,

x≤ x≤ x, (Q)

xi ∈ Z ∀ i ∈ I,

xi ∈ R ∀ i ∈ {1, . . . ,n}\ I,

where Qk =
(

qk
i j

)
is a given n× n symmetric matrix, ck ∈ Rn, for k = 0, . . . ,m,bk ∈ R, for

k = 1, . . . ,m,x,x ∈ Rn, I is the indicator set for the integer variables, and m,n are finite whole

numbers. A vector x satisfying all the given quadratic constraints (xT Qkx+ cT
k x ≤ bk, for k =

1, . . . ,m), the bound constraints (x≤ x≤ x), and the integrality constraints (xi ∈Z ∀ i∈ I) is said

to be feasible to (Q). The problem is to find among all feasible vectors, the one that minimizes

the quadratic function xT Q0x+ cT
0 x. Such a vector x̂ is said to be the optimal solution to (Q),

1

and x̂T Q0x̂+ cT
0 x̂ is the optimal value of (Q). This thesis describes some computational and

algorithmic techniques to solve MIQCQO. MIQCQO is used to model decision problems in

several scientific, engineering and business domains. Some of these are briefly discussed next.

In a pooling problem input material of different qualities from multiple streams (usually

crude oil procured from multiple sources) are mixed in several pools. It is one example of

MIQCQO from the domain of Chemical Engineering. The output from these pools are blended

together to form the end products. We describe a simplified example of pooling problem taken

from [88] to illustrate how MIQCQO problems are modeled.

Example 1.1. Consider three supply sources a,b, and c, a single pool, and two output products

1,2, as shown in Figure 1.1. Supplies from a, and b are mixed in the pool, and supply c

directly feeds to the output products. The sulfur qualities in the supply at a,b,c are 3%,2%,1%

respectively, while the per unit costs are $6,$16,$10 respectively. Maximum permissible sulfur

qualities at 1,2 are 2.5%,1.5%, and the demands are 100,200 units respectively. The per unit

profit for product 1 is $9 and for product 2 is $15. We want to decide the quantity of supply

from the sources, the quality at the pool after mixing, and the quantity of flow from the pool to

the output products. We denote the quantity from source a to the pool as xap and the quantity

from source b to pool as xbp. The quantity from source c to the output 1,2 is denoted by xc1,xc2

respectively. Similarly, the quantity from the pool to 1,2 is denoted as xp1,xp2 respectively. The

pool quality is denoted as q. Using these variables, the problem is formulated below.

min 6xap +16xbp +10(xc1 + xc2)−9(xp1 + xc1)−15(xp2 + xc2) (1.1a)

s. t. xp1 + xc1 ≤ 100, (1.1b)

xp2 + xc2 ≤ 200, (1.1c)

xap + xbp = xp1 + xp2, (1.1d)

3xap + xbp = qxp1 +qxp2, (1.1e)

qxp1 +2xc1 ≤ 2.5(xp1 + xc1), (1.1f)

qxp2 +2xc2 ≤ 1.5(xp2 + xc2), (1.1g)

xap,xbp,xc1,xc2,xp1,xp2,q≥ 0. (1.1h)

2

a

b

c

pool 1

2

Figure 1.1: Schematic of the pooling problem described by Haverly [88]

Objective function (1.1a) minimizes the difference of the cost of raw materials and the

profit from the output products. Constraints (1.1b) and (1.1c) model demand satisfaction.

Constraint (1.1d) represents the mass balance for the pool and Constraint (1.1e) represents

the mass balance for sulfur in the pool. Constraints (1.1f) and (1.1g) model the maximum

permissible sulfur quality at the output. Finally, nonnegativity constraints (1.1h) are added.

Constraints (1.1d), (1.1e), and (1.1f) are quadratic because of the presence of bilinear terms and

hence this problem is a quadratically constrained problem. The optimal solution value of −400

is obtained when q = 1,xbp = xp2 = xc2 = 100,xap = xc1 = xp1 = 0. Note that Q0,Q1,Q2,Q3

are zero, and there are no integer variables in this example.

In practice pooling problem may be much larger in scale because of multiple pools and

variety of products that can be produced. This leads to many bilinear terms in the problem.

Several alternative formulations and extensions have been proposed for the pooling problem,

see [7, 11, 18, 26, 115, 119, 130].

Other applications in chemical engineering include crude oil scheduling [121], natural gas

production [100, 101], distillation sequences [9], waste water treatment [48, 50], water network

design [49, 139, 140].

Several applications of MIQCQO also appear in computational geometry problems like

[20, 53, 95, 96, 99]. Another important application of MIQCQO is the trim loss problem in

paper industry [64, 86, 87, 97]. MIQCQO has also been applied in supply chain management

[62, 84, 89, 147, 148], optimal selection of breeding population [122], edge crossing

minimization in bipartite graphs [41], graph partitioning [75], optimal power flow in electricity

networks [13, 35, 51, 90], portfolio optimization in finance [30, 57, 70, 72, 143], etc.

Solution approaches to MIQCQO need to overcome two challenges: (a) nonconvexity of

the quadratic functions in the objective or constraints, and (b) integer constraints on variables.

3

In the absence of these two, we get a convex quadratic optimization problem that is relatively

much simpler to solve than MIQCQO. The algorithms for convex quadratic optimization are

fundamentally different from those of MIQCQO, and are usually orders-of-magnitude faster.

They are usually iterative in nature, moving from a candidate solution to the next that is ‘better’

in some sense, eventually converging to the optimal solution [71, 98, 113, 125]. On the other

hand, search for a globally optimal solution of nonconvex MIQCQO relies on approximating

the problem by solving a suitable convex approximation, and refining or subdividing it many

times. A practically useful MIQCQO solver requires careful implementation and integration

of several techniques for simplifying MIQCQOs, creating approximations, refining, searching

etc. This thesis focuses on the development of mglob, an open-source solver developed within

Minotaur (previously written as MINOTAUR) framework [111] for MIQCQO.

In this introductory chapter, we begin by describing the role convexity plays in solving

optimization problems and highlight the difficulties when solving nonconvex optimization

problems like the MIQCQO in Section 1.1. Next, we discuss two important optimization

problems, namely, Linear Optimization (LO) in Section 1.2, and Mixed Integer Linear

Optimization (MILO) in Section 1.3. Linear Optimization plays a key role in algorithms for

MIQCQO. Algorithms and techniques used to solve an MIQCQO problem are inspired from

MILO literature including Branch-and-Bound algorithm, cutting planes, presolving techniques,

branching techniques, etc. Thus an overview of MILO has been presented here. In Section

1.6, we describe the spatial Branch-and-Bound algorithm which is used to solve MIQCQO

problems. In Section 1.5 we describe some relaxation techniques for MIQCQO available in the

literature. In Section 1.7, we briefly mention software for MIQCQO and related problems. In

Section 1.8, we discuss several algorithmic components of Minotaur framework. We finally

outline the remainder of the thesis and highlight our contributions in Section 1.9.

1.1 Convex vs Nonconvex Optimization

Convexity plays an important role in optimization, and many algorithms for nonconvex

problems solve some convex optimization relaxations or approximations repeatedly. MIQCQO

in the general form is a nonconvex problem.

4

x1

x2

x1 + x2 ≥ 1

−3x1 + 2x2 ≤ 2

x1 + 2x2 ≤ 10

2x1 − 5x2 ≤ 2

S1
x1

x2

x2
1 + x2

2 ≤ 4

S2

x1

x2

x2
1 − 2x2 ≤ 0

−x2
1 + 4x2 ≤ 4x∗

x̂

Bϵ(x̂)

S3

conv(S3)

Figure 1.2: Examples of convex and nonconvex sets

Convex optimization problems are in general ‘easy’ to solve and several interior point

algorithms exist which can provably reach the optimal solution within a small polynomial (in

the size of the input) number of steps. More details about convex optimization problems can

be found in [29, 40]. On the other hand nonconvex optimization problems are ‘hard’ problems.

There are no known algorithms which can find an optimal solution within polynomial (in the

size of input) number of steps. Formal definitions of computational complexity and hardness

can be found in [73]

1.1.1 Convex Sets and Convex functions

A convex set C is a set such that given any two points x,y ∈C the line segment joining x,y is

contained in C. More formally,

Definition 1.2. Convex set - A set C ⊆ Rn is a convex set if for any x, y ∈C, and λ ∈ [0, 1],

we have λx+(1−λ)y ∈C.

Figure 1.2 shows some examples of convex and nonconvex sets. The left figure, a polyhedron,

is a convex set defined by the intersection of four linear constraints, S1 = {(x1,x2) | x1 + x2 ≥
1,−3x1 + 2x2 ≤ 2,2x1− 5x2 ≤ 2,x1 + 2x2 ≤ 10}. The middle figure, a circle, is a convex set

defined by a single quadratic constraint, S2 = {(x1,x2) | x2
1+x2

2≤ 4}. The right figure, a crescent

shape, is a nonconvex set defined by the intersection of two quadratic constraints, S3 = {(x1,x2) |
x2

1−2x2 ≤ 0,−x2
1 +4x2 ≤ 4}. S3 is a nonconvex set since the red line segment joining the two

points marked in S3 is not contained in S3.

Definition 1.3. Convex hull - Given a set S⊆ Rn, a set conv(S) is the convex hull of S if:

5

(i) conv(S) is a convex set.

(ii) S⊆ conv(S).

(iii) If T is a convex set such that S⊆ T then conv(S)⊆ T.

The convex hull of a set is a smallest convex set containing the set. For example, convex

hull of set S3 in Figure 1.2 is conv(S3) = {(x1,x2) | x2
1− 2x2 ≤ 0,x1 ≤ 2} shaded in green in

Figure 1.2. Note that the convex hull of a convex set is the set itself.

A convex function is a function for which the line segment joining any two point on the

graph of the function lies above the graph between those points.

Definition 1.4. Convex function - A function f : Rn→ R is convex if for any x,y ∈ Rn,λ ∈
[0,1] we have f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y).

Figure 1.3 shows two functions f ,g. f is a convex function and as shown in the figure the green

line segment joining the graph of the function overestimates the function. On the other hand,

g is a nonconvex function since the red line segment joining the graph of the function does

not overestimate at every point. We describe two important properties of differentiable convex

x

f(x)

x

g(x)
f(x) = x2

g(x) = x4 + x3 − 2x2 − x+ 2

Figure 1.3: Examples of a convex (left) and a nonconvex (right) function

functions using the first and second order derivatives of the functions.

Property 1.5. First order condition [40] - If f is a convex function and f is differentiable then

for any x̄ ∈ Rn,

f (x)≥ f (x̄)+∇ f (x̄)T (x− x̄) ∀ x ∈ Rn

6

This property shows that a tangent hyperplane to the graph of a convex function at any point is

always below the graph of the function. In Figure 1.3, the blue hyperplane is a tangent to the

graph of the function f (x) = x2 and is always below the graph of the function.

Property 1.6. Second order condition [40] - Let f be a twice continuously differentiable

function then f is a convex function if and only if its Hessian is a positive semidefinite at all

points i. e., ∇2 f (x)≽ 0 ∀ x ∈ Rn.

Definition 1.7. Convex constraint - Let f : Rn→ R be a convex function then for all β ∈ R

the set of points satisfying the constraint f (x)≤ β is a convex set, and the constraint is called a

convex constraint.

If f is not a convex function it may still be possible that the feasible region defined by the

constraint f (x)≤ β is a convex set for some given β . For example, consider the function f (x) =

−ex, given any β ∈ R the region bounded by the constraint f (x) ≤ β is a convex set in R but

this is still not a convex constraint since −ex is a not a convex function.

Now we define convex and nonconvex optimization problems. Suppose we have an

optimization problem of the form,

min
x

f0(x)

s.t. fi(x)≤ βi ∀ i ∈ {1, . . . ,m}, (1.2)

x ∈ Rn,

where the functions f0, . . . , fm and the constants β1, . . . ,βm are given. If fi, i ∈ {0, . . . ,m} are

all convex functions then the optimization problem is called a convex optimization problem. If

any one of the fi are not convex then it is a nonconvex optimization problem.

1.1.2 Local Minimum vs Global Minimum

Consider the optimization problem (1.2), and let the feasible region of the problem be F =

{x ∈ Rn | fi(x) ≤ βi ∀ i ∈ {1, . . . ,m}}. A point x∗ is a global minimum for the problem if

f0(x∗) ≤ f0(x) ∀ x ∈ F . On the other hand, a point x̂ is local minimum of the problem if

7

f0(x∗)≤ f0(x) ∀ x ∈F ∩Bε(x̂) where Bε(x̂) is the ball of radius ε centered at x̂ i.e. Bε(x̂) =

{x ∈ Rn | ∥x− x̂∥ ≤ ε} for some ε > 0.

For a convex optimization problem, every local minimum is also a global minimum for

the problem. For a nonconvex optimization problem, a local minimum may not be a global

minimum for the problem.

Example 1.8. Consider the optimization problem min{x1− 2x2 | (x1,x2) ∈ S3} where S3 is

the nonconvex set shown in Figure 1.2. Consider the point x̂ = (2,2) with objective value

f (x̂) = −2. There is no feasible point in the neighborhood of x̂ for which the objective value

can be decreased further i.e. f (x̂) < f (x)∀ x ∈ S3 ∩Bε(x̂) with ε = 0.01. Thus x̂ is a local

minimum of the problem. The global minimum of the problem is the point x∗ = (−2,2) shown

in green in Figure 1.2 with objective value f (x∗) =−6.

1.1.3 Separation

Another important distinction between convex sets and nonconvex sets comes from separating

a point outside of the set. Let us consider a closed convex set C and a point x̂ /∈ C, then the

following theorem shows that we can construct a hyperplane that separates x̂ from C.

Theorem 1.9. Separating Hyperplane Theorem1 - Let C be a closed convex subset of Rn and

let x̂ /∈ C then there exist a vector a ∈ Rn and a scalar b ∈ R such that ∀ x ∈ C,aT x ≤ b and

aT x̂ > b. That is, the hyperplane denoted by the constraint aT x = b separates x̂ from C and is

called a separating hyperplane.

Constructing a separating hyperplane for a convex optimization problem of the form (1.2)

is straight forward. Let us consider a point x̂ which is infeasible to the problem, then there exists

an i ∈ {1, . . . ,m} such fi(x̂) > βi. Now since fi is convex, using Property 1.5 we have for all

x, fi(x̂)+∇ fi(x̂)T (x− x̂)≤ fi(x). Since we have fi(x)≤ βi∀ x feasible to the problem, we must

have

fi(x̂)+∇ fi(x̂)T (x− x̂)≤ βi. (1.3)
1This is a special case where we separate a convex set and a point, a more general version of the theorem

separates two disjoint convex sets

8

Constraint (1.3) is not satisfied by x̂ because fi(x̂) > βi, and hence fi(x̂)+∇ fi(x̂)T (x− x̂) = βi

defines a separating hyperplane. Let us illustrate it using an example.

Example 1.10. Consider the set

S1 = {x1x2 ≥ 4,1≤ x1,x2 ≤ 5}.

This set is actually a convex set but due to the presence of the nonconvex constraint x1x2 ≥ 4 it

represents a feasible region of a nonconvex optimization problem. Now consider the set

S2 = {
√
(x1− x2)2 +16≤ x1 + x2,1≤ x1,x2 ≤ 5}.

S2 defines the same set as S1 and all constraints in S2 are convex. The point x̂ = (1,2)T is

outside S1, and S2. For S2, we can derive a hyperplane separating x̂ from S2. Property 1.5 gives

the inequality (
√

17+1)x1 +(
√

17−1)x2 ≥ 16 which separates x̂ from S2. Applying Property

1.5 to S1 gives us the inequality 2x1 + x2 ≥ 6. This inequality is not valid for S1 since the point

(1.4,3)T in S1 violates it. This shows that we cannot apply Property 1.5 when the functions are

nonconvex.

1.2 Linear Optimization

An important class of convex optimization problems is that of Linear Optimization (LO)

problems. Consider the optimization problem (1.2), if all f0, . . . , fm are linear functions then it

is an LO problem. In its canonical form an LO problem is written as

min cT x

Ax≤ b, (1.4)

x ∈ Rn,

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm are given and n,m are finite. Many nonconvex optimization

problems including MIQCQO are solved by first creating and solving an LO problem. Since

9

we also use LO extensively, we describe the most relevant properties and methods briefly. A

detailed treatment of LO can be found in [22, 31].

1.2.1 Structure and Properties of LO

In this section we describe the polyhedral structure of an LO problem and discuss the idea of

corner point solution.

Property 1.11. [31] The feasible region {x ∈ Rn | Ax≤ b} of an LO problem is a polyhedron.

Definition 1.12. Corner Point [31] - Let P := {x ∈ Rn | Ax ≤ b} be a polyhedron. A point x∗

is corner point of P if there exists some c ∈ Rn such that cT x∗ < cT x ∀ x ∈ P.

Property 1.13. [31] For a polyhedron P with at least one corner point and a given c ∈ Rn,

if there exists a point x̂ such that cT x̂ ≤ cT x ∀ x ∈ P then there exists a corner point x∗ with

cT x̂ = cT x∗.

This property shows that for an LO problem whose optimal solution exists there must be a

corner point which is also optimal.

Property 1.14. [31] If x∗ is a corner point of P = {x ∈ Rn | Ax ≤ b} then there exists n× n

invertible submatrix of A, say B, such that Bx∗ = b.

The above property says that if x∗ is a corner point then there are a set of n constraints from

Ax ≤ b satisfied at equality. These constraints which are satisfied at equality are called active

constraints. Since there can be only finitely many submatrices B, there are only finitely many

corner points of a polyhedron. Now, using Property 1.13, this reduces the LO problem to that

of enumeration and thus LO can always be solved in finite number of steps.

1.2.2 Simplex Method

There are broadly two categories of algorithms for solving an LO problem, namely, interior

point methods and simplex method. There are several interior point methods, which in theory

10

are polynomial time algorithms, and can reliably solve LP problems fast. On the other hand

simplex method is an exponential time algorithm in the worst case. In spite of the poor worst

case complexity, simplex method is extensively used in many state-of-the-art LO solvers

because of its practical speed, warm starting abilities, fast and reliable computations and a

guarantee to provide a corner point solution. We now briefly describe the simplex method. A

detailed description and important computational and practical aspects of the simplex method

can be found in [142].

Simplex method considers the LO problem in its standard form

min cT x

Ax = b, (1.5)

x≥ 0,

where c ∈Rn, A ∈Rm×n, b ∈Rm are given. Note that an LO problem in canonical form can be

easily converted to standard form by introducing additional nonnegtaive variables. It is assumed

that A is a full rank matrix.

Definition 1.15. Basic Feasible Solution (BFS) - Consider the feasible region of the LO

problem {x ∈ Rn | Ax = b, x ≥ 0}. We divide the matrix A into two submatrices B, N where

B ∈ Rm×m is invertible and, N ∈ Rm×(n−m). Let xB, xN be the variables corresponding to the

columns of B, N respectively. Then the solution xB = B−1b, xN = 0 is known as basic solution

and if xB = B−1b≥ 0 then it is a basic feasible solution.

Definition 1.16. Reduced Costs - Let x =

xB

xN

 be a basic solution and c =

cB

cN

 be the

cost function then the vector c̄ = cN− cT
BB−1N is known as the vector of reduced costs.

Simplex method starts by selecting an initial BFS. There are several methods of obtaining

an initial BFS, for example, the Phase I of the simplex method. Then it chooses an entering

nonbasic variable with a negative reduced cost and a leaving basic variable such that feasibility

is maintained. We then move to the next basic feasible solution with the new basis iteratively.

We have reached an optimal solution when the vector of reduced costs is nonnegative.

There are several more details regarding an efficient implementation of the simplex method

11

for general purpose use. For example, exploiting sparsity of A,b, deciding the entering and

leaving variable at every iterate (pivoting rules), handling degeneracy, getting a starting basic

feasible solution etc.

After an LO problem is solved, we sometimes want to solve it again after modifying the

vectors b and c, or after adding or removing some constraints. Variants of simplex method can

be used to solve the modified problem starting from the last basic solution obtained previously

to quickly find the solution to the new problem. This process is called warm-starting. Warm

starting is a key enabler for developing LO based methods for solving other more difficult

problems like Mixed-Integer Linear Optimization (MILO) and MIQCQO. We next discuss

MILO.

1.3 Mixed Integer Linear Optimization

An MILO problem is an LO problem in which some or all variables are constrained to take

integer values. In its general form, an MILO problem is represented as

min cT x

Ax≤ b, (1.6)

xi ∈ Z i ∈ I,

xi ∈ R i ∈ {1, . . . ,n}\ I,

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm and I ⊆ {1, . . . ,n} are given. MILO is used to model a

diverse set of problems arising in practical situations like scheduling, routing, transportation

etc. and important theoretical questions in graph theory, set theory, number theory, and many

combinatorial problems.

MILO problem is an NP-hard [54] problem which means that all known algorithms

to solve MILO require at least exponential number of steps in the size of the problem.

Many state-of-the-art solvers for MILO use Branch-and-Cut algorithm augmented by several

techniques including presolving, heuristics, conflict resolution etc.

12

We now discuss two important algorithms that are integrated together to solve an MILO

problem because they are also extended to the case of MIQCQO. Both these algorithms start

by creating a linear relaxation for the MILO problem and proceed by analyzing the optimal

solution of the linear relaxation. The Branch-and-Bound algorithm is a divide and conquer

type of algorithm that iteratively searches different parts of the feasible region by restricting the

search space and solving LO subproblems at every iteration. On the other hand, cutting plane

method solves a single linear relaxation but iteratively strengthens it to get closer to the integer

optimal solution. In theory, both of these algorithms will reach optimal solution but in practice

a combination of both is used.

1.3.1 Branch-and-Bound Algorithm

We now describe the Branch-and-Bound (B&B) algorithm using an example. Consider the two

variable MILO problem below.

min − x1− x2

s.t. 2x1− x2 ≤ 4,

4x1 +16x2 ≤ 71, (1.7)

−3x1 + x2 ≤ 2,

x1,x2 ≥ 0,

x1,x2 ∈ Z.

We begin by solving the natural linear relaxation of (1.7) by relaxing the integrality constraints

on both the variables. The optimal solution of the linear relaxation is x̂ = (3.75,3.5). Since

x1,x2 do not take integral values at x̂, we partition the problem in two subproblems. Noting that

x2 must be integral we create two subproblems one with x2 ≤ 3 and another with x2 ≥ 4. Thus

we ensure that every feasible solution of the MILO is present in one of the subproblems. This

process is known as branching. The objective value ẑ =−7.25 is a lower bound on the optimal

objective value of the MILO problem. The upper bound on the optimal objective value currently

is unknown (infinite). Once an integer feasible solution is found a finite upper bound will be

13

obtained as well. This is known as bounding. B&B algorithm iteratively solves subproblems by

branching and bounds the objective value by updating lower and upper bounds. The algorithm

stops when lower and upper bound are the same and we know that we have obtained an optimal

solution to the problem.

The optimal solution for the left branch (node 1) with x2 ≤ 3 is x̂ = (3.5,3) and for the

right branch (node 2) with x2 ≥ 4 is x̂ = (1.75,4). We further branch at node 1 on x1 to obtain

nodes 3 and 4. The optimal solution of node 3 x̂ = (3,3) is feasible to the MILP and we obtain

an upper bound on the problem −6. This node is pruned by feasibility. Node 4 is infeasible

and is pruned by infeasibility. We need not explore node 2 now since the objective value of the

node is worse than the current upper bound. Thus node 2 is pruned by bound. The solution

x∗ = (3,3) is optimal to the MILO problem. The full B&B tree for the MILO problem in (1.7)

is shown in Figure 1.4. In practice, a B&B tree can become large because of branching again

and again.

Root node
ẑ = −7.25, x̂ = (3.75, 3.5)

Node 1
ẑ = −6.5, x̂ = (3.5, 3)

Node 3
ẑ = −6, x̂ = (3, 3)

x1
≤ 3

Node 4
Infeasible

x
1 ≥

4

x2
≤ 3

Node 2
ẑ = −5.75, x̂ = (1.75, 4)

x
2 ≥

4

Figure 1.4: B&B tree for the MILO problem in (1.7)

1.3.2 Cutting Plane Algorithm

A cutting plane algorithm repeatedly solves a single LO problem by adding more and more

constraints to the relaxation. This is in contrast with the B&B algorithm where multiple

subproblems are solved. We begin by solving the natural linear relaxation of the problem. If

the solution obtained is fractional then we solve a separation problem. This separation problem

14

returns a linear inequality that separates the current fractional solution from the feasible region

of the MILO problem. We add this linear inequality as a constraint in the MILO problem

and solve the relaxation again. This process is repeated until the optimal solution obtained

is feasible to the MILO problem. The linear inequality obtained after solving the separation

problem is also known as a cut.

There are several ways of obtaining a cut described in the literature. For a thorough

discussion on different types of cuts see chapters 5, 6, and 7 of [52]. In branch-and-cut

based solvers, several cuts are added at the root node to strengthen the relaxation initially

and few cuts are added once branching is started. Two important algorithmic choices arise

from any branch-and-cut based algorithm. Which cuts to add and what variable to branch on.

Several empirical studies have considered these questions and have led to improvements in the

performance of the solvers [4, 92, 141, 145].

1.4 Mixed Integer Quadratically Constrained Quadratic

Optimization

We are now equipped to visit MIQCQO. Consider the problem (Q), if Qk = 0, k = 0, . . . ,m

then (Q) reduces to (1.6). Thus MILO is a special case of MIQCQO and therefore, MIQCQO

is as hard as MILO. Since MILO is NP-hard, we know that MIQCQO is also at least

NP-hard. Solution methods and algorithms for solving MIQCQO problem are inspired from

branch-and-bound and cutting plane algorithm described for MILO problem in the previous

section. Although similar in principle there are some significant differences between algorithms

for MIQCQO and MILO. First, creating a relaxation for MILO requires only relaxing the

integrality while for MIQCQO specialized techniques are required for creating a relaxation.

We describe some of these in Section 1.5. Second, Branch-and-bound for MILO problems

terminates in finite time with exact global optimal solution while spatial branch-and-bound

for MIQCQO terminates only in the limit and solution obtained in finite steps are optimal

within some tolerance. We describe spatial branch-and-bound algorithm in Section 1.6. Lastly,

Jeroslow [94] showed that there can not be an algorithm that provides an optimal solution to

quadratic problems with unbounded integer variables. This result shows that finite bounds on

15

all variables appearing in quadratic terms is necessary for MIQCQO problems.

1.5 Relaxation Techniques for MIQCQO

There are several approaches to relax an MIQCQO problem. After relaxing the integrality

constraints, an MIQCQO problem may still have nonconvexities from the quadratic constraints

or the objective function can be nonconvex. As discussed in Section 1.1.2, we need special

techniques to obtain convex relaxation of the nonconvex problem before we start the

branch-and-bound process. In this section we will describe several relaxation techniques which

obtain different types of convex sets as the relaxation to the MIQCQO problem.

1.5.1 McCormick Relaxation

McCormick relaxation [112] is a popular way of creating a linear relaxation of an MIQCQO

problem. We first transform the problem (Q) by introducing auxiliary variables yi j for each

quadratic term xix j and adding new quadratic constraints each having only one quadratic term.

yi j = xix j ∀i, j ∈ {1, . . . ,n}, qk
i j ̸= 0 for some k ∈ {0, . . . ,m}.

Example 1.17. Consider the following problem

min x1x2− x2x3

s. t. x2
1 + x2 + x3 ≤ 1, (1.8)

− x1 +2x2 +2x3 ≤ 1,

0≤ x1,x2,x3 ≤ 1.

We add auxiliary variables y11,y12,y23 to obtain the following reformulation

min y12− y23

16

s. t. y11 + x2 + x3 ≤ 1, (1.9)

− x1 +2x2 +2x3 ≤ 1,

0≤ x1,x2,x3 ≤ 1,

y11 = x2
1,

y12 = x1x2,

y23 = x2x3.

Note the Problems (1.8) are (1.9) are equivalent to each other.

We then relax these nonconvex constraints using the following inequalities

yi j ≥ xix j + x jxi− xix j,

yi j ≥ xix j + x jxi− xix j, (1.10)

yi j ≤ xix j + x jxi− xix j,

yi j ≤ xix j + x jxi− xix j.

to obtain the linear relaxation:

min ∑
(i, j)∈E0

q0
i jyi j + cT

0 x

s.t. ∑
(i, j)∈Ek

qk
i jyi j + cT

k x≤ bk, ∀ k = 1, . . . ,m,

yi j ≥ xix j + x jxi− xix j,

yi j ≥ xix j + x jxi− xix j,

yi j ≤ xix j + x jxi− xix j,

yi j ≤ xix j + x jxi− xix j,

∀ (i, j) ∈ E, (1.11)

x≤ x≤ x,

x ∈ Rn,

yi j ∈ R ∀ (i, j) ∈ E.

Let Ek be the set of pairs (i, j) for which qk
i j ̸= 0, in other words the term xix j is present in the

17

corresponding quadratic function. Then E = E0∪E1∪ . . .∪Em is the union of all the Ek sets,

i.e. E is the set of pairs (i, j) for which the term xix j exists in the problem.

Example 1.18. Consider the reformulated Problem (1.9) in Example 1.17. McCormick

relaxation of this problem is shown below.

min y12− y23

s. t. y11 + x2 + x3 ≤ 1,

− x1 +2x2 +2x3 ≤ 1,

0≤ x1,x2,x3 ≤ 1,

yi j ≥ 0,

yi j ≥ xi + x j−1,

yi j ≤ xi,

yi j ≤ x j,

∀ (i, j) ∈ {(1,1),(1,2),(2,3)}.

The optimal solution to the above relaxation is x̂ = (0.6,0.4,0.4), ŷ = (0.2,0,0.4). This

relaxation solution is not feasible to the reformulated problem (1.9) since none of the quadratic

constraints y11 = x2
1,y12 = x1x2,y23 = x2x3 are satisfied. Also x̂ is not feasible to the original

problem (1.8) since the quadratic constraint x2
1 + x2 + x3 ≤ 1 is not satisfied.

1.5.2 Underestimators, Overestimators and αBB Relaxation

Another approach to relax (Q) is to replace the nonconvex functions by nonlinear convex

underestimators and concave overestimators. An underestimator f of a function f has a function

value less than the function value of f . That is

f (x)≤ f (x) ∀x ∈ Rn.

If f is convex then it is a convex underestimator and if f is a maximal convex function then it

is called a convex envelope.

18

Definition 1.19. Convex Envelope: [91] Let S ⊂ Rn be a convex and compact set, and let

f : S −→ R be a lower semicontinuous function. A function f : S −→ R is the convex envelope

of f on S if:

(i) f is convex on S

(ii) f (x)≤ f (x) ∀ x ∈S

(iii) there is no function g : S −→ R satisfying (i), (ii) and g(x̄)< f (x̄) for some x̄ ∈S

Similarly a concave overestimator f of f is a concave function that has a function value

more than that of f . Analogous to the definition of convex envelope we can define concave

envelope f of f on S as the lowest overestimator of f on S .

Relaxation using convex and concave envelopes of a function f gives us a convex

relaxation of the epigraph of f on S . There are few functions for which exact convex and

concave envelopes are known. The following result gives us the exact convex and concave

envelopes of the bilinear terms.

Theorem 1.20. [10] Let S = {(x1,x2) | x ≤ x ≤ x} ⊂ R2 and let f (x) = x1x2 then convex

envelope f and concave envelope f of f on S are

f (x) = max{x2x1 + x1x2− x1x2,x2x1 + x1x2− x1x2},

f (x) = min{x2x1 + x1x2− x1x2,x2x1 + x1x2− x1x2}

The above theorem is limited to a single bilinear term (x1x2). Applying this result to a

general quadratic function by taking a sum of convex envelopes of individual terms does not

give a convex envelope of the function. Meyer and Floudas [114] use some properties like edge

concavity to find the convex envelopes of those functions in R3. Misener and Floudas [116] use

these results to aggregate bilinear terms to get stronger convex relaxations of general quadratic

functions.

A closely related approach to nonconvex optimization problems is the αBB

underestimators [8, 15]. For a quadratic function xT Qkx + cT
k x, a vector αk ≥ 0 ∈ Rn

is chosen such that Qk + Diag(αk) ≽ 0. Now, the function xT (Qk + Diag(αk))x + cT
k x

19

is a convex quadratic function (since Hessian is positive semidefinite) but does not

underestimate the function since we have added ∑
n
i=1 αk

i x2
i . To obtain an underestimator,

we subtract the secants for the univariate quadratic functions αk
i x2

i . Thus, the function

xT (Qk +Diag(αk))x+ cT
k x−∑

n
i=1 αk

i ((xi + xi)xi− xixi) is an underestimator for the quadratic

function. Now we can construct a convex relaxation

min xT (Q0 +Diag(α0))x+ cT
0 x−

n

∑
i=1

α
0
i ((xi + xi)xi− xixi)

s.t. xT (Qk +Diag(αk))x+ cT
k x−

n

∑
i=1

α
k
i ((xi + xi)xi− xixi)≤ bk ∀ k = 1, . . . ,m, (1.12)

x≤ x≤ x,

x ∈ Rn (1.13)

1.5.3 Reformulation Linearization Technique

Reformulation Linearization Technique (RLT) is a well studied method of generating a

linear relaxation for (Q). This method was first described for bilinear problem by Sherali

and Alameddine [134] and then extended to polynomial problems by Sherali and Tuncbilek

[136]. We first divide the constraints into two sets namely, linear constraints where Qk = 0,

and nonlinear constraints where Qk ̸= 0. Although in [136] bound constraints are considered

separately we include bounds on the variables in the linear constraint set for the sake of

simplicity.

Now take the product of any two pair of linear constraints and substitute the quadratic

terms with auxiliary variables to obtain a linear constraint as shown below.

(bk1− cT
k1

x)(bk2− cT
k2

x)≥ 0

=⇒ bk1bk2−bk2cT
k1

x−bk1cT
k2

x+ cT
k1

xxT ck2≥ 0

=⇒ bk1bk2−bk2cT
k1

x−bk1cT
k2

x+ cT
k1

Xck2≥ 0

where Xi j = xix j are auxiliary variables used for linearization. These linearized constraints

are called RLT constraints. Adding all possible RLT constraints along with original linear

20

constraints and bound constraints generates the first order RLT relaxation for (Q). These

relaxations can be strengthened using difference of convex underestimators as described in

[149].

1.5.4 Semidefinite Programming Relaxation

Let x ∈Rn be any vector, and X be a symmetric matrix satisfying X = xxT . The set S = {(x,X) |
x ∈ Rn,X = xxT} can be written using several quadratic equations of the form Xi j− xix j = 0.

This set is nonconvex. If we relax X−xxT = 0 to X−xxT ≥ 0, we get a convex relaxation [137].

The constraint X− xxT ≥ 0 is equivalent to

1 xT

x X

≽ 0.

This observation can be applied to any QCO to obtain a convex, positive semidefinite relaxation.

For example, the following Semidefinite Optimization (SDP) problem is a relaxation for (Q)

min ⟨Q0,X⟩+ cT
0 x

s.t. ⟨Qk,X⟩+ cT
k x≤ bk ∀ k = 1, . . . ,m,

x≤ x≤ x,

1 xT

x X

≽ 0.

This relaxation can be strengthened in the presence of binary variables by adding constraints

Xii = xi ∀i ∈ I,0≤ xi ≤ 1.

1.6 Spatial Branch and Bound

The relaxations obtained by the above methods can be solved relatively easily to obtain a lower

bound on the optimal value of the (Q). If the relaxation is infeasible, then so is the Problem (Q).

21

If the optimal solution of the relaxation satisfies all the constraints of the Problem (Q), then it

is also optimal to (Q). Otherwise we need to search more. One method for this search is the

spatial branch and bound (sB&B) [91, 105]. The main components of the algorithm are given in

Algorithm 1.1. We create a tree of nodes each involving a subproblem of the original problem

(Q). A relaxation is then created for the subproblem using one of the techniques described in

the previous section. sB&B is similar to B&B described for MILO in Section 1.3.1 with an

added feature that branching on continuous variables is also possible. This type of branching is

known as spatial branching and we describe it next.

Spatial Branching

In a nonconvex optimization problem, branching is done on both integer as well as

continuous variables. Integer variable branching is similar to MILO (see Section 1.3.1).

But that is not sufficient when some of the variables in quadratic constraints are continuous.

Consider an MIQCQO problem involving the constraint y = x2,x ∈ [0,1], its standard

McCormick relaxation is shown in Figure 1.5. Now let us assume that the optimal solution

of the relaxed problem (x∗,y∗) = (0.5,0.5). If we branch on x ≤ 0.5,x ≥ 0.5, the relaxation

after branching in either direction is shown in Figure 1.6. The infeasible point is eliminated

from the relaxation in either direction of branching but all feasible solution are present in at

least one of the relaxation. Although, it is clear from Figure 1.6 that spatial branching does not

create disjoint relaxations after branching as is the case with integer branching, it ensures that

the intersection of the feasible regions of the relaxations will always be feasible to the original

problem.

Figure 1.5: Relaxation of y = x2 before

branching

Figure 1.6: Relaxation of y = x2 after

branching at x = 0.5

For integer branch and bound algorithm, theoretically finite termination of standard branch

22

Algorithm 1.1 Spatial branch and bound
Input: Problem Q,S = {x ∈ Rn | xT Qkx+ cT

k x≤ bk,k = {1, . . . ,m},x≤ x≤ x,xi ∈ Z ∀i ∈
I} is the feasible region of (Q), f (x) = xT Q0x+ cT

0 x is the objective function of (Q),ε > 0

Output: x∗ such that f (x∗)≤ f (x)− ε ∀x ∈ S

1: procedure SPATIALBRANCHANDBOUND

2: Create a set of nodes N ←{(Q,S,−∞)}where each node is a tuple of the subproblem

to be solved, its feasible region, and node lower bound.

3: zu←+∞

4: while N ̸= φ do

5: choose Nk := (Pk,Sk,zk) ∈N and remove Nk from N

6: Create a Linear Relaxation Lk of Pk

7: Let fk be the objective function of Lk

8: Solve Lk

9: Let x̃ be the optimum of Lk

10: zk← fk(x̄)

11: if x̃ is feasible to Pk then

12: if f (x̃)< zu then

13: zu← f (x̃)

14: x∗ = x̃

15: Remove all N j from N with node lower bound z j ≥ zu− ε

16: else if Pk is infeasible then

17: continue

18: else

19: Choose a variable xi for branching

20: if i ∈ I then

21: Sleft← S∩{x ∈ Rn | xi ≤ ⌊x̃i⌋},Sright← S∩{x ∈ Rn | xi ≥ ⌈x̃i⌉}
22: else

23: Sleft← S∩{x ∈ Rn | xi ≤ x̃i},Sright← S∩{x ∈ Rn | xi ≥ x̃i}

24: Pleft←min{ f (x) | x ∈ Sleft},Pright←min{ f (x) | x ∈ Sright}
25: Nleft← (Pleft,Sleft,zk),Nright← (Pright,Sright,zk)

26: N ←N ∪{Nleft,Nright}

27: return x∗

23

and bound algorithm is ensured. For spatial branch and bound, since continuous variables are

branched as shown above, finiteness of the algorithm cannot be guaranteed. We now describe

three properties of the sB&B algorithm that are useful to prove convergence of sB&B algorithm.

By convergence, here we mean that

minzk→ f (x∗) as k→ ∞

where zk are the node lower bounds of the open nodes N . That is lower bound of the problem

approaches optimal value of the problem in the limit.

• Bound improving node selection [105] : Line 5 of Algorithm 1.1 is to choose a node

from the set of open nodes. We do not exactly describe how this can be done. One way to

select the nodes is choose that node which has the least node lower bound. This is called

the best-first strategy. Any node selection strategy is said to be bound improving if the

number of number of successive iterations in which node selected is different from the

best first strategy is finite.

• Exactness [105] : When the box of bounds of the variables [x,x] approaches a singleton

the corresponding gap between the feasible region of the relaxation and the feasible region

of the problem approaches 0. That is the relaxation becomes exact in the limit.

• Exhaustiveness [105] : sB&B algorithm equipped with the box branching as described in

Algorithm 1.1 is said to be exhaustive if each infinite nested sequence generated by the

algorithm converges to a singleton.

Under the assumptions of bound improving node selection, exactness, and exhaustiveness

sB&B algorithm will either prove terminate in finite number of steps if the problem is infeasible,

or terminate in finite number of steps and returns an optimal solution or converge to the optimal

solution in the limit. For ε tolerance optimal solution, finite termination of the sB&B algorithm

can be guaranteed without the requirement of the bound improvement condition.

24

1.7 Software for Optimization

There are many software packages available for a variety of classes of optimization problems.

These software, or ‘solvers’, are implementations of algorithms to solve a particular class of

optimization problems. We describe some of these software packages in this section.

1.7.1 LO, MILO and convex MINLO

Solvers for LO problems typically implement routines for simplex method and interior point

methods. Some commonly used solvers for LO problems are CLP [67] under the COIN-OR

project, HiGHS [93], Glop available in Google OR-Tools [126], SoPlex [78], etc.

MILO solvers implement branch-and-bound algorithm along with cutting planes and many

other techniques to provide fast solutions on a large class of problems. Some commonly used

solver for MILO include CPLEX [56], Xpress [23], Gurobi [85], CBC [66] under the COIN-OR

project, HiGHS [93], SCIP [32], etc. Among these, the commercial solvers like CPLEX,

Gurobi, and Xpress use their own inbuilt LO solvers. Open-source solvers, on the other hand,

depend on other open-source or commercial LO solvers.

Several convex MINLO solvers use some form of branch-and-bound. The relaxations

solved for the branch-and-bound may be linear or nonlinear depending on the solver. Some of

these are Mosek [17], AlphaECP [146], BONMIN [39], DICOPT [83], Minotaur [111], SHOT

[109], etc.

1.7.2 MIQCQO and nonconvex MINLO

Solvers for MIQCQO and nonconvex MINLO problems implement the spatial branch-and-bound

algorithm along with many other techniques like cutting planes, bound tightening, etc. Some

solvers for nonconvex MIQCQO problems are Alpine [124, 123], ANTIGONE [118], BARON

[138], COUENNE [25], Minotaur [111], Octeract, RaPosa [81], SCIP [32] etc. Of these,

25

Alpine, ANTIGONE, BARON, COUENNE, Octeract, and SCIP are designed for global

optimization of nonconvex MINLO. While RaPosa is designed for polynomial problems and

Minotaur solves nonconvex MIQCQO only. For a detailed overview of solvers for MINLO see

[44].

1.7.3 Modeling Tools

Often solvers require input problems in a specific format which may sometimes be quite difficult

to create for large problems and can be difficult to read for a human. For example, solvers for

nonlinear problems sometimes use nl file format [74] to input the problem, some solvers for

polynomial problems allow pip format [3], solvers for MILO and LO problems require lp [1]

and mps [2] format etc. To overcome this, there are several software packages which provide

an interface to create a dialogue between solvers and human readable models. These packages

allow the users to input the model in a much simpler way using a programming language and

then they create an appropriate input for the solver. Some modeling tools commonly used to

model optimization problems are AIMMS [36], AMPL [68, 69], GAMS [129], Pyomo [45],

JuMP [107] etc. Pyomo and JuMP are open-source. Pyomo is based in Python programming

language. A user can leverage many other features of Python (like reading from data files,

plotting, sorting, etc.) and call the optimization solver. Similarly, JuMP is based in Julia

programming language.

1.8 Minotaur framework for MIQCQO

Minotaur is a framework for development of solvers based on Relaxation based Branch-and-Bound

algorithm. It is an open source software under the COIN-OR project. Source code for Minotaur

can be accessed at https://github.com/coin-or/minotaur and its documentation

can be found here2. It has several software components and data structures which makes it

easier to develop algorithms that use tree search methods. For solving MIQCQO problems, we

2The code is written in C++ programming language. Most of the key algorithms and data structures use C++

classes. The modular code enables easy extensions and customization.

26

https://github.com/coin-or/minotaur
https://www.ieor.iitb.ac.in/files/faculty/amahajan/minotaur/nightly/origin/html/index.html

have developed mglob solver in Minotaur. Figure 1.7 shows an overview of the algorithmic

framework of mglob for solving MIQCQO problems using sB&B. We now describe some of

the Minotaur components.

Read Instance

Presolve

Create Handlers

Check Convexity

Transform

Presolve Transformed Problem

Heuristics

Branch-and-Bound

Forward to Convex MINLO solver
convex

n
on

con
vex

Figure 1.7: Algorithmic framework of mglob

Reader - Minotaur accepts problem instance in two formats, namely, nl, and mps. The nl files

are read through a freely available external library (ASL). The reader for mps files is written

within Minotaur. mps reader is limited to LO and MILO inputs only. Reader parses the input

problem file and creates an instance of Problem class in Minotaur.

Presolver - Presolver identifies reductions and simplifications for the problem such that it

reduces the overall computational effort to solve the problem. Many techniques are available in

Minotaur for presolving like bound tightening, checking for redundant constraints, scaling and

coefficient improvement, dual fixing etc. For sB&B algorithm in Minotaur, presolving is done

twice before processing the root node. Once right after we create the Problem instance and

once after we transform the problem by adding auxiliary variables. Presolving is also done at

every node of the B&B tree.

27

Handler - Nonlinear problems can have several constraint types having specific structure which

can be exploited individually. Minotaur offers a way to handle different constraints separately

by creating a Handler for the constraint type. Currently, there are several Handlers

in Minotaur like LinearHandler for handling linear constraints, IntVarHandler for

handling integer variables, QuadHandler for handling quadratic constraints etc. Each

Handler has a set of constraints and is responsible for creating a relaxation for its constraints,

presolving the problem based on reductions implied by its constraints, check feasibility of its

constraints, providing branching candidates for its constraints, and generating cuts based on its

constraints.

Transformer - A Transformer in Minotaur is used to reformulate the problem by adding

auxiliary variables and substituting nonlinear functions with those auxiliary variables. For every

instance, Minotaur first reformulates the problem such that every constraint in the transformed

problem can be handled by one of its Handlers. For example, given an MIQCQO instance

Minotaur will replace all bilinear or square terms in the problem with auxiliary variables and

adds additional nonlinear constraints that will be handled by QuadHandler.

Heuristics - Minotaur has a library of primal heuristics like feasibility pump, diving,

multi-start, etc. that are used to get good upper bounds at the root node. Currently, our sB&B

implementation uses only multi-start heuristic for problems with no integer variables.

Brancher - A Brancher is an implementation of a branching strategy that selects a

branching candidate given a set of branching candidates. Every Handler provides a

set of branching candidates and the Brancher then scores each candidate using some

algorithm and returns a candidate variable to branch on. There are several Branchers

in Minotaur, like, MaxVioBrancher, MaxFreqBrancher, StrongBrancher,

ReliabilityBrancher, etc.

There are many other components in Minotaur like, node processors which processes the

nodes, a tree manager for managing the B&B tree, several interfaces to third-party solvers that

solves the relaxations etc. A detailed overview of Minotaur and its components can be found in

[111].

28

1.9 Contributions and Outline of the Thesis

The main contribution of this thesis is the development of a general purpose solver mglob for

MIQCQO problems in Minotaur framework. To this end we have done many improvements in

existing code as well as made new developments. Thus one important outcome of this thesis is

that mglob is now able to solve MIQCQO problems more reliably and faster. To describe the

developments we have done in Minotaur we divide this thesis into four chapters.

Chapter 2 describes a presolver for MIQCQO problems in mglob. There are many

presolving techniques in the literature, several of which were already implemented in Minotaur.

We focus mainly on three techniques that we have implemented for MIQCQO specifically. We

make the following contributions in Chapter 2.

(i) We study the impact of using two different representations of quadratic functions in our

solver, namely, representation using computational graphs and dictionary of key format of

a sparse matrix representation. We test the effectiveness of these two representations on

function evaluation and gradient evaluation for quadratic functions. Our study shows that

using a sparse matrix representation as we have described leads to much faster evaluations

in most instances that we have tested.

(ii) We then describe a simple algorithm to decompose a quadratic function into different

parts such that each part has mutually exclusive set of variables. This allows us to check

the convexity of quadratic function much faster. This decomposition also allows us to

gather information regarding separability which can be further used to develop better

relaxations for the problem.

(iii) We also implement three different bound tightening techniques in mglob and study their

effectiveness on reducing the range of variables.

In Chapter 3, we develop a novel general purpose cut generating algorithm for

quadratically constrained optimization (QCO) problems. Cuts or cutting planes are additional

constraints that are derived to tighten the relaxation for a nonconvex problems. Tighter

relaxations provide better lower bounds for the problem. We analyze the simplex tableau of the

29

linear relaxation of a QCO and use McCormick estimators to generate cuts. Following are the

key contributions in Chapter 3

(i) We describe a novel cutting plane algorithm for quadratically constrained optimization

problems that is guaranteed to cut an infeasible solution of a linear relaxation for the

problem.

(ii) Our procedure is computationally cheap and does not require any matrix factorization

or decomposition, or solving cut generating LP etc. Thus we give a fast algorithm to

separate an infeasible LP point from the problem.

(iii) Our algorithm has several choices and we devise six different variants of our algorithm

on which we test the effectiveness of the cuts on benchmark instances.

(iv) We also describe a method to add additional variables to generate an RLT type relaxation

based on our algorithm. The relaxation we describe is equivalent to adding all possible

cuts from our algorithm.

In Chapter 4, we describe five branching strategies that we have implemented for spatial

branching of MIQCQO problems. We make the following contributions in Chapter 4.

(i) We describe a branching scheme analogous to the maximum infeasible branching for

MILO problems. We describe a distance measure that can be used to score the violation

of a point that is infeasible to nonconvex nonlinear constraints.

(ii) We describe an extension to strong branching called bt-strong branching which does

bound tightening before strong branching calls for every candidate.

(iii) We describe another branching scheme called bt-estimate branching where we do bound

tightening for every candidate and then use reduced costs to estimate the lower bound

improvement for each candidate.

(iv) We then combine these branching strategies to develop a reliability branching setup that

can be used for spatial branching for MIQCQO problems. We call this branching scheme

as bt-reliability branching.

30

In Chapter 5, we finally conclude this thesis. We benchmark the performance of mglob

against SCIP, Gurobi and also an older version of mglob to see the effects of the techniques

described. We also discuss some future research directions for development of mglob.

31

This page was intentionally left blank.

Chapter 2

Presolving Techniques

A general purpose solver for optimization problems usually begins by preprocessing the

input problem. This preprocessing step is commonly known as presolving. It constitutes a

wide range of techniques to transform the problem or collect important information about it.

Transformation of the problem may include identifying and removing redundant constraints,

substituting variables, tightening variable bounds, scaling, coefficient reduction, and more

advanced techniques like reduced cost fixing. Presolving also allows for collecting important

information regarding specific constraints or a group of constraints. It can help identify specific

structures (like knapsack constraints, network flow structure, etc.) in the problem for which

efficient solving techniques can be employed. For nonlinear problems, convexity detection and

information regarding variables participating in nonlinear constraints also help devise special

solution methods for specific problem types.

Achterberg and Wunderling [5] have done extensive computational analysis of various

presolving components. Bixby and Rothberg [37] show that if root node presolve is disabled

in CPLEX 8.0, then the performance of the solver degrades by a factor of 10.8, while if

node presolve is disabled, performance degrades by a factor of 1.3. A detailed survey about

presolving techniques for MILO problems can be found in [110]. Puranik and Sahinidis [128]

33

survey presolving techniques for NLO and MINLO problems.

This chapter describes three presolving techniques implemented in mglob for MIQCQO.

In Section 2.1, we describe how representation of a quadratic function efficiently helps reduce

function and gradient evaluation times while enabling easy access to the terms of the quadratic

function. Section 2.2 shows the importance of convexity detection and describes an algorithm

for fast convexity detection for a quadratic function. Section 2.3 describes several bound

tightening techniques implemented in mglob for MIQCQO. In Section 2.4, we finally describe

how all the presolving techniques described here are integrated with other techniques already

present in Minotaur to get a functional presolver for MIQCQO problems, along with some

concluding remarks. The presolving techniques implemented in mglob as part of this chapter

makes the solver robust by significantly reducing the number of failing instances. It also helps

in getting correct solutions for more instances than previously obtained. This creates a base

solver that is used to implement and test ideas presented in the subsequent chapters.

2.1 Representation of a Quadratic function

To solve an optimization problem efficiently, appropriate data structures must be used to

represent the problem such that fast and reliable computations are possible. Most algorithms

for solving a nonlinear problem, including the branch-and-bound algorithm, require fast

function, gradient, and Hessian evaluations of the nonlinear function. Typically, nonlinear

functions are stored as a computational graph, and we use automatic differentiation to evaluate

gradient and Hessian. Since quadratic functions are a special kind of nonlinear function, we

can also use sparse matrix representation to store quadratic functions separately.

In this section, we describe both representations and how function and gradient evaluation

are done for each. Since quadratic functions have constant Hessian and can be easily stored, we

do not compare the efficiency of computing Hessian with either representation.

34

2.1.1 Computational Graphs

A Computational Graph (CG) is used to store an instance of a nonlinear problem in solvers for

MINLO [144], nonlinear functions for automatic differentiation [82] in scientific applications,

and for interval analysis of nonlinear functions [132], etc. A CG is a directed acyclic graph

(DAG) where each node represents either an operator, a constant, or a variable of the problem.

Edges entering an operator node are the inputs of the operator, and edges exiting a node carry

the output value of the operation defined in the node. Consider the quadratic problem, (nvs03),

from MINLPLib [43].

min
x∈Z2

(x1−8)2 +(x2−2)2

s.t. −0.1x2
1 + x2 ≥ 0, (nvs03)

−0.33x1− x2 ≥−4.5,

100≤ x1,x2 ≤ 200.

The computational graph for (nvs03) is shown in Figure 2.1. The green source nodes

x1,x2 are the variables of the problem. The blue sink node represents the objective function

to be minimized. The yellow sink nodes are the constraint functions for which lower and

upper bounds are provided according to the constraints. For a non-commutative operation

like subtraction, the left and right nodes are defined appropriately to identify the order of

operations correctly. A computational graph can thus store a nonlinear function composed

of operators from a fixed set. They can not represent more general nonlinear functions like

integro-differential equations. We next discuss how function evaluation and gradient evaluation

are done using CG.

Function Evaluation

Given an x̂ and a CG for a nonlinear function f (.), function evaluation f (x̂) is done using

forward propagation of values from the variables in the graph. We propagate the values of

the variables starting from the source node till the sink node corresponding to the nonlinear

function. Each intermediate node computes its output from the values of the parent nodes.

Figure 2.2 shows the computation at each node while evaluating the objective function value of

35

x1 x2

−

8

−

2

̂2 ̂2

+

min

̂2

∗

−0.1

+

[0,∞)

∗

−0.33

−

[−4.5,∞)

Figure 2.1: Computational graph of (nvs03)

(nvs03) at x̂ =
(

6 3
)T

. The values evaluated at each node is shown below the corresponding

node and the function value, 5, is shown below the output node.

Gradient Evaluation:

Gradient evaluation is done using automatic differentiation techniques. We begin by

evaluating the value of each node at a given x̂. This step is the same as the function evaluation

described above. For clarity, we have named each node Ni in Figure 2.2. Each pass of the

CG evaluates the partial derivative with respect to a single variable using the chain rule of

derivatives. Given a variable, say x1, for which partial derivative needs to be computed, we

begin by initializing the partial derivatives with respect to each variable at the variable nodes.

The partial derivative with respect to the x1 node is initialized with 1 and 0 for all other variable

nodes. For all other nodes, the partial derivative with respect to x1 is computed using the partial

derivatives of the parent nodes and the chain rule for differentiation. Finally, we obtain the

partial derivative of the function with respect to x1 at the sink node. For illustration, the steps

taken to compute the partial derivative with respect to x1 for the objective function of (nvs03)

is tabulated in Table 2.1. This method is called the forward mode in automatic differentiation.

A somewhat less intuitive but more efficient way is to compute the partial derivatives in the

reverse mode [82]. Minotaur uses the reverse mode.

36

x1

6

N1

x2

3

N2

−

−2

N5

8

8

N3

−

1

N6

2

2

N4

̂2

4

N7

̂2

1

N8

+

5

N9

Figure 2.2: Objective function evaluation at x̂ = (6,3) for the CG of (nvs03)

Node Function value Partial derivative expression Derivative evaluation

N1 6 ∂N1
∂x1

1

N2 3 ∂N2
∂x1

0

N3 8 ∂N3
∂x1

0

N4 2 ∂N4
∂x1

0

N5 −2 ∂N5
∂x1

= ∂N5
∂N1

∂N1
∂x1

+ ∂N5
∂N3

∂N3
∂x1

1×1+(−1)×0 = 1

N6 1 ∂N6
∂x1

= ∂N6
∂N2

∂N2
∂x1

+ ∂N6
∂N4

∂N4
∂x1

1×0+(−1)×0 = 0

N7 4 ∂N7
∂x1

= ∂N7
∂N5

∂N5
∂x1

2N5×1 =−4

N8 1 ∂N8
∂x1

= ∂N8
∂N6

∂N6
∂x1

2N6×0 = 0

N9 5 ∂N9
∂x1

= ∂N9
∂N7

∂N7
∂x1

+ ∂N9
∂N8

∂N8
∂x1

1× (−4)+(−1)×0 =−4

Table 2.1: Partial derivative evaluation of the objective function of (nvs03) with respect to x1

37

2.1.2 Dictionary of keys

Although CGs are powerful objects for representing a nonlinear function in general, quadratic

functions have a particular structure in the sense that every term has a maximum degree of two

and hence can be stored more efficiently using other methods. A quadratic function can be

represented mathematically as xT Qx+aT x, given Q and a. Thus, one may use a sparse matrix

for Q and a sparse vector for a to store a quadratic function.

There are various ways of storing sparse matrices. For example, the Compressed Sparse

Row format stores three arrays, one each for nonzero entries, column indices, and row starts. It

is used when row operations are done on the matrix frequently. We use the dictionary of keys

format for storing the matrix Q and the vector a. We store the Q matrix as a dictionary where

the key is the pair of variables, and the value is the coefficient of the term. The vector a is

stored as a dictionary whose key is the variable, and the value is the coefficient of that variable.

Since our primary use for storing the quadratic function is for reformulation and its relaxation

rather than doing advanced matrix operations, a dictionary of keys format works very well for

our purpose. It also allows us to easily access the pairs of variables for which a product exists

and easily store all the nonlinearly participating variables. These additional features become

helpful while doing presolving operations like Optimality Based Bound Tightening, described

in Section 2.3.5. For illustration, we again consider the quadratic problem (nvs03) and represent

it in a dictionary of keys format.

68+ min
x∈Z2

{< x1,x1 >: 1,< x2,x2 >: 1},{x1 :−16,x2 :−4}

s.t. {< x1,x1 >:−0.1},{x2 : 1} ≥ 0,

{x1 :−0.33,x2 :−1} ≥ −4.5,

100≤ x1,x2 ≤ 200.

Here < ·, · > represents a pair of variables and {· : ·, · : ·, . . .} represents a dictionary of (key :

value) pair. For notational convenience, we will denote the representation of the Q matrix as

the qf part of the quadratic function and the representation of the a vector as the lf part of the

quadratic function.

38

Function Evaluation

Function evaluation for this format of representation is pretty straightforward. We start by

initializing s = 0. Given an x̂, for each term, qi jxix j, in the qf we increment s by qi jx̂ix̂ j. Then,

for each term, lixi, in lf, we increment s by lix̂i. s is then returned as the value of the quadratic

function at x̂.

Gradient Evaluation

For gradient evaluation, we start by initializing g = 0 ∈ Rn. Given an x̂, for each term,

qi jxix j, in the qf we increment gi by qi jx̂ j and g j by qi jx̂i. Then, for each term, lixi, in lf, we

increment gi by li. g is then returned as the gradient of the quadratic function.

2.1.3 Computational Results

In this section, we compare our implementation of CG and qf in Minotaur with respect to

function and gradient evaluation. We used the MINLPLib [43] dataset and selected all instances

with quadratic objective or constraints. There are 830 such instances. For each instance, we

sample 1000 points uniformly from the box [x,x]. If xi is not given for a variable, then we

choose xi = −1000 for that variable. Similarly, if xi is not given, then we choose xi = 1000.

For all 1000 points sampled, we evaluate the function and gradient value using CG and qf for

all quadratic functions in the problem. Finally, we report the total time taken for function and

gradient evaluation for CG and qf. We keep a time limit of 120 seconds for this evaluation

to complete. We removed those instances for which the total time for function and gradient

evaluation for the 1000 sampled points by CG and qf is more than 120 seconds. This leaves us

with 614 instances for which we present the results.

Table 2.2 shows the average time taken for function and gradient evaluation by CG and

qf for the 614 instances. We see that qf is more than six times better in function evaluation

than CG and more than eight times better in gradient evaluation. There are only 14 instances

for which the function evaluation time for CG is better than that of qf, and we observe that in

all those instances, either the quadratic functions present are very dense or there is a square of

a linear function or a product of two linear functions. In the first case, representing a quadratic

function using a sparse matrix has no additional benefits. Additionally, for such cases, CG

39

CG qf

Average time in function evaluation (ms) 1019.15 161.50

Average time in gradient evaluation (ms) 1644.83 192.89

Table 2.2: Average time for function and gradient evaluation by CG and qf

performs marginally better because, for a square term, CG computes the square of the given

input, but qf will multiply the input with itself, which is slower. In the second case, the number

of operations required for CG are just k−1 additions and 1 square operation, while for qf, the

number of operations are O(k2), where k is the number of linear terms. Thus, CG can perform

better in this case. A similar analysis for the third case shows that CG will do O(k1 + k2)

operations while qf will do O(k1k2) operations, where k1,k2 are the number of linear terms in

the product. For gradient evaluation, there are only four instances where CG performs better

than qf, three of which are small instances with only 4 or 5 variables and only square terms

present in the problem, and one instance has a product of linear functions as input. Again, in

these situations, CG performs better than qf.

2.2 Convexity Detection

Convexity plays an important role in solving optimization problems, as discussed in Section 1.1.

For nonconvex problems, identifying convex constraints can lead to tighter relaxations, and we

can also generate stronger separation algorithms. In this section, we describe a decomposition

based algorithm that exploits the graph structure of a quadratic function to detect convexity.

2.2.1 qf as a graph

A qf can be represented as a graph where nodes represent the variables in the qf and edges

are connected if the product of the two variables in the qf exists. A square term in the qf is

40

x1 x2

x3 x4

x5

Figure 2.3: Representing qf (2.1) as a graph

represented as a self loop on the node of the variable. For example, consider the qf

x1x2−3x1x3 +2x2
2− x4x5 + x2

5 (2.1)

This can be represented as a graph as shown in Figure 2.3. The coefficients of the term can also

be represented by adding edge weights, but we have avoided it in this example for simplicity.

2.2.2 Convexity detection using subgraphs of the qf

A function is convex if its Hessian is positive semidefinite over all points in its domain, as seen

in Property 1.6. Since quadratic functions have constant Hessian, we can check the convexity of

a quadratic function by checking the positive definiteness of its Hessian matrix. Computational

complexity of checking positive semidefiniteness of a matrix is O(n3) either using Cholesky

decomposition or eigenvalue decomposition. Thus, checking positive semidefiniteness of a set

of smaller matrices is desirable rather than checking for a large matrix. This section describes

a simple algorithm to decompose a qf into smaller parts to detect convexity quickly. This

algorithm also allows us to separate variables of a qf to exploit separability to obtain stronger

relaxation or better reformulations.

Our objective is to decompose the qf so that each separate part has a mutually exclusive

set of variables from other parts. This decomposition is the same as finding disconnected

subgraphs of the qf. We say that a subgraph S of graph G is a disconnected subgraph if, for a

41

Algorithm 2.1 An algorithm to find subgraphs of a qf
Input: A quadratic function qf

Output: A set S of quadratic functions which are subgraphs of qf

1: procedure FINDSUBGRAPHS

2: S← φ

3: I← 0 ∈ Rn

4: k← 0

5: for each term qi jxix j in qf do

6: if Ii = 0 & I j = 0 then

7: k← k+1

8: qfk← qi jxix j

9: Ii← k

10: I j← k

11: S← S∪{qfk}
12: else if Ii = 0 then

13: qfI j ← qfI j +qi jxix j

14: else if I j = 0 then

15: qfIi ← qfIi +qi jxix j

16: else

17: if Ii = I j then

18: qfIi ← qfIi +qi jxix j

19: else

20: k← k+1

21: qfk← qfIi +qfI j +qi jxix j

22: for t ∈ {1, . . . ,n} do

23: if It = i or Ii = j then

24: It ← k

25: S← S∪{qfk}
26: S← S\{qfIi,qfI j}

27: return S

42

node v1 in S and a node v2 not in S there does not exist an edge connecting v1,v2 and additionally

any two nodes in S are connected via a path. We use Algorithm 2.1 to find subgraphs of a qf.

Given a qf, Algorithm 2.1 returns a set S of qfk, for k = 1, . . . , |S| such that qf = ∑
|S|
k=1qfk

and every variable in qf appears in exactly one qfk.

Algorithm 2.1 describes an approach to find block diagonal structure of a matrix when

it is stored as a dictionary of keys format (as a qf). Most implementations of finding block

diagonal decomposition use the sparse matrix format. We use the qf representation for many

purposes other than convexity detection. For example, it allows us to easily identify pairs of

variables that has a product among them, create relaxation for such products easily, identify and

store branching variables faster etc. Converting qf to sparse matrix and back to qf has extra

computational overheads which is avoided by implementing Algorithm 2.1. Thus, we believe

that our implementation will perform well within the context of the solver.

2.3 Bound Tightening

Stronger relaxations can be obtained if the variable bounds are tightened. For nonconvex

problems where relaxations are created based on the bounds of the variables (for example,

McCormick relaxation described in Section 1.5.1), tightening variable bounds allows us to

create much tighter relaxation, and there is a nontrivial reduction in the size of the relaxation.

For instance, consider the constraint y = x2,x∈ [x,x], region showed in gray in Figure 2.4 shows

the McCormick relaxation of the constraint. On the other hand, if we have tighter bounds for

x ∈ [x′,x′] then the feasible region of the relaxation gets tightened as shaded in blue in Figure

2.4. This shows that bound tightening reduces the search space beyond the trivial reduction.

Tighter relaxations provide better lower bounds, reducing the number of nodes visited in the

B&B tree.

Many bound tightening techniques have been studied in the literature and practically

implemented in state-of-the-art solvers for global optimization. Two important bound

tightening techniques studied extensively in the literature are Feasibility Based Bound

Tightening (FBBT) and Optimality Based Bound Tightening (OBBT). FBBT uses simple

interval arithmetic to forward propagate variable bounds to the constraints and then backward

43

x x′ x′ x

Figure 2.4: Relaxation of y = x2,x ∈ [x,x] shaded in gray and relaxation of y = x2,x ∈ [x′,x′]

shaded in blue

propagate the constraint bounds to the variables using inverse interval arithmetic operations.

On the other hand, OBBT uses a tractable relaxation of the original problem and then solves

several optimization problems by maximizing and minimizing a variable over the feasible

region of the relaxation.

In this section, we present three techniques for bound tightening implemented in mglob.

All the techniques described in this section are taken from [60, 120, 128, 132]. We then present

computational results to show the effectiveness of these techniques on benchmark instances.

2.3.1 Literature Review

FBBT is performed on a DAG of the constraints and uses interval arithmetic techniques to

obtain bounds through the graph [120, 132]. Puranik and Sahinidis [128] survey several domain

reduction techniques and describe several extensions to FBBT. Belotti et al. [24] describe a

large Linear Program (LP) that converges to the fixed point of FBBT operations. They show

that instead of solving multiple passes of FBBT, one can solve the LP and get tighter bounds for

all the variables. Carrizosa et al. [47] describe how translating variables can improve bounds in

univariate and multivariate polynomials. Domes and Neumaier [61] give rigorous methods for

44

bound tightening of Constraint Satisfaction Problems (CSP) using linear relaxations. They also

give an algorithm for constraint propagation for quadratic constraint using univariate quadratic

expression and removing bilinear terms from the constraints [60].

OBBT, although computationally expensive, is highly effective on some problems like

optimal power flow problem [51]. Bynum et al. [46] describe a method to solve a series of

small OBBT problems. They partition a bipartite graph of variables and constraints to obtain

smaller OBBT problems. Gleixner et al. [77] describe three techniques to make OBBT more

efficient, namely, aggressively filtering those OBBT problems which necessarily does not lead

to tightening, ordering variables for OBBT problems so that less number of simplex iterations

are done in each solve, and obtaining some additional redundant cuts which can be used to

obtain better bounds.

2.3.2 Feasibility Based Bound Tightening

Feasibility Based Bound Tightening (FBBT) is a simple method to infer bounds for constraints

and variables. Each iteration of FBBT has two steps. Forward propagation uses variable

bounds and employs interval arithmetic operations to infer bounds on the constraints. Backward

propagation uses bounds on the constraints and employs reverse interval arithmetic operations

to infer tighter bounds on the variables. For an MIQCQO, the following are some interval

arithmetic operations frequently used in FBBT. For any x ∈ [x,x] where x ∈ R∪ {−∞},x ∈
R∪{∞}, we denote its corresponding interval variable as x = [x,x].

• Sum of two intervals - x+y = [x+ y,x+ y]

• Product of a scalar and an interval - αx =

[αx,αx], α > 0

[αx,αx], α < 0

• Product of two intervals - x×y = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)]

45

• Reciprocal of an interval - 1/x =

[1/x,1/x], 0 /∈ [x,x]

[−∞,1/x], 0 = x

[1/x,∞], 0 = x

[−∞,∞], 0 ∈ (x,x)

• Quotient of two intervals - x
y = x×1/y

• Square of an interval - x2 =

[0,max(x2,x2)], 0 ∈ [x,x]

[x2,x2], x < 0

[x2,x2], x > 0

• Square root of an interval -
√

x =

[−
√

x,
√

x] x≥ 0

φ x < 0

Forward Propagation

We propagate variable bounds to obtain lower and upper bounds for each constraint of the

problem during forward propagation. Given a quadratic constraint of the form

l ≤
n

∑
i=1

n

∑
j=1

Qi jxix j +
n

∑
i=1

cixi ≤ u

We define Q(x) = ∑
n
i=1 ∑

n
j=1 Qi jxix j +∑

n
i=1 cixi and the interval Q(x) := [Q∗l ,Q

∗
u] where Q∗l ,Q

∗
u

is the optimal solution to the problem min{Qu−Ql|Q(x) ∈ [Ql,Qu],x ∈ x} and x is the box

defined by the corners (x1,x2, . . . ,xn)
T ,(x1,x2, . . . ,xn)

T . Q(x) is the best possible bound for the

constraint with the given bounds on the variables. In general, we get an interval which is larger

than Q(x).

We begin by substituting each variable in Q(x) by its interval counterpart. Using interval

arithmetic we then obtain an interval I(x)⊇Q(x). Then, updated bounds on the constraint are

I(x)∩ [l,u]. Note, if [l,u]⊇ I(x), then the constraint is redundant and can be removed from the

problem.

Example 2.1. Consider the quadratic constraint in R2

2x2
1− x2

2 +5x1−4x2 ≤ 1,x1 ∈ [0,4],x2 ∈ [−2,2].

46

Here l =−∞,u = 1,Q(x) = 2x2
1− x2

2 +5x1−4x2 and if we minimize and maximize Q over the

given bounds of the variables then we get Q(x) = [−12,56]. Now if we replace every variable

in Q(x) with its interval variable and apply interval arithmetic operations we get

I(x) = 2x2
1−x2

2 +5x1−4x2

= 2× [0,4]2 +(−1)× [−2,2]2 +5× [0,4]+ (−4)× [−2,2]

= 2× [0,16]+ (−1)× [0,4]+ [0,20]+ [−8,8]

= [0,32]+ [−4,0]+ [0,20]+ [−8,8]

= [−12,60]

Thus the new bounds on the constraint are [−12,1].

For a quadratic constraint, it is clear that if all the bounds on variables are finite, then finite

bounds on the constraint can be computed.

Backward Propagation

Once we have forward propagated variable bounds on all constraints, we use constraint

bounds to infer new bounds on the variables. For a given interval I(x) on the quadratic function

Q(x) we define x* as the smallest box such that if x ∈ x,Q(x) ∈ I(x) then x ∈ x*. The following

inverse interval arithmetic operations give us new bounds on the variables.

• Sum of p terms - if z = ∑
p
k=1 tk then ti = z−∑

p
k=1
k ̸=i

tk

• Linear term - if z = at,a ∈ R then t = (1/a)× z

• Quadratic term - if z = t2 then t =
√

z

• Bilinear term - if z = t1t2 then t1 =
z
t2

Example 2.2. Let us again consider the constraint illustrated in Example 2.1.

2x2
1− x2

2 +5x1−4x2 ≤ 1,x1 ∈ [0,4],x2 ∈ [−2,2]

Using forward propogation we have derived I(x) = [−12,1] and we have calculated the bounds

for each term. We note that x* = [0,1.5894]× [−0.2679,2]

47

For each term we find

2×x2
1 = I(x)− (x2

2−5x1 +4x2)

= [−40,13]

x1 = [−
√

6,
√

6]

−x2
2 = I(x)− (−2x2

1−5x1 +4x2)

= [−72,9]

x2 = [−
√

72,
√

72]

5×x1 = I(x)− (−2x2
1 +x2

1 +4x2)

= [−52,13]

x1 = [−10.4,2.6]

−4×x2 = I(x)− (−2x2
1 +x2

2−5x1)

= [−64,5]

x2 = [−1.25,16]

Thus x1 = [−
√

6,
√

6]∩ [−10.4,2.6]∩ [0,4] = [0,2.4495] and x2 = [−
√

72,
√

72]∩ [−1.25,16]∩
[−2,2] = [−1.25,2].

2.3.3 FBBT for a univariate quadratic expression

In the previous section, we used the most straightforward bound propagation technique to

identify better bounds on variables. Although inexpensive, it computes very weak bounds on

several instances. In this section, we describe a computationally inexpensive method to get

better bounds for some cases of quadratic constraints. We have implemented these techniques

in mglob, but the ideas presented in this section are directly taken from [60].

Let us consider a univariate quadratic expression q(x) = ax2 + bx. We know that q(x) is

a parabola with a minimum or maximum depending on the sign of a. We can use this to get

better bounds on the expression. Once we know q(x) ∈ [l,u], we can use quadratic formula to

get bounds on the variable during backward propagation. Next, we describe the forward and

48

backward propagation for univariate quadratic expressions.

Forward Propagation

Consider q(x) = ax2 +bx,x ∈ [x,x] then we want to l,u such that q(x) ∈ [l,u]. We assume

both a,b ̸= 0 because we a = 0 then we have a linear term and if b = 0 then we can do forward

propagation as described in Section 2.3.2. Now, if a > 0 we know that q(x) is a convex parabola

and has a minimum at x∗ = − b
2a . Thus if x∗ ∈ [x,x], we set l = q(x∗) = − b2

2a ,u = max{ax2 +

b,ax2+b}. If x∗< x, we set l = ax2+b,u= ax2+b and if x∗> x, we set l = ax2+b,u= ax2+b.

Similarly, if a < 0 then q(x) is concave and we can find the values of l,u based on the region in

which q(x) attains its maximum.

Example 2.3. Let us again consider the constraint illustrated in example 2.1.

2x2
1− x2

2 +5x1−4x2 ≤ 1,x1 ∈ [0,4],x2 ∈ [−2,2]

We define q1(x) = 2x2
1 + 5x1,q2(x) = −x2

2− 4x2,Q(x) = q1(x)+ q2(x). q1(x) is convex with

minimum at x∗ = −5
4 < 0. Therefore, we get q1(x) ∈ [0,52]. Also, q2(x) is concave with

maximum at x∗ = −2 ∈ [−2,2]. Therefore, we get q2(x) ∈ [−12,4]. Thus, I(x) = [−12,56].

And the bounds on the constraints are [−12,1].

Backward Propagation

For backward propagation of a univariate quadratic expression, we use the quadratic

formula to get the bounds on the variables. Consider q(x) = ax2+bx,x ∈ x,q(x)∈ [l,u] then we

want to find x′ such that x∈ x′. Note, q(x)= ax2+bx∈ [l,u] =⇒ ax2+bx−l≥ 0,ax2+bx−u≤
0. Now, if a > 0 then using ax2 +bx− l ≥ 0 we get x ∈

[
−∞, −b−

√
b2+4al

2a

]
∪
[
−b+

√
b2+4al

2a

]
and

using ax2 +bx−u≤ 0 we get x ∈
[
−b−

√
b2+4au

2a , −b+
√

b2+4au
2a

]
. Finally,

x′= x∩
([
−∞,
−b−

√
b2 +4al

2a

]
∪
[
−b+

√
b2 +4al

2a

])
∩
[
−b−

√
b2 +4au

2a
,
−b+

√
b2 +4au

2a

]
.

Similarly we can find updated bounds on x when a < 0.

Example 2.4. In Example 2.3 we derived bounds for Q(x) using forward propagation of

univariate quadratic expressions q1(x),q2(x) as I(x) = [−12,1]. We also derived bounds

49

on q1(x) ∈ [0,52],q2(x) ∈ [−12,4]. Now backward propagation of I(x) to q1(x),q2(x) we

see that q1(x) ∈ ([−12,1]− [−12,4]) ∩ [0,52] = [0,13]. Now using 2x2
1 + 5x1 ≥ 0 we get

x1 ∈ [−∞,−2.5]∪ [0,∞] and using 2x2
1 +5x1−13≤ 0 we get x1 ∈ [−4.0894,1.5894]. Thus, we

get x ∈ [0,1.5894]. Similarly computing the bounds using q2(x) we get x2 ∈ [−0.2679,2].

2.3.4 Adding Default Bounds

After employing the FBBT operations described in the previous sections it may happen that

we still have variables with infinite bounds. Jeroslow [94] showed that there cannot be any

algorithm for solving quadratic problems with unbounded integer variables. Many relaxation

techniques for MIQCQO problems depend on having finite bounds for the variables, see Section

1.5.

Thus after employing the FBBT if we do not have finite bounds on some variables then we

assume default bounds for those variables. For both lower and upper bounds, we first compute

the largest magnitude of that bound among all the variables that has a finite value for that bound.

Let that magnitude be m then we set the default bound for all other variables to be±100m where

the sign is + if the we need default upper bound and it is − for default lower bound. It may

happen that m is 0 or all variables do not have finite bounds still. In that case we set the default

bound value to be ±1000 depending on the bound type.

2.3.5 Optimality Based Bound Tightening

In the previous sections we have looked at methods which depend on a single constraint of the

original problem and derives bound based on the feasibility of the constraint. In this section we

look at a method where we first obtain a valid tractable relaxation and compute bounds based on

the feasibility of the entire relaxation. We solve a series of linear optimization problems whose

objective function is minimizing or maximizing certain variable and the feasible region is same

as that of the linear relaxation of (Q) along with additional constraint that bounds the objective

function based on the relaxation solution obtained. This method is known as Optimality Based

Bound Tightening (OBBT).

50

OBBT requires a relaxation for (Q). We use McCormick relaxation (1.11) described in

Section 1.5.1. Let R be the feasible region of the McCormick relaxation and let ẑ be the optimal

objective value of the relaxation, then OBBT solves a sequence of LO problems as follows.

min/max xi

s.t. (x,y) ∈ R

∑
(i, j)∈E0

q0
i jyi j + cT

0 x≥ ẑ

This gives us lower and upper bounds for each variable by solving 2n LPs. OBBT is

computationally very expensive and we wish to eliminate solving those LPs that are necessarily

not going to improve the bounds of a variable. To do so we use a filtering approach for solving

OBBT problems.

We begin by creating a set of objective functions

O = {minxi | xi ∈ NL}∪{maxxi | xi ∈ NL}

where NL is the set of variables that appear in any product term or square term in (Q). Let x̃

be the optimal solution of the linear relaxation of the problem. For all xi ∈ NL, if x̃i ≤ xi + ε

then remove minxi from O and if x̃i ≥ xi− ε then remove maxxi from O. We now choose

an objective function from O and remove it from O. We solve the OBBT problem with the

chosen objective function. We again filter O as described above using the optimal solution of

the OBBT problem. We repeat this process until O is empty. Since optimal solution for an LP

contains many variables at one of their bounds, this strategy reduces the number of LP solves

dramatically.

2.3.6 Computational Results

We have implemented the three bound tightening techniques described in the previous sections

in mglob. Given an instance we do FBBT as described in Section 2.3.2 on all nodes of the

sB&B tree. We call this technique as simpleBT in this section. We then do FBBT for univariate

51

quadratic expression as described in Section 2.3.3 on all nodes of the sB&B tree and call this

technique as univarBT in this section. If any variable appearing in a quadratic term still does not

have finite bounds then we add default bounds as described in Section 2.3.4. The problem is then

transformed with the addition of auxiliary variables and we create the McCormick relaxation.

We then solve this relaxation to get a lower bound on the problem. We then solve OBBT

problems as described in Section 2.3.5 at the root node only. We will call this technique as

OBBT in this section.

We selected all instances with either nonconvex quadratic objective or nonconvex

quadratic constraints from the MINLPLib dataset [43]. There are 685 such instances. We

removed 6 instances which got solved even before OBBT was done. We also removed instances

which takes more than 900 seconds for root node processing. Instances that are removed from

the test set are those which have number of variables, or number of constraints, or the number

of quadratic terms are very high. This increases the time taken in processing the root node.

Root node processing includes presolving, creating a root relaxation and OBBT iterations. We

finally have 499 instances for which computational results have been presented here. We run

mglob on three different settings to compare the effectiveness of the techniques presented

previously. In the first setting we do only simpleBT and add default bounds if necessary. This

is our baseline configuration with which we compare other two settings. In the second setting

we do simpleBT, univarBT, and add default bounds if necessary. And the third setting we do

all three techniques and add default bounds whenever necessary.

Table 2.3 summarizes the results obtained. We measure the range of variables before

processing the root node. Range of a variable is the difference between its lower and upper

bounds. We then take the sum of the range of all variables for every instance. We have reported

the total range of variables for all instances here. We see that doing univarBT after simpleBT

there is a marginal 0.09% improvement in the range of variables. We also note that doing

univarBT affects only 4 instances in our test set all other instances the range of variables remain

unchanged. While doing OBBT we get more than 8% improvement in the range of variables.

236 instances had bounds improvements reported after OBBT was done. We see that similar

results are obtained if we compare the number of instances solved within time limit or the

shifted geometric mean of time for solved instances.

The bound tightening techniques described above improve the solver’s performance,

52

simpleBT simpleBT +

univarBT

simpleBT +

univarBT +

OBBT

Total range of

variables at root

node

2.7319E+14 2.7295E+14 2.4901E+14

Percent change in

range of variables

0 0.09 8.77

Number of

instances solved

242 243 246

Shifted geometric

mean of time for

instances solved

by all techniques

2.9937 2.9911 2.9062

Table 2.3: Summary of results comparing bound tightening techniques

particularly OBBT, which can significantly reduce solve time. We have integrated these bound

tightening techniques in mglob solver along with other presolving techniques.

2.4 Conclusion

In this chapter, we have described three presolving techniques that we implemented in mglob

for MIQCQO problems. We conclude this chapter by presenting how our techniques have been

integrated into the solver. Given an MIQCQO instance mglob first presolves the problem to

extract meaningful information and deduce reduction such that it becomes easier to solve the

problem. The first step is to check if the instance is a maximization problem and convert it to

a minimization problem by multiplying the objective function with −1. We iteratively do the

following presolving operations until there is no significant change.

1. Tighten variable bounds using linear constraints.

53

2. Check for duplicate or redundant constraints.

3. For constraints of the type ax1 +bx2 = 0 we substitute x2 =−a
bx1 in the problem.

4. Dual fixing of variables to one of its bounds.

5. simpleBT for quadratic constraints.

6. univarBT for quadratic constraints.

We then check for the convexity of each constraint, and if all constraints are convex and

the objective function is also convex, we forward the problem to qg, a convex MINLO solver in

Minotaur. We then transform the problem by adding auxiliary variables of the type yi j = xix j.

For problems with no integer variables, we use a multi-start heuristic to get an upper bound for

the problem. Our multi-start heuristic randomly selects initial points, and then we use a local

NLP solver to get a local optimal solution. We then presolve the problem again to propagate

variable bounds of original x variables to auxiliary y variables. We then create a McCormick

relaxation and solve it. Finally, we do OBBT as described in Section 2.3.5 and update the

bounds on the variables accordingly.

Several presolving techniques can be implemented. We have seen in Algorithm 2.1 that

we derive subgraphs for a quadratic constraint, but we use this only to check convexity. One

can use these separable quadratic functions and develop better relaxations and reformulations.

For example, if some parts of the constraints are convex, then we can use tangent hyperplanes

for those parts to derive better cutting planes or develop specialized relaxations. We can also

study the impact of several other bound tightening techniques described in the literature.

54

Chapter 3

Cutting Planes for Quadratically

Constrained Optimization Problems

We consider a Quadratically Constrained Optimization (QCO) problem with a single

quadratic constraint of the following form

min cT x

s.t. xT Qx+aT x≤ d, (QCP1)

Gx = h,

x≤ x≤ x,

where c,a ∈ Rn,d ∈ R,G ∈ Rk×n,h ∈ Rk, and the symmetric matrix Q ∈ Rn×n are given as

inputs. The cutting plane procedure proposed here considers one quadratic constraint at a time

for notational convenience. It works for any number of quadratic constraints as described in the

computational experiments in Section 3.6.

Given a QCO of the form (QCP1) above, Branch-and-cut algorithms require a suitable

relaxation. A relaxation should be easy to solve and at the same time be a close approximation

55

to the original problem. A linear relaxation is often used as it is easy to solve repeatedly in

a branch-and-cut framework. McCormick [112] inequalities are commonly used to obtain a

linear relaxation of (QCP1). Simplex method is then used to solve this linear relaxation because

of two practical reasons. First, simplex method has superior warm starting ability, that is, if

a basic solution is known then it is relatively simple to restart the algorithm after the problem

is modified, and second, cutting planes can sometimes be derived from the simplex tableau,

for example, Gomory Mixed Integer cuts [80], Gomory fractional cuts [79]. The procedure

proposed here is similar in vein to these two methods. A gist of the method is first provided

along with an example, and a detailed description is provided subsequently.

Suppose we have solved a linear relaxation (LP) of (QCP1) using the simplex method and

obtained a solution, say x∗, not feasible to the quadratic constraint. The main idea proposed

here is to first substitute some or all basic variables in the quadratic constraint using the

corresponding row of the simplex tableau. A new quadratic inequality valid for (QCP1) is thus

obtained. The substitution ensures that each term in the new quadratic function has at least one

nonbasic variable. Each term is then relaxed using McCormick estimators. Since one of the

variables in each term is at its bounds, the McCormick estimators are ‘tight’ at x∗ for the term.

The linear inequality obtained as the sum of McCormick estimators will cut off x∗. Here is a

toy example to illustrate the procedure.

Example 3.1. Suppose we get the following two rows in the optimal simplex tableau while

solving a linear relaxation of a given QCO.

x1 +2x3−3x4 +2x5 = 0.3, (3.1)

x2 + x6 = 0.5,

xi ∈ [0,1] i = 1, . . . ,6.

Here x3,x4,x5,x6 are nonbasic variables currently at their lower bounds. A basic feasible

solution for the relaxation is x∗ = (0.3,0.5,0,0,0,0). Further suppose that the QCO has a

quadratic constraint x1x2 ≤ x3 that is not satisfied by x∗. Substitute x1 in the quadratic constraint

using (3.1) to obtain a new quadratic constraint

0.3x2−2x2x3 +3x2x4−2x2x5 ≤ x3 (3.2)

56

that is valid for the given QCO. We can use term-by-term McCormick underestimators to

obtain a relaxation of this new quadratic constraint. That is, we use the inequalities −2x3 ≤
−2x2x3,0≤ 3x2x4, and −2x5 ≤−2x2x5 to obtain

0.3x2−3x3−2x5 ≤ 0.

This inequality is valid for the given QCO, and it cuts off x∗.

The rest of the chapter is outlined as follows. In Section 3.1 we describe the McCormick

estimators and their key properties used in the procedure. In Section 3.2 we review existing

literature. We then describe our procedure in detail in Section 3.3. We show how our procedure

is analogous to Gomory’s fractional cuts in Section 3.4. We next show some connections of our

procedure with Reformulation Linearization Technique (RLT) in Section 3.5. Finally, in Section

3.6 we discuss some computational results to show the efficiency of the cuts we generate, and

we conclude in Section 3.7.

3.1 Properties of McCormick Estimators

Property 3.2. Under- and over-estimators of a bilinear function: For a bilinear function f :

Rn→R given by f (x)= xix j for some i, j∈{1, . . . ,n}, over a given box B= {x∈Rn | x≤ x≤ x}
the following inequalities give a pair of underestimators and a pair of overestimators for f over

B

x jxi + xix j− xix j

x jxi + xix j− xix j

≤ xix j ≤

x jxi + xix j− xix j

x jxi + xix j− xix j

(3.3)

These inequalities are the well known McCormick [112] inequalities for f .

Property 3.3. McCormick inequalities are tight at bounds: It is well known that when either

xi or x j is at its bounds (lower or upper), the under- and over-estimators of f are both tight i.e.

at least one under- and one over-estimator evaluate to function value at that point. The tight

under- and over-estimators for four different cases (arising from the condition that one of the

57

Edge Underestimator Overestimator

x1 = x1 x2x1 + x1x2− x1x2 x2x1 + x1x2− x1x2

x2 = x2 x2x1 + x1x2− x1x2 x2x1 + x1x2− x1x2

x1 = x1 x2x1 + x1x2− x1x2 x2x1 + x1x2− x1x2

x2 = x2 x2x1 + x1x2− x1x2 x2x1 + x1x2− x1x2

Table 3.1: Under- and over-estimators that are tight at the edges of the box B = [x1,x1]× [x2,x2]

for the function f (x) = x1x2

two variables is at one of its bounds) are given in Table 3.1. At points when neither variable is

at its bounds, there is a gap between the estimators and the function value.

Property 3.4. Under- and over-estimators of a quadratic function: Given a general quadratic

function f (x) = ∑
n
i=1 ∑

n
j=1 qi jxix j, where qi j ∈R for all i, j ∈ {1, . . . ,n}, a linear underestimator

or overestimator of f over a given box B := [x,x] can be obtained using the above McCormick

estimators for each term, depending on the sign of qi j. For example, one underestimator of f is

n

∑
i=1

n

∑
j=1

qi j>0

qi j(x jxi + xix j− xix j)+
n

∑
i=1

n

∑
j=1

qi j<0

qi j(x jxi + xix j− xix j). (3.4)

Note that many underestimators can be obtained by choosing one of the two estimators possible

for each term.

Property 3.5. Tight under- and over-estimators of a quadratic function: Consider a quadratic

function f over a box B as described in Property P3 and an x∗ ∈Rn such that for every pair (i, j)

with qi j ̸= 0 at least one of xi,x j is at one of its bounds. We can find an under- and over-estimator

for f that is tight at x∗ by selecting an appropriate estimator depending on the sign of qi j (using

Table 3.1) for each term in f .

For example, consider the quadratic function f (x) = x2
1− 2x1x2 + x2x3 over the box B =

[0,1]3 and let x∗ = (0,0.5,1). Clearly, for every term in f at least one of the variables is at its

bounds at x∗. From Table 3.1, we can underestimate x2
1 with 0,−2x1x2 with −2x1, and x2x3

with x2 + x3− 1 to obtain a tight underestimator −2x1 + x2 + x3− 1 of f . Similarly, a tight

overestimator for f at x∗ is x1 + x2.

58

3.2 Literature review

Most state-of-the-art global optimisation solvers for nonconvex problems use Branch-and-Bound

algorithms augmented by cutting planes, primal heuristics, presolving, infeasibility analysis

etc. [28, 25, 117, 138]. Cutting planes for QCO have also been developed using several

approaches both for general purpose QCO and for certain special structures that are commonly

seen in applications. Some of these are described below.

Sherali and Alameddine [134] described the Reformulation Linearization Technique

(RLT) for bilinear problems. The constraint xT Qx+aT x ≤ d in (QCP1) is first replaced by the

linear constraint ⟨Q,X⟩+aT x≤ d. Then, multiplying any two linear constraints, one gets a new

quadratic constraint valid for (QCP1). Substituting Xi j = xix j in the new quadratic constraint

gives us the RLT constraint. When only bound constraints are multiplied, this approach reduces

to McCormick [112] relaxation.

In the presence of linear equality constraints Gx = h in the problem, there are many RLT

constraints possible, some of which turn out to be unnecessary. For example, RLTs obtained

by multiplying an equality constraint with all the variables individually implies all other RLTs

generated using that constraint (see [133]). Liberti [102] show that RLT constraints Xi j = xixi

corresponding to the nonbasic variables of a certain companion system is sufficient to generate

all RLT constraints Xi j = xix j. Liberti and Pantelides [103] then extend the results obtained

above to general sparse MINLPs. They describe a graph theoretical approach to filter out some

RLT constraints. Sherali et al. [135] show that given a basis of G along with the corresponding

index set B of basic variables and N of nonbasic variables, we need to only relax the RLT

constraints Xi j = xix j∀ i, j ∈ N.

Our procedure is related to the analysis of Sherali et al. [135] as we also rely on the basis

matrix to find the cut. However, instead of trying to get an equivalent representation for the

first-order RLT relaxation, we propose a fast cutting plane procedure to separate a given basic

point. In Section 3.5 we describe a method to add RLT variables. While our procedure only adds

the RLT variables corresponding to the bilinear terms present in the new quadratic constraints,

Sherali et al. [135] add all the RLT variables without considering the structure of the quadratic

constraint present. Also, our computational results show that keeping some basic variables in

59

the product terms is beneficial practically. More details of key differences are given in Section

3.3.

Audet et al. [19] describe a branch-and-cut approach using the RLT method and give

four classes of cutting planes derived from RLT. Adams and Johnson [6] give a first order

RLT formulation of Quadratic Assignment Problem. Recently, Bestuzheva et al. [33] give

a separation algorithm based on RLT cuts. They identify products of a bound factor and a

linear constraint which will not produce a violated inequality. Such products are then discarded,

and other products are considered. They also project some linear constraints on a subspace of

variables to obtain RLT cuts for a smaller system of inequalities. Luedtke et al. [108] provide

several results on the strength of McCormick relaxations for multilinear problems and show

that the McCormick relaxation of a bilinear function is within a constant factor of the convex

hull at every point within the bounds of the variables. All these methods try to search for

an RLT inequality by trying different combinations of linear and bound constraints. As far

as we understand, information from the simplex tableau has not been used earlier to generate

inequalities that are guaranteed to cut off a basic feasible solution of the linear relaxation.

Intersection cuts can also be derived for (QCP1) as described in [63]. They use the corner

polyhedron associated with the optimal basis of the linear relaxation of (QCP1) and derive a

polyhedron which does not contain any feasible point to the (QCP1) in its interior. Bienstock et

al. [34] develop a cut generation procedure using intersection cuts for polynomial optimisation

problems.

Semidefinite programming (SDP) relaxations for QCO are also well studied in the

literature. Shor [137] proposed an SDP relaxation of the QCO by relaxing the constraint

X = xxT to X − xxT ≽ 0. Saxena, Bonami, and Lee [131] provide a disjunctive approach

to generate valid inequalities based on their SDP relaxation. Burer and Saxena [42] review

methods to obtain linear inequalities from SDP.

Given a QCO of the form (QCP1), it can be relaxed by rewriting the matrix Q as a

difference of two positive semidefinite matrices [38, 127, 149]. Another related approach is

the αBB underestimators developed by [15] and [8].

60

3.3 A Procedure for generating cuts

We now describe the algorithm for generating cuts. We first describe it for the canonical form

of the linear relaxation because it requires less notation. Then we describe the algorithm for the

standard form of the linear relaxation.

3.3.1 Canonical form of the relaxation

Let R = {x ∈ Rn | Ax ≤ b} be a linear relaxation of the (QCP1) with rank(A) = n. Note that

R may have additional auxiliary variables. We also assume that the constraints Gx = h,x ≤ xx

are either implied by or included in Ax ≤ b. Let S = R∩{x ∈ Rn | xT Qx+ aT x ≤ d} be the

equivalent feasible region of (QCP1). The inequalities Ax ≤ b include lower and upper bound

constraints on each variable along with any other additional constraints.

At an optimal extreme point of R, n linearly independent constraints from Ax ≤ b will

be active. Let such a set of active constraints be Bx ≤ bB, where B is a nonsingular square

matrix. We can add additional slack variables sB ≥ 0 such that Bx + sB = bB. Since all x

feasible to R satisfy Bx+ sB = bB we get, x = B−1bB−B−1sB. The optimal solution to R has

x∗ = B−1bB,sB∗ = 0. Thus, any feasible solution to R (and also S) must satisfy x = x∗−B−1sB.

If x∗ is feasible to S then we have obtained an optimal solution to S. Otherwise, the quadratic

constraint in S must be violated at x∗, i. e. x∗T Qx∗+aT x∗ > d.

We substitute x = x∗−B−1sB on one side of xT Qx to obtain

xT Q(x∗−B−1sB)+aT x ≤ d

=⇒ xT Qx∗+aT x− xT QB−1sB≤ d. (3.5)

Let Q̃ =
(

q̃i j

)
=−QB−1. Then the quadratic inequality

xT Qx∗+aT x+
n

∑
i=1

n

∑
j=1

q̃i jxisB
j ≤ d, (3.6)

61

is valid for S. Now we relax this quadratic inequality using McCormick inequalities (3.3) and

Table 3.1 to get

xT Qx∗+aT x+
n

∑
i=1

n

∑
j=1

q̃i j>0

q̃i jxisB
j +

n

∑
i=1

n

∑
j=1

q̃i j<0

q̃i jxisB
j ≤ d. (3.7)

At the point x = x∗,sB∗ = 0 the left hand side of the inequality (3.7) evaluates to x∗T Qx∗+

aT x∗. Since we assumed x∗T Qx∗+aT x∗ > d the linear inequality (3.7) cuts off x∗.

Example 3.6. Let S = {x ∈R2 | x1x2 ≤ 4,4x1−3x2 ≤ 8,0≤ x1,x2 ≤ 4} and z = min{−x1 | x ∈
S}. The optimal z,z∗ = −3 obtained at (3, 4

3)
T . Consider the linear relaxation R = {x ∈ R2 |

0≤ x1,x2 ≤ 4,4x1−3x2 ≤ 8}. An optimal solution of R is x∗ = (4, 8
3)

T , where constraints x1 ≤

4, and 4x1−3x2≤ 8 are active. We have Q=

0 1

2
1
2 0

 ,B=

1 0

4 −3

 ,bB =

4

8

. Substituting

in (3.6), we obtain the valid quadratic inequality

4
3

x1 +2x2−
2
3

x1s1 +
1
6

x1sB
2 −

1
2

x2sB
1 ≤ 4,

McCormick underestimators as shown in (3.7) provide the cut

4
3

x1 +2x2−
14
3

sB
1 ≤ 4.

Substituting the slack variable using the active constraint we get

6x1 +2x2 ≤
68
3
.

Solving the problem after adding the cuts improves the lower bound to zl =−3.231. □

In the above procedure when we substitute x = x∗−B−1sB to obtain (3.5), we substitute

only one of x’s in xT Qx, one can substitute both the x’s to obtain an inequality in only slack sB

variables, i. e.

(x∗−B−1sB)T Q(x∗−B−1sB)+aT (x∗−B−1sB) ≤ d

62

=⇒ x∗T Qx∗+aT x∗−2x∗T QB−1sB−aT B−1sB + sBT B−T QB−1sB≤ d. (3.8)

Let Q̃ =
(

q̃i j

)
= B−T QB−1 then the following quadratic inequality is valid for S

x∗T Qx∗+aT x∗−2x∗T QB−1sB−aT B−1sB +
n

∑
i=1

n

∑
j=1

q̃i jsB
i sB

j ≤ d. (3.9)

This quadratic inequality can be underestimated using McCormick underestimators for

∑
n
i=1 ∑

n
j=1 q̃i jsB

i sB
j to obtain a different cut. In this case we will require to compute the bounds

on the sB variables, which can be computed from the equation Bx+ sB = bB and bounds on x i.

e., sB = bB−B+x−B−x, where B+ is obtained by replacing all the negative entries in B with 0

and B− is obtained by replacing all the positive entries in B with 0. For every term q̃i jsB
i sB

j in

(3.6), if q̃i j ≥ 0, then 0 an underestimator for the term and if q̃i j < 0, then either overestimators

q̃i jsB
j sB

i and q̃i jsB
i sB

j can be used (see Table 3.1 again).

Example 3.7. Consider again the problem from Example 3.6. We substitute Q,B,bB in (3.8) to

obtain the following quadratic inequality

4
3

sB
1 sB

1 −
1
3

sB
1 sB

2 −8sB
1 +

4
3

sB
2 ≤−

20
3
.

Note that sB
1 ∈ [0,4],sB

2 ∈ [0,20]. Also, sB
1 sB

1 is underestimated using 0 and sB
1 sB

2 is overestimated

using either 20sB
1 and 4sB

2 to obtain the cuts

−44
3

sB
1 +

4
3

sB
2 ≤−

20
3
,

−8sB
1 ≤−

20
3
.

Substituting the slack variables and simplifying gives the cuts

7x1 +3x2 ≤ 31, and

x1 ≤
19
6
.

And the lower bound increases to −3.167. □

63

3.3.2 Standard form of linear relaxation

In this section we describe our procedure for the standard form of a linear relaxation of (QCP1).

Suppose we are given a QCO of the form (QCP1) and its linear relaxation R = min{cT x | Ax =

b,x≤ x≤ x}. We assume that all the additional variables, either substituted for quadratic terms

or added as slack/surplus variables to obtain the standard form of the relaxation, are included in

x, and finite bounds are available for all variables. If R is infeasible, then so is (QCP1), and no

cuts are required. Let x∗ be the optimal solution of R. If x∗T Qx∗+aT x∗ ≤ d, then x∗ is optimal

to (QCP1). Otherwise, let B denote the optimal basis matrix identified by the simplex method

and N denote the submatrix of A associated with nonbasic variables. The simplex method

provides linear equalities of the form xB = B−1b−B−1NxN . For every term xix j in xT Qx with

nonzero qi j, if both xi, x j are basic variables then substitute at least one of the variables with

its corresponding simplex row. If one of the two variables is a nonbasic variable, then either

substitute the basic variable or leave the term as is. This step ensures that the quadratic function

obtained after substitution has at least one nonbasic variable in each term. This substituted

quadratic function can then be relaxed using McCormick estimators to obtain a cutting plane.

This gives us Algorithm 3.1 to separate x∗ from the feasible region of (QCP1). In the algorithm

3.1, while defining the relaxation R we have assumed y to be bounded by [y,y] which may not be

readily available for all auxiliary variables or the slack variables. In that case, we have to infer

the bounds on these variables. This is a valid assumption to make since we assume x variables

to be bounded it is possible to infer bounds on the auxiliary variables or for the slack variables.

Theorem 3.8. In Algorithm 3.1, f (x∗) = πT x∗+c. Further, the inequality πT x≤ π0 is valid for

(QCP1) and cuts off x∗.

Proof. In Algorithm 3.1, g(x) is a quadratic function obtained by substituting some variables

in f (x) by their corresponding rows of simplex tableau, therefore, it is clear that f (x) = g(x)

for every point x ∈ R. In particular, f (x∗) = g(x∗). Each quadratic term in g(x) has at least

one nonbasic variable. Property (P4) in Section 3.1 ensures g(x∗) = πT x∗+ c. Since f (x∗) >

d,πT x∗ > d− c = π0.

Since f (x) = g(x) for x feasible to (QCP1), an underestimator of g is also an

underestimator of f for all feasible points of (QCP1). Hence, the inequality πT x ≤ π0 is

64

Algorithm 3.1 Cut generating algorithm
Input: A linear relaxation R := min{cT x | Ax = b,x ≤ x ≤ x} ∈ Rp of a QCO of the form

(QCP1), a basic solution x∗ with x∗T Qx∗+ aT x∗ > d, set of indices for basic and nonbasic

variables B, N respectively, and a row of the optimal simplex tableau for each basic xi i. e.

xi +∑ j∈N αi jx j = βi ∀ i ∈ B.

Output: (π,π0) ∈ Rp+1 such that πT x∗ > π0

1: procedure GENERATECUTS

2: f (x)← ∑
n
i=1 ∑

n
j=1 qi jxix j

3: g(x)← 0

4: for every quadratic term xix j of f , where qi j ̸= 0 do

5: if i, j ∈ B then

6: h(x)← qi j(βi−∑k∈N αikxk)x j

7: (Optional) substitute x j by (β j−∑k∈N α jkxk) in h(x)

8: else

9: h(x)← qi jxix j

10: if i ∈ B then

11: (Optional) substitute xi by (βi−∑k∈N αikxk) in h(x)

12: if j ∈ B then

13: (Optional) substitute x j by (β j−∑k∈N α jkxk) in h(x)

14: g(x)← g(x)+h(x)

15: for every quadratic term xix j of g do

16: if coefficient of xix j is nonnegative then

17: underestimate the term using the appropriate underestimator from Table 3.1

18: else

19: underestimate the term using the appropriate overestimator from Table 3.1

20: Let πT x+ k be the linear underestimator obtained. π0← d− k

21: return (π,π0)

65

valid for (QCP1).

The cutting planes derived are computationally cheap since no additional linear programs

are solved and no matrix factorisation or eigenvalue are required. Note that there are several cuts

possible for a quadratic constraint. If both variables of a quadratic term are basic, then one can

substitute either one of them or both (steps 6, 7 of Algorithm 3.1). After g(x) is obtained from

step 14 of Algorithm 3.1, it is possible that some quadratic terms in g(x) have both the variables

at their bounds (for example, during substitution if one substitutes both the basic variables of a

quadratic term) and it may happen that both the underestimators for that term can be used for

underestimating the term. In that case, we can select either of the estimators or can take a convex

combination of the two. Regardless of how one selects the variables or the estimators, the cut

violation at x∗ is the same. Hence other criteria like sparsity of the cut, range of coefficients etc.

maybe needed to pick an appropriate cut. We now give a small example to show that the cutting

plane method converges to the optimal solution in the limit.

Example 3.9. Consider the problem min{x1 | x1 + 2x2 = 1,x2 = x2
1,0 ≤ x1,x2 ≤ 1}. Let R =

{x1 + 2x2 = 1,0 ≤ x1,x2 ≤ 1}. Optimal solution (0, 1
2) can be cut off using the McCormick

overestimator for the constraint x2
1−x2 ≥ 0, x1−x2 ≥ 0. Let us call this iteration - 0. Applying

the above procedure after adding a surplus variable, gives us the cut x1−x2 ≥ 2
11 in the original

space of variables. Define the sequence {bk} of right hand sides of the cuts added in each

iteration e.g. b0 = 0,b1 =
2

11 , etc. Now we show that bk+1 > bk∀ k and the cuts generated in

the kth iteration is of the form x1− x2 ≥ bk. Assume this is true for some k, then in (k+ 1)th

iteration the active constraints will be x1− x2 ≥ bk,x1 + 2x2 = 1, and therefore the optimal

solution xk+1 = (1+2bk
3 , 1−bk

3). When we apply Algorithm 3.1 using these as active constraints

we get the following cut

x1− x2 ≥
11bk +2
4bk +11

.

Setting bk+1 =
11bk+2
4bk+11 and observing that bk+1 > bk whenever bk ≥ 0 completes the proof using

induction. In the limit bk→ 1
4 and xk→ (1

2 ,
1
4), which is optimal solution to the problem. □

We do not know whether the method always converges. A pure cutting plane algorithm

for general QCO is still an open question. However, the above example shows that it can be

66

slow. However, it can still be used in a branch-and-cut framework to tighten the relaxations.

It is not necessary to use the optimal basis of the relaxation, sometimes using a non-optimal

basis or an infeasible basis may result in a better cut as shown below.

Example 3.10. Let P be the problem min{−x1− 4x2 | x2
1− x2

2 ≥ 3,x1 + 2x2 ≤ 2,−x1 + x2 ≤
2,−2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1}. The feasible region of P is shown in Figure 3.1. The optimal

solution is x∗ = (1.74,0.13)T with the optimal objective value −2.26 Let R = min{−x1−4x2 |
x1 + 2x2 + s1 = 2,−x1 + x2 + s2 = 2,−2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1,0 ≤ s1 ≤ 6,0 ≤ s2 ≤ 5} be a

relaxation of P. The optimal solution to R is x∗= (0,1)T ,s∗= (0,1)T with the optimal objective

value z∗ = −4. Algorithm 3.1 gives the cut 6x1 + 20x2 ≤ 16 and the lower bound increases to

−3.33.

Instead, consider a sub optimal corner point x̂=(2,0)T , ŝ=(0,4)T . Note that the quadratic

constraint is already satisfied at this point. Algorithm 3.1 gives the cut x1 + 4x2 ≤ 3, and the

lower bound increases to −3. This cut dominates the cut obtained from the optimal basis (see

Figure 3.1). Now choose yet another “corner" point, say, x̂ =
(
−2

3 ,
4
3

)T
, ŝ = (0,0)T which is

infeasible to the relaxation. Algorithm 3.1 provides the cut x1−13x2 ≥−5 and the lower bound

increases to −2.93. This cut dominates the other two cuts obtained.

Thus, carefully choosing a basis to obtain the cuts can impact the performance of

Algorithm 3.1. The use of non-optimal bases to generate cuts has been used in MILP literature

as well. For example, see Section 5.1.1 in [55] and the discussion about Figure 5.2. Although

this seems counterintuitive that non-optimal bases may generate cuts, theoretically that is

possible for certain polyhedron. The example described above also points to the same ideas in

the context of cuts generated by Algorithm 3.1. While it is guaranteed that if the corner point

is infeasible to the quadratic constraint Algorithm 3.1 will generate a cut that will separate

the point from the feasible region of (QCP1), using the optimal basis to generate the cut will

depend on the objective function and in general will be better to improve the bound since it

will guarantee cutting the LP optimal solution. Using non-optimal bases may even generate

redundant constraints or cut region which is not in the direction of objective function. One

should use non-optimal bases in the cuts only if the given instance has such structures amenable

to it.

We now compare our cut generating algorithm with the full level-1 RLT relaxation of the

67

Figure 3.1: Cuts generated for Example 3.10.

Note : Blue shaded region shows the feasible region of P. Red line is the cut generated from the optimal

solution x∗ = (0,1)T ,s∗ = (0,1)T and red shaded region is the region cut off by this cut. Orange line

is the cut generated from the sub optimal corner point x̂ = (2,0)T , ŝ = (0,4)T and orange shaded region

is the region cut off by this cut. Green line is the cut generated from the infeasible corner point x̂ =
(
−2

3 ,
4
3

)T
, ŝ = (0,0)T and green shaded region is the region cut off by this cut.

problem in Example 3.10. RLT relaxation of the problem can be obtained by taking the product

of two linear constraints or squaring linear constraint and substituting the product of variables

or a square of a variable with auxiliary variables as described in Section 1.5.3. For example, we

can take the product of x1 +2x2 ≤ 2 and −x1 + x2 ≤ 2 to obtain

(2− x1−2x2)(2+ x1− x2)≥ 0

4−6x2− x2
1 +2x2

2− x1x2 ≥ 0

4−6x2−X11 +2X22−X12 ≥ 0.

68

Similarly other products can be taken to obtain more constraints. Finally we obtain 21 additional

constraints and we add 3 auxiliary variables to the relaxation. Solving the full level-1 RLT

relaxation gives the optimal solution x∗ = (1.6,0.2),X11 = 3.2,X22 = 0.2,X12 = 0 with the

optimal objective value −2.4. Clearly, this is a much better solution compared to what is

obtained by our cut. Also this is very close to the optimal solution as well. But as pointed

out, full level-1 RLT requires O(m2) constraints and O(n2) auxiliary variables. This increases

the size of the problem considerably and further processing becomes more computationally

expensive. While our cuts are computationally very cheap and do not increase the size of the

problem to prohibitively.

As mentioned in Section 3.2, the idea of substituting basic variables by linear functions of

nonbasic variables and only considering the products of nonbasic variables was also analyzed

in [135]. We now highlight key differences between the ideas proposed here and [135].

• Algorithm 3.1 is a fast procedure to separate a basic solution from the linear relaxation

of the problem. On the other hand, Sherali et al. [135] provide a “complete" first-order

RLT relaxation of the problem that consists of many new variables and constraints, some

of which may potentially be of little use in practically solving the instance. In fact, their

procedure is independent of Q, and generates all RLT constraints using the current basis.

On the other hand, our procedure derives cuts directly from the quadratic constraint.

• Algorithm 3.1 can be used repeatedly to obtain cuts that are guaranteed to cut off a given

basic solution. Some of these cuts can be higher ordered RLT constraints, which are

practically difficult to obtain using past approaches.

• If one substitutes only a subset of basic variables in the quadratic function while ensuring

each bilinear term in the substituted quadratic has at least one nonbasic variable, then

the cut obtained is different from the approach of Sherali et al. [135]. While this cut

is in theory dominated by other RLTs, it is usually sparser and more effective, as our

computational results in Section 3.6 indicate.

• The approach presented here is easier to integrate with branch-and-cut algorithms as it

does not require creating any new variables, and can be used repeatedly. This aspect is

demonstrated in Section 3.6 where it is applied to several benchmark instances from a

standard library. In contrast, generating all first-order RLT constraints is severely limited

69

by computational resources and is useful for only small instances.

3.4 Analogy with Gomory’s fractional cuts

Gomory’s fractional cuts ([79]) were the first general purpose cutting planes developed for pure

integer linear programs. We describe how our procedure discussed in Section 3.3 is similar to

Gomory’s fractional cuts. Let us consider the integer program

min{cT x | Ax = b,x≥ 0,x ∈ Zn}. (IP)

We can rewrite the integer constraints equivalently as xi ≤ ⌊xi⌋ ∀i ∈ {1, . . . ,n}. When

we solve the natural linear programming relaxation of (IP) using simplex method ignoring the

integer constraints then each row of the optimal simplex tableau will be of the form

xB
i +∑B−1

i j xN
j = x∗i

where xB,xN are the set of basic and non-basic variables respectively, B is the optimal basis

matrix as described in the previous section, and xB = x∗,xN = 0 is the optimal solution to the

linear relaxation of (IP). As described in Section 3.3 we will substitute the equations obtained

in the optimal simplex tableau into the nonconvex constraint if that is not satisfied. Here the

only nonconvex constraints are xi ≤ ⌊xi⌋ representing the integrality of the variables. Thus, if

for some i,x∗ /∈Z, then we can substitute the corresponding simplex row to obtain the following

inequality

x∗i −∑B−1
i j xN

j ≤ ⌊x∗i −∑B−1
i j xN

j ⌋ (3.10)

Similar to the McCormick relaxation of each bilinear or square term in the quadratic case

discussed above we will relax each term in the floor function in (3.10). Since floor function is

monotonically nondecreasing, overestimating each term in the floor function will overestimate

70

the function value as well. Therefore,

B−1
i j ≥ ⌊B−1

i j ⌋

=⇒ x∗i −∑B−1
i j xN

j ≤ x∗i −∑⌊B−1
i j ⌋xN

j

=⇒ ⌊x∗i −∑B−1
i j xN

j ⌋ ≤ ⌊x∗i −∑⌊B−1
i j ⌋xN

j ⌋

=⇒ ⌊x∗i −∑B−1
i j xN

j ⌋ ≤ ⌊x∗i ⌋−∑⌊B−1
i j ⌋xN

j (3.11)

where the first inequality follows by the definition of the floor function, second inequality

follows because xN
j ≥ 0, third inequality follows because floor function is monotonically

nondecreasing and the last inequality follows because xN
j ∈ Z.

Combining (3.10) and (3.11) and rearranging the terms we get

∑(B−1
i j −⌊B−1

i j ⌋)xN
j ≥ x∗i −⌊x∗i ⌋

which is Gomory’s fractional cut. This shows that if one applies the above procedure discussed

in Section 3.3 to the inequality x ≤ ⌊x⌋ for any integer variable x then we get the Gomory’s

fractional cut.

3.5 Adding new variables and connections with RLT

In the previous section, linear estimators were obtained for each term of the substituted

quadratic. These estimators were then summed together to obtain a valid inequality. Another

way to linearize the substituted quadratic is by adding auxiliary variables for each quadratic

term and then using McCormick relaxation as described in Section 3.1. This procedure

obviously creates several new variables that must be added to the LP relaxation. On the other

hand, this form is equivalent to adding all the cuts possible by after g(x) is obtained by selecting

different combinations of under- or over-estimators in Algorithm 3.1, and hence may tighten

the relaxation more. We illustrate this using an example.

Example 3.11. Consider the substituted quadratic inequality (3.2) obtained in Example 3.1. We

add auxiliary variables w23 = x2x3,w24 = x2x4,w25 = x2x5 and add McCormick relaxation for

71

these added variables to obtain the following relaxation

x1 +2x3−3x4 +2x5 = 0.3

x2 + x6 = 0.5

0.3x2− x3−2w23 +3w24−2w25 ≤ 0 (3.12)

x2 + x3−w23 ≤ 1

w23− x2 ≤ 0

w23− x3 ≤ 0 (3.13)

x2 + x4−w24 ≤ 1

w24− x2 ≤ 0

w24− x4 ≤ 0

x2 + x5−w25 ≤ 1

w25− x2 ≤ 0

w25− x5 ≤ 0 (3.14)

xi ∈ [0,1], i = 1, . . . ,6

w23,w24,w25 ≥ 0

Taking the linear combination (3.12) + 2× ((3.13) + (3.14)) and using the fact that w24 ≥
0 we get the cut 0.3x2 − 3x3 − 2x5 ≤ 0 obtained in Example 3.1. Consider the point x̂ =

(1,0.5,0.15,1,1,0) which satisfies both the equality constraints and the cut but there does not

exist any ŵ such that (x̂, ŵ) is feasible to the above relaxation. This shows that the above

relaxation is tighter than simply adding the cut.

It is clear from the above example that our procedure adds cuts which are equivalent to

some of the cuts obtained by Reformulation Linearization Technique (RLT) [133]. However,

it should be noted that the substituted quadratic inequality obtained is dense in the nonbasic

variables and thus several auxiliary wi j variables will be required. This increases the size of the

LP significantly and is practically not suitable for a solver. Thus one must judiciously choose

quadratic terms that should be replaced by an auxiliary variable and other quadratic terms can

be relaxed using McCormick inequalities described in the previous sections.

72

We now describe this procedure of adding new variables in the general form for

completeness. Inequality (3.9) in a slightly different form is

f (x∗)−2x∗T QB−1sB−aT B−1sB + ⟨Q̃,sBsBT ⟩ ≤ d.

We add a matrix variable W = (sB)(sB)T to obtain the linear inequality

f (x∗)−2x∗T QB−1sB−aT B−1sB + ⟨Q̃,W ⟩ ≤ d. (3.15)

The constraint W = (sB)(sB)T can then be relaxed using the standard McCormick relaxation

W ≥ 0, (3.16a)

W ≥ sBsBT + sBsBT − sBsBT
, (3.16b)

W ≤ sBsBT , (3.16c)

where all the matrix inequalities above are element wise inequalities. It is evident that any

point that is infeasible to any of the cuts that can be derived from (3.9) will also be infeasible

to the inequalities (3.15) and (3.16) since every cut in (3.9) is a McCormick underestimator of

(sB)(sB)T and here we add the McCormick relaxation of (sB)(sB)T . The inequalities in (3.16),

after doing correct substitutions for the auxiliary variables W , will give us some nonnegative

linear combinations of the RLT inequalities obtained by taking product of the active constraints

and bound constraints. Inequality (3.15) can also be derived from RLT when the auxiliary RLT

variables are substituted in the original quadratic constraint in the problem. It becomes apparent

that the cuts derived from (3.9) can also be obtained from the RLT inequalities by projecting

them to the x space. Thus, our procedure in essence gives a method to identify which RLT

cuts can be added into the problem without generating all of them (many of which may be

redundant). It should also be noted that repeated addition of our cuts iteratively essentially adds

higher order RLT cuts without adding auxiliary variables.

Proposition 3.12. The inequalities (3.16) are nonnegative linear combination of RLT

inequalities for the problem (QCP1).

Proof. Recall that sB = bB−Bx and sB = bB−B+l−B−u. For (3.16a), we can easily verify

73

that W ≥ 0 is equivalent to the RLT applied to the product of (bB−Bx)(bB−Bx)T ≥ 0.

For (3.16b), it is a linear relaxation of (sB− sB)(sB− sB)T ≥ 0. Now,

sB− sB = Bx−B+x−B−x = B+x+B−x−B+x−B−x = B+(x− x)−B−(x− x),

and thus

(sB− sB)(sB− sB)T = (B+(x− x)−B−(x− x))(B+(x− x)−B−(x− x))T

= B+(x− x)(x− x)T BT
+−B−(x− x)(x− x)T BT

+

−B+(x− x)(x− x)T BT
−+B−(x− x)(x− x)T BT

−

= ⟨(x− x)(x− x)T ,B+BT
+⟩+ ⟨(x− x)(x− x)T ,−B−BT

+⟩

+ ⟨(x− x)(x− x)T ,−B+BT
−⟩+ ⟨(x− x)(x− x)T ,B−BT

−⟩ ≥ 0,

each term in the above inequality is a nonnegative linear combination of an RLT inequality, and

so is their overall sum.

For (3.16c), it is a linearization of sB(sB− sB)T = (bB−Bx)(B+(x− x)−B−(x− x))T =

B+(x − x)(bB − Bx)T − B−(x − x)(bB − Bx)T ≥ 0 which again is a nonnegative linear

combination of RLT inequalities.

3.6 Computational results

We describe two sets of experiments to assess the computational impact of adding the cuts

described in the previous sections. In the first set of experiments (Section 3.6.1) cuts are added

as described in Algorithm 3.1, i.e., without introducing new variables in the cutting stage. Six

variants of this procedure are tested. In the second set of experiments (Section 3.6.2), new

variables are introduced in each round of cutting, as described in Section 3.5. The second

approach results in a much tighter relaxation after adding cuts, but comes with the additional

cost of adding more variables each time a cut is added. This experiment is proposed to quantify

the effect of deriving one or two inequalities from a quadratic constraint (Section 3.6.1) relative

74

to adding all possible ones from Algorithm 3.1.

We implemented the procedures in mglob solver. All computational experiments have

been performed on a computer with a 64-bit Intel(R) Xeon(R) E5-2670 v2, 2.50GHz CPU, and

128 GB RAM. The programs were run on a single core of the CPU. The code was compiled

using GCC-4.9.2 compiler. CLP-1.17.6 [67] was used as an LP solver.

We selected 216 QP, QCP, and QCQP instances from MINLPLib [43] for the experiments

that have an optimal solution available, i.e. there is a gap of less than 10−6 between the primal

and dual bound in MINLPLib dataset. Limiting our experiments to these “easy" instances

enables us to check whether the cuts erroneously cut the optimal point and also to precisely

compute the gap closed. We did not consider instances with integer variables as we wanted to

focus on our procedure in isolation from other tightening and cut generation procedures. We

further excluded 51 instances for which either mglob solved in the root node without any cuts

or the gap between root node relaxation and the optimal objective value was less than 10−6. One

instance for which root node relaxation processing by mglob took more than 30 minutes was

also excluded. After this filtering 164 instances remained for the computational experiments

described here. We have chosen both convex and nonconvex problems which contain either

quadratic objective or one or more quadratic constraints. Routines to automatically identify and

exploit convex nonlinear constraints in mglob were disabled for these experiments. Thus all

these instances were treated as nonconvex. We call this test set T1.

We consider another set, T2 of pooling problems [115] from the MINLPLib. Pooling

problem is a problem in petrochemical industries. All quadratic terms in these instances are

bilinear, and may be suited for the RLT cuts like we propose. From a total of 88 pooling

instances in MINLPLib dataset, three are not quadratic problems and were removed. One more

instance was removed because default mglob solves the problem in the root node (without any

cuts). Eight instances were removed because default mglob takes more than 30 minutes to

process the root node. We select the remaining 76 instance. Unlike the set T1, we do not know

the optimal solution value of some of the instances in T2. Some of these instances have integer

or binary variables.

75

3.6.1 Cuts in original space of variables

We now describe the computational impact of adding cuts as described in Section 3.3. The

input QCO problem is first transformed by substituting each quadratic term, xix j, that appears

in the problem (including the objective function), with an auxiliary variable yi j and then adding

the constraint yi j = xix j. Bound propagation techniques [24, 128, 60] are then applied to obtain

bounds on each variable. An initial LP relaxation of the transformed problem is then obtained

using McCormick inequalities for each bilinear term yi j = xix j. We then solve the relaxation

to obtain a lower bound that we call zbefore. Cuts are then added using the proposed variants of

Algorithm 3.1 as described below. The lower bound obtained after adding cutting planes and

solving the tightened relaxation is called zafter. We compute the gap closed by the cuts using the

formula

Gap closed =
(zafter− zbefore)×100

z∗− zbefore
, (3.17)

where z∗ is the best known optimal objective value available from MINLPLib. Note z∗≥ zafter≥
zbefore.

We have conducted two types of experiments here each having three sub-variants. For

each quadratic constraint yi j = xix j when both xi,x j are basic variables and y∗i j ̸= x∗i x∗j (in the

initial LP solution), then two possible ways of substituting this quadratic constraint are possible.

1. Substitute both xi and x j with their corresponding simplex rows to obtain a quadratic

function in only nonbasic variables and then under- or overestimate the new terms to

obtain the cuts. We propose three different variants of obtaining the linear estimator of

the quadratic function for this case.

(a) Minimum coefficient sum - Suppose there is a term xkxl (after the above substitution)

that needs to be overestimated and both xk,xl are at their lower bounds xk,xl . Then

two overestimators xlxk + xkxl − xkxl, and xlxk + xkxl − xkxl are available. If |xk|+
|xl|< |xk|+ |xl| then we choose the first overestimator, and the second one otherwise.

Similar rules are used for other cases. The motivation behind using the minimum

coefficient sum rule is that we prefer smaller coefficients in the cut.

76

(b) Equal weight - In this variant, if we have two under- or overestimators for a quadratic

term then we take a convex combination of the two estimators with λ = 0.5.

(c) Reduced cost weight - Instead of giving equal weights to the two estimators as in (b),

reduced costs are used to decide a different convex combination. Let us consider the

term with xk,xl and the corresponding reduced costs µk,µl . If |µk|+ |µl| < ε then

we select the weights for each estimator as 0.5, otherwise we normalise the reduced

costs so that dk =
|µk|

|µk|+|µl | ,dl =
|µl |

|µk|+|µl | . The underestimators and overestimators

then are given in Table 3.2. We set ε = 10−6 in our experiments.

State of variable xk State of variable xl Underestimators to

choose

Overestimators to

choose

At lower bound

(xk)

At lower bound

(xl)

xlxk + xkxl− xkxl
dk(xlxk + xkxl− xkxl)+

dl(xlxk + xkxl− xkxl)

At lower bound

(xk)

At upper bound

(xl)

dk(xlxk + xkxl− xkxl)+

dl(xlxk + xkxl− xkxl)
xlxk + xkxl− xkxl

At upper bound

(xk)

At lower bound

(xl)

dl(xlxk + xkxl− xkxl)+

dk(xlxk + xkxl− xkxl)
xlxk + xkxl− xlxk

At upper bound

(xk)

At upper bound

(xl)

xlxk + xkxl− xkxl
dl(xlxk + xkxl− xkxl)+

dk(xlxk + xkxl− xkxl)

Table 3.2: Underestimators/overestimators based on the weights from the reduce cost of the

variables

2. In the second set of variants, only one variable is substituted. For a constraint yi j = xix j

with y∗i j ̸= x∗i x∗j , we substitute only one out of xi or x j with its corresponding simplex row

to obtain a new quadratic function. Again, we propose three different ways of choosing

which variable to substitute.

(a) Least infeasible - Among the two variables xi,x j we substitute the variable that

appears in the fewer number of quadratic constraints that are violated by the current

basic solution. If there is a tie we use the one which has fewer nonzero terms in its

simplex row.

77

Substitute both variables Minimum Coefficient Equal Weight Reduced cost weight

Average gap closed 12.75 10.45 13.31

Substitute one variable Least infeasible Most sparse One-by-one

Average gap closed 31.06 30.86 35.53

Table 3.3: Average gap closed after adding the cuts on set T1.

(b) Most sparse - Among the two variables xi,x j we substitute the variable which has

fewer nonzero terms in its simplex row. If there is a tie we use the one that appears

in the fewer number of quadratic constraints violated by the current basic solution.

(c) One-by-one - We substitute both variables one-by-one to obtain two quadratic

functions. For example, if the term x1x2 needs to substituted and if x1 +

∑ j∈N α1 jx j = β1 and x2 + ∑ j∈N α2 jx j = β2 are the corresponding simplex rows,

then we first substitute x1 to obtain the quadratic β1x2−∑ j∈N α1 jx jx2 and then we

substitute x2 to obtain another quadratic β2x1−∑ j∈N α2 jx jx1. Thus we get two

quadratic functions and two cuts for each quadratic constraint.

We do only a single round of cut generation in these experiments. For all the six variants

discussed, we only add a cut to the relaxation if the current LP solution x∗ violates it by at least

10−3. In a more practical setting, one would apply these cuts repeatedly and manage them in

a more sophisticated manner (see [14, 145, 141] for example). We leave this aspect of tighter

integration with other components of the solver to a future study. We also limit ourselves to only

measuring the gap closed by these cuts, and not focus on their overall effectiveness in solving

the problems as this would also require a lot of fine tuning and integration with the solver. While

performing the experiments some instances on some of the variants faced numerical issues, and

for such cases we report zero gap closed. The average gap closed per instance in T1 is tabulated

in Table 3.3. On an average we close about 13% of the gap on the instances tested when both

the basic variables are substituted while more than 30% of gap was closed when only one basic

variable is substituted.

We plot a profile in Figure 3.2, to visualise the distribution of the performance of each

of the six variants over 164 instances. The horizontal axis in the plot shows the gap closed

(3.17) and the vertical axis counts the number of instances. A point (x,y) on the plot shows

that at least x% gap was closed on y instances. It is clear from the profiles that substituting

78

Gap closed

0

50

100

150

200

0 25 50 75 100

Minimum coefficient
sum

Equal weight

Reduced cost weight

Least infeasible

Most sparse

One-by-One

Figure 3.2: Profile of gap closed by one round of cuts on T1.

only one variable is superior to substituting both variables. The choice of sub-variants did not

seem to have much influence on the gap closed. The detailed summary of the results for the

instances in T1 for the six variants described here is reported in the file DatasetT1.csv in

the supplementary material attached with this paper. We observe that the time taken in cutting

is reasonably low for all instances, and that our procedure is computationally cheap. Also, time

taken when substituting one variable is lower than that when we substitute both variables. It is

unsurprising because the number of terms in the new quadratic increases significantly if both

variables are substituted.

We also compare the objective lower bound obtained from our cutting plane procedure

to that obtained by two different settings of the SCIP 8.0.2. [32]. SCIP is one of the leading

open-source solvers for integer linear and nonlinear optimisation. The first setting keeps

the default values of all parameters of SCIP. In the second setting, primal heuristics are

turned off in order to isolate the effects of lower bound improvements from cuts and bound

tightening routines alone. To switch off all primal heuristics in SCIP we use the option

set/heuristics/emphasis/off. We call the lower bound provided by SCIP after

79

processing the root node as zSCIP. Our algorithm is then compared to zSCIP using the formula

Percent change =
(zSCIP− zafter)×100

|zbefore|
, (3.18)

where zbefore and zafter are obtained from mglob as described above. When |Percent change| ≤ 1

we say our procedure and SCIP perform similarly. On the other hand if (Percent change)<−1

then we say our procedure performs better than SCIP and if (Percent change)> 1 then we say

SCIP performs better than our procedure. SCIP root node processing of some instances in

T1, and T2 were not completed even after 9600 seconds, and for these instances we use the

lower bound provided within this time limit. We summarise the results in Table 3.4 for test

set T1 and Table 3.5 for T2. In both these experiments the variant One-by-One was used as it

was the most promising in our previous analysis. We observe that, on an average, the lower

bounds from one round of our procedure are inferior to those from default SCIP on T1 and

comparable to those from default SCIP on T2. The lower bounds from our procedure are seen

to be superior to those from SCIP when primal heuristics of SCIP are turned off. It indicates

that the proposed procedure may be quite helpful in improving the bounds, and needs good

integration with other components of the solver. Detailed summary of the results have been

reported in the supplementary material attached.

SCIP setting Number

of

instances

Number of

instances where

both SCIP and

Algorithm 3.1

perform similarly

Number of

instances where

Algorithm 3.1

performs better

Number of

instances where

SCIP performs

better

Default 164 62 27 75

No heuristics 164 50 62 52

Table 3.4: Comparison of SCIP and Algorithm 3.1 for T1 instances

80

SCIP setting Number

of

instances

Number of

instances where

both SCIP and

Algorithm 3.1

perform similarly

Number of

instances where

Algorithm 3.1

performs better

Number of

instances where

SCIP performs

better

Default 76 46 13 17

No heuristics 76 43 22 11

Table 3.5: Comparison of SCIP and Algorithm 3.1 for T2 instances

3.6.2 Adding variables

Now we describe the computational impact when we add auxiliary variables as described in

Section 3.5 to obtain tighter relaxation. We first obtain an initial LP relaxation as explained in

Section 3.6.1. For each quadratic constraint yi j = xix j when both xi,x j are basic variables and

y∗i j ̸= x∗i x∗j (in the initial LP solution), we substitute variables with their corresponding simplex

row using the following two strategies.

1. Substitute both variables - We substitute both the basic variables xi and x j to obtain a

new quadratic function. For each term xkxl in this new quadratic function, if an auxiliary

variable for xkxl is already present in the relaxation we substitute the term xkxl with that

variable. Otherwise we introduce a new variable wkl = xkxl and relax it using McCormick

relaxations.

2. Substitute one variable - We substitute one variable at a time to obtain two new quadratic

functions as described in variant One-by-one in Section 3.6.1. A new variable wkl is then

introduced for each term in the two quadratic constraints as described above.

In both these variants it is sometimes observed that the bounds on wkl introduced can be

quite large. If that is the case, the McCormick relaxation can have large coefficients and can

cause numerical issues with the LP solvers. If max{|wkl|, |wkl|} ≥ 106 we do not add a new

variable, but rather just add a linear term as described in Section 3.6.1. There are 53 such

instances when both variables were substituted and 42 such instances when one variable was

81

Substitute both

variables

Substitute one

variable

Average Gap Closed 25.50 39.89

Added variables w.r.t.

original number of

variables

3.87 2.84

Table 3.6: Average gap closed and relative size of the problem after adding auxiliary variables

on set T1

substituted where such large coefficients were observed and thus not all variables have been

added for such instances.

We test the above two variants on the test set T1 but four instances we removed because

these instance hit time limit of 9600 seconds (while the new relaxation was still not generated).

Also similar to the case in Section 3.6.1 there were instances facing numerical issues whose gap

closed has been reported as 0%. Average gap closed for the two variants is reported in Table

3.6. We also measure the relative size of the new relaxation in terms of the number of variables

in the initial relaxation i.e. the ratio of the number of variables in the new relaxation to the

number of variables in the initial relaxation. The second row in Table 3.6 shows the average

relative size of the new relaxation. We observe that substituting both variables and adding

auxiliary variables closes 25% of gap on an average in the instances tested while the size of

the relaxation increases to more than three times on average. On the other hand substituting

one variable at a time and adding auxiliary variables for both quadratic functions closed about

39% of the gap while adding slightly fewer variables. Figure 3.3 shows the distribution of the

performance of both the variants based on the gap closed. The experiment again demonstrates

that substituting only one basic variable at a time is more beneficial. Substituting both variables

increases the number of terms in the new quadratic whose termwise relaxation can be relatively

weak.

We do not compare our results when auxiliary variables are added against SCIP because

of the following reasons:

1. Adding auxiliary variables was computationally tested to create a benchmark for the cuts

82

Gap closed

In
st

an
ce

s

0

50

100

150

200

0 25 50 75 100

Substitute both variables Substitute one variable

Figure 3.3: Profile of gap closed by adding auxiliary variables.

generated by Algorithm 3.1.

2. For a general purpose solver it is very difficult to add variables after root node processing

has started. We only add additional variables while presolving or creating the relaxations

if needed. Once the problem is loaded in the LP solver if additional variables are added

(along with additional constraints) the LP problem doesn’t remain either primal feasible

or dual feasible and thus simplex method has to restart effectively. This makes the solve

time quite higher.

3. It is difficult to manage additional variables added after the problem is loaded in the LP

solver. Thus we avoid doing this within the solver.

The general scheme of introducing new variables while generating cuts is not

recommended in a practical setting. Most branch-and-cut implementations do not allow

adding new variables after the presolving stage. These experiments however are useful for

understanding the effectiveness of the cuts described in Section 3.6.1. By adding variables, we

are introducing all possible cuts that can be generated by Algorithm 3.1. These experimental

83

results suggest that the heuristic strategy of One-by-one generates sufficiently good cuts and

closes a sizeable gap as compared to what is possible by adding all cuts.

3.7 Conclusion and Future Work

We have presented a procedure for deriving cutting planes for a linear relaxation of QCP. Our

procedure is guaranteed to cut off LP basic feasible solution that is not feasible to the QCP.

Our tests of applying one round of cuts yield promising results. Even though these cuts are a

particular type of RLT inequalities, they are available readily and do not require any search or

guess-work. Successful integration with a general purpose solver would require multiple rounds

of cut generation, careful selection, and management of these cuts along with careful tuning of

parameters.

There are several open questions with regards to this procedure. First, the convergence of

this procedure on general and specific classes of QCP can be analysed. Second, several cuts

are possible with different choices available in the algorithm and from different basic solutions.

Practical strategies for finding computational effective cuts would be an interesting topic, as

would integrating them fully in an MIQCP solver.

84

Chapter 4

Branching Strategies

Presolving, primal heuristics, and cutting planes are typically used extensively in the root

node of a branch-and-cut algorithm to close the gap between the upper and lower bounds of

the optimal value. These techniques significantly reduce the size of the branch-and-bound tree

and the overall effort required to solve the problem. Once these approaches are exhausted, we

‘branch’ the search space to create subproblems that are then individually relaxed and solved

further. This recursive procedure is described already in Sections 1.3.1 and 1.6.

The subproblems created are called the child nodes of the problem (parent node). In this

sense, branching creates a tree of problems where the root is the original relaxation, and each

node subsequently is a subproblem of its parent node. The subproblems created must have the

following two properties:

• The relaxation solution of the parent node must be infeasible to all the children nodes.

• Every feasible solution to the parent node must be feasible to at least one child node.

In nonconvex MIQCQP, two types of nonconvexities are present: integrality and

nonconvex nonlinear functions. For integrality, we use integer branching as described in

Section 1.3.1, and for nonconvex nonlinear functions, we use spatial branching as described in

85

1.6. Typically, at every node of the sB&B tree, there are several variables for which branching

can be done, and one must choose which branching variable to select for the current node. This

choice of branching ‘candidate’ is essential since it significantly affects the number of nodes

to be processed. Thus, given a set of branching candidates, we need a selection criterion to

choose a candidate to branch. A branching strategy is the selection criterion used to choose a

branching candidate.

Branching is an essential component of the branch-and-cut and branch-and-bound

algorithms. Most of the practically arising MIQCQO problems require branching to solve

them. Since branching increases the number of subproblems to be solved, a good branching

strategy used recursively can dramatically improve the solution time. Despite its central role in

solving these problems, our understanding and analysis of branching strategies is quite limited,

especially compared to reformulation and cutting plane techniques.

Minotaur has a few inbuilt functions for branching. We review these techniques along

with others described in the literature and propose new strategies specially designed for spatial

branching for MIQCQO. Empirical results are compiled to assess the impact of these strategies

on benchmark instances.

4.1 What is a branching strategy?

Let us use an example to show the effect on the size of sB&B tree when selecting a branching

candidate.

Example 4.1. Consider the MIQCQP

z = min x2
1−2x1x2

s. t. x1x2 + x1 ≤ 2,

x1,x2 ∈ [0,2],

x1 ∈ Z,

x2 ∈ R.

86

Branching Left child Right child

variable x̂, ŷ ẑ Status x̂, ŷ ẑ Status

x1
(0,0),

0
Pruned by (1,1),

−1
Pruned by

(0,0) feasibility (1,1) feasibility

x2
(1,0.333),

−1.333
Requires further (0.667,1.111),

−2.667
Requires further

(0,0.667) branching (0,1.333) branching

Table 4.1: Effect of selecting different branching variables

The optimal solution to the problem is x∗ = (1,1) with z∗ = −1. We add auxiliary variables

y1 = x2
1,y2 = x1x2 and relax the problem using standard McCormick relaxation as described in

Section 1.5 and relax the integrality of x1 to obtain a linear relaxation of the problem. Solving

the relaxation we get the LP solution x̂ = (0.667,0.667), ŷ = (0,1.333) with ẑ =−2.667. Note

that this solution is not feasible to both the nonlinear constraints y1 = x2
1,y2 = x1x2 and x1 is

fractional.

Now, we can either branch on (x1 ≤ 0,x1 ≥ 1) or we can branch on (x2 ≤ 0.667,x2 ≥
0.667). We summarise the effect of branching on either of these variables in Table 4.1. In Table

4.1, the Left and Right child correspond to the branch when the upper and the lower bound of

the variable are changed, respectively. Clearly, branching on x1 solves the problem since both

child nodes are pruned by feasibility while branching on x2, we still need to branch both the

child nodes further.

Example 4.1 shows that when several variables are possible to branch, deciding which

variable to branch on significantly affects the size of the sB&B tree. Therefore, we need to

identify which variable to branch to obtain the smallest sB&B tree. It is not possible to predict

the size of the sB&B tree for a given candidate without solving the problem. Thus, in principle,

a branching strategy provides an approximate score that represents the ‘benefit’ of selecting

a branching candidate. A branching strategy uses some criteria to provide an estimate of the

score. Following are some of the criteria used to estimate the score for a branching candidate:

• The approximate increase in the lower bound after branching.

• Amount of feasible region eliminated by branching.

87

• Violation from the constraints.

There can be other criteria for selecting a branching candidate, like the number of

infeasible constraints a variable appears in, ensuring that the two subproblems have similar

sizes, etc. One can also use a combination of these to obtain a hybrid score. Since all

these scoring methods are estimates, choosing a branching strategy is difficult, and thorough

experimental testing is needed to select a good performing strategy.

4.2 Literature Review

Extensive research has been conducted on branching variable selection. Several papers describe

new rules to estimate a score for candidates. A common scoring technique is to use the violation

of the current relaxation solution from the new relaxation in the child nodes. A common

method used for integer branching is Maximum Infeasible branching as described in [4]. In

this branching scheme, we simply calculate the score si = 0.5−|x̂i−⌊x̂i⌋−0.5| as the closeness

of fractional part of xi from 0.5. An analogous infeasibility measure for nonconvex constraints

is the rb-inf as described in [25]. Belotti et. al. [25] first describe an infeasibility measure as the

scaled distance between the current variable value and the constraint activity at the point. That

is consider a constraint of the form xi = νi(x), then the infeasibility measure Ui =
|x̂i−νi(x̂)|
1+∥νi(x̂)∥ .

The rb-inf measure for xi is the sum of all such infeasibilities where xi appears. Another

related approach is the idea of ‘violation transfer’ described in [138]. In this scheme, violations

of nonconvex constraints are first assigned to the problem variables, and then the violation is

transferred between problem variables and auxiliary variables. The updated violations are then

used to obtain a score for branching candidates.

Another approach to estimate a score for branching candidates is the idea of pseudocosts

first described in [27]. This rule keeps a history of lower bound (on z∗) changes when a

particular variable is selected for branching. We then take the average lower bound update

as the score for branching. More details about pseudocost branching are available in [104].

One of the most computationally expensive branching strategies is strong branching [16].

In this branching scheme, we solve two LPs, one for the left child and one for the right child,

for each branching candidate. We then compute the lower bound change and obtain a candidate

88

score. Recently, Dey et al. [58] showed that for small MILO instances, strong branching tree

size is within a factor of two of the optimal tree size.

A common problem in pseudocost branching is the initialisation of pseudocost in the

beginning of the B&B tree. Since in the root node (and initial stage of the tree search),

selecting the correct branching candidate is much more crucial than later nodes, as pointed

out by Forrest et al. [65]. Initialising pseudocost correctly is very important. To this end,

pseudocost are generally initialised using strong branching in the initial nodes. This method

of combining strong branching with pseudocost branching is called reliability branching which

was introduced by Achterberg et al. [4]. Reliability branching is also used for nonconvex

problems as described in [25, 144].

Recently, machine learning techniques have also been employed to select a good branching

candidate, see [12, 21, 76]. These techniques try to approximate strong branching or estimate

tree depth. See [106] for a survey of machine learning based techniques for branching variable

selection.

4.3 Branching strategies for nonconvex problems

This section describes five branching strategies implemented in Minotaur [111]. We first present

a simple rule similar to maximum infeasible branching in MILP, which computes violation

of the nonconvex constraints to obtain a score for branching candidates. We then describe

strong branching for nonconvex problems and describe some implementation details for the

same. Next, we describe two new branching rules for nonconvex problems, namely, bt-strong

branching and bt-estimate branching. Finally, we combine some of these strategies to obtain

a reliability branching scheme for nonconvex problems, which we call bt-reliability branching.

We then compare these strategies in terms of the number of nodes explored and the time taken

to solve the problem.

For each xix j term in the problem, we add an auxiliary yi j variable. We then transform

the problem by adding the constraint yi j = xix j, which is then relaxed using McCormick [112]

relaxation. Thus, the only nonconvexities in the problem, apart from the integrality restrictions,

are the constraints of the form yi j = xix j. Now, if ŷi j ̸= x̂ix̂ j then we add both variables xi, and x j

89

as branching candidates. Also, an integer variable xi having fractional value at the current point

is added as a branching candidate. Likewise, we obtain a set B of branching candidates. All

branching strategies described next compute a score for each branching candidate.

4.3.1 Maximum Violation Branching

A simple measure to identify a good branching candidate is to use the violation of the current

solution at the node from the relaxation of the child nodes. For integer variables, this is simply

the distance of the fractional solution from the nearest integer. For nonconvex constraints, it is

not as straightforward. Consider the constraint yi j = xix j which is infeasible for the relaxation

solution (x̂, ŷ), i.e. ŷi j ̸= x̂ix̂ j. We add both variables xi,x j as branching candidates. The violation

score for the constraint is computed as the orthogonal distance from the point (x̂i, x̂ j, ŷi j) to the

updated McCormick constraint that separates the relaxation solution in the branch. For instance,

if ŷi j < x̂ix̂ j and we wish to down branch on xi≤ x̂i then the McCormick constraint that separates

the point (x̂i, x̂ j, ŷi j) from the relaxation is yi j ≥ x̂ix j +x jxi− x̂ix j. The orthogonal distance from

(x̂i, x̂ j, ŷi j) to the plane yi j = x̂ix j + x jxi− x̂ix j is x̂ix̂ j−ŷi j√
1+x̂2

i +x2
j

which is taken as the violation score

for the down branch. Similarly, the branching score for the up branch is computed, and an

aggregated score for the candidate is then computed based on these violation scores.

Based on the above discussion, we use Algorithm 4.1 to compute a score for all the

branching candidates. In Algorithm 4.1, we compute the down violation and up violation

separately and then compute the score of the candidate as a convex combination of the two

violations. The score factor µ = 0.8 is used in taking the convex combination.

Notice that violations computed in Algorithm 4.1 are added for each nonconvex constraint

to obtain a cumulative score for the candidate. This is desirable because it gives a higher score

to a variable appearing in several infeasible nonconvex constraints so that branching on that

variable affects a large portion of the feasible region.

90

Algorithm 4.1 Scoring for Maximum Violation Branching
Input: A set B of branching candidates

Output: Score si for each branching candidate i ∈B

Parameters: Score factor µ

procedure SCOREFORMAXVIOBRANCHING

for i ∈B do

di← 0

ui← 0

if xi ∈ Z then

di← di +(x̂i−⌊x̂i⌋)
ui← ui +(⌈x̂i⌉− x̂i)

for j ∈B do

if yi j exists then

if ŷi j < x̂ix̂ j then

di← di +
x̂ix̂ j−ŷi j√
1+x̂2

i +x j
2

ui← ui +
x̂ix̂ j−ŷi j√
1+x̂2

i +x j2

else

di← di +
ŷi j−x̂ix̂ j√
1+x̂2

i +x j2

ui← ui +
ŷi j−x̂ix̂ j√
1+x̂2

i +x j
2

si← µ min{di,ui}+(1−µ)max{di,ui}

4.3.2 Strong Branching

Strong branching is empirically one of the most effective branching strategies considering the

number of nodes processed in the B&B tree [4]. The idea is to identify which branching

candidate will improve the lower bound the most and then branch on that candidate. We first

temporarily branch on each candidate one at a time and note the lower bound increase in either

branching direction. We then score each candidate based on the weighted increase in the lower

bound in both branching directions.

We describe the scoring method for strong branching for spatial branch-and-bound in

91

Algorithm 4.2. There are some features of strong branching worth highlighting here. Firstly, for

spatial branching, bound changes to the candidate variable are not sufficient, as done in integer

branching, and we need to update the McCormick relaxation for all the quadratic terms that

have the candidate variable. Secondly, as opposed to maximum violation branching described

in Section 4.3.1, strong branching can apply modifications to the current node without branching

or can even decide to prune the current node.

4.3.3 Bt-strong Branching

We now describe a new branching technique unique to the spatial branch-and-bound

algorithm. Empirically, strong branching explores fewer nodes than other branching strategies

for branch-and-bound algorithm for MILP as discussed in Section 4.3.2. For spatial

branch-and-bound, we observe that full strong branching, as described in Section 4.3.2, is

also quite effective for most instances but may not be effective for some instances. Strong

branching does not work well when the score for all branching candidates becomes 0. As

described in Section 2.3, there is a nontrivial change in the McCormick relaxation when bounds

are tightened. This motivates us to first update the bounds on all the variables based on the

candidate bound change and then do strong branching on the candidate. Let us show this effect

of doing bound tightening before strong branching using an example.

Example 4.2. Consider the instance (st_pan1) from MINLPLib [43]. We tighten the bounds

using our bound tightening approaches to the upper bounds on the variables x1 ≤ 1.11,x2 ≤
0.93,x3 ≤ 1.10. We relax this problem using McCormick relaxation described in Section 1.5.1

by adding auxiliary variables y1 = x2
1,y2 = x2

2,y3 = x2
3.

min 1.25x1−2.5x2
1−5x2

2−7.5x2
3 +5x3

s.t. 10x1 +0.2x2−0.1x3 ≤ 11

−0.3x1 +9x2 +0.2x3 ≤ 18 (st_pan1)

−0.1x1 +0.4x2 +11x3 ≤ 12

6x1 +8x2 +9x3 ≤ 18

x1,x2,x3 ≥ 0

92

Algorithm 4.2 Scoring for Strong Branching
Input: A set B of branching candidates, Relaxation R at the current node, current objective

value z∗

Output: Score si for each branching candidate i ∈B

Parameters: Score factor µ

procedure SCOREFORSTRONGBRANCHING

for i ∈B do

if xi ∈ Z then

Rd ← R∩{(x,y) | xi ≤ ⌊x̂i⌋}
Ru← R∩{(x,y) | xi ≥ ⌈x̂i⌉}

else

Rd ← R,Ru← R

for j ∈B do

if yi j exists then

Rd ← Rd ∩{(x,y) | xi ≤ x̂i,yi j ≥ x j + x̂ix j− x jx̂i,yi j ≤ x jxi + x̂ix j− x jx̂i}
Ru← Ru∩{(x,y) | xi ≥ x̂i,yi j ≥ x jxi + x̂ix j− x jx̂i,yi j ≤ x jxi + x̂ix j− x jx̂i}

Solve Rd,Ru and let zd,zu be their objective values respectively.

if Rd is infeasible & Ru is infeasible then

Prune the current node

else if Rd is infeasible then

R← R∩{(x,y) | xi ≥ x̂i}
Reprocess the current node.

else if Ru is infeasible then

R← R∩{(x,y) | xi ≤ x̂i}
Reprocess the current node.

else

di← zd− z∗

ui← zu− z∗

si← µ min{di,ui}+(1−µ)max{di,ui}

The optimal solution to the relaxation is x̂=(1.1071,0.1887,1.0941), ŷ=(1.2301,0.1748,0.1989)

with a lower bound on the objective value ẑ = −5.61 Clearly, y1 ̸= x2
1,y2 ̸= x2

2, and y3 ̸= x2
3

93

and hence we decide to branch here. Now, let us branch on x1 and focus on the left child i. e.

x1 ≤ 1.1071. We update the McCormick relaxation the constraint y1 = x2
1 as is done in strong

branching. The optimal solution of the relaxation remains −5.61. On the other hand, let us

update the upper bounds on x2,x3 based on the new bound on x1 and update the McCormick

relaxation for all three variables. If we solve the new relaxation, the optimal solution increases

to −5.5859.

Similarly, for all branching candidates in either direction, strong branching cannot estimate

the lower bound change for the problem correctly, but tightening bounds before solving the

strong branching problem gives us a better estimate of bound update for all candidates. If this

problem is solved using strong branching, then seven nodes are required, but if bound tightening

is done before strong branching, then only three nodes are required to solve the problem.

As motivated by Example 4.2, we thus do bound tightening for all variables before strong

branching to obtain a better estimate of lower bound update. We call this type of branching as

bt-strong branching. This branching strategy is even more expensive than strong branching

because of the additional bound tightening step before strong branching. Nonetheless, we

expect the size of branch-and-bound tree to be smaller than that of strong branching.

4.3.4 Bt-estimate Branching

As seen in the previous section, tightening variable bounds provides a better estimate of

strong branching. Motivated by this idea, we define a new branching strategy for spatial

branch-and-bound algorithm called bt-estimate branching. Since strong branching and

bt-strong branching are computationally expensive branching strategies, we wish to estimate

the increase in the lower bound without explicitly solving an LP. We do this by tightening

bounds and estimating the change in objective using the reduced cost information. The

algorithm for bt-estimate branching is given in Algorithm 4.3.

Algorithm 4.3 provides a fast heuristic to estimate the lower bound update for a given

candidate without the need to solve the LP. Since we tighten the bounds, we can trivially

check the feasibility of the node by checking if the new lower of a variable is greater than

the new upper bound. Thus, similar to strong branching, we may either prune the node, provide

94

Algorithm 4.3 Scoring for bt-estimate Branching
Input: A set B of branching candidates, Relaxation R at the current node, reduced cost vector

r.

Output: Score si for each branching candidate i ∈B

Parameters: Score factor µ

procedure SCOREFORBTESTIMATEBRANCHING

for i ∈B do

di← 0

ui← 0

Rd ← R∩{(x,y) | xi ≤ x̂i}
Ru← R∩{(x,y) | xi ≥ x̂i}
Tighten bounds for Rd and Ru

Let xd,xd be the new lower and upper bounds on the variables in Rd. Similarly we

define xu,xu for Ru

if Rd is infeasible & Ru is infeasible then

Prune the current node

else if Rd is infeasible then

R← R∩{(x,y) | xi ≥ x̂i}
Reprocess the current node.

else if Ru is infeasible then

R← R∩{(x,y) | xi ≤ x̂i}
Reprocess the current node.

else

for j ∈ {1, . . . ,n} do

if r j ≥ 0 then

di← di + r j(xd
j − x j)

ui← ui + r j(xu
j − x j)

else

di← di + r j(xd
j − x j)

ui← ui + r j(xu
j − x j)

si← µ min{di,ui}+(1−µ)max{di,ui}

95

modifications to reprocess the node or return branching scores. We estimate the lower bound

update based only on the bound changes of the variables. Because of the bound changes, the

McCormick relaxation changes as well, and this significantly changes the feasible region of

the relaxation. One can consider the McCormick relaxation update by defining an appropriate

measure for the change in the McCormick constraint and then using the dual values for the

corresponding constraint. We have left this for future work since defining a measure for the

update of McCormick constraint suitably may require significant testing before an appropriate

measure can be derived.

4.3.5 Bt-reliability Branching

We now describe a branching strategy combining the strengths of bt-strong branching,

pseudocost branching, and maximum violation branching that can be used for spatial

branching. Our computational results showed that bt-strong branching performs the best in

terms of the number of nodes processed, but the time taken for a single node processing is very

high. This can become prohibitive for moderate to large instances; thus, bt-strong branching

cannot be directly used. A simple approach like pseudocost branching does reasonably well

in estimating the lower bound update, given a good initialization scheme. In MILO problems

with only integer branching, a hybrid scheme involving strong branching initialization for

pseudocost branching, known as reliability branching [4], has been shown to perform well

in terms of both time taken and the number of nodes processed. For MIQCQO problems

that require spatial branching, we propose a similar branching strategy that does pseudocost

branching with bt-strong branching initialization. We use violation scores for unreliable

candidates to prioritize which candidates to bt-strong branch. We use violation distances

for reliable candidates as a distance measure for pseudocost branching. We describe our

bt-reliability branching setup in Algorithm 4.4, scoring for reliable and unreliable candidates in

Algorithms 4.5 and 4.6 respectively.

We first divide the set of branching candidates into two sets, namely, reliable candidates

and unreliable candidates. Reliable candidates are those for which we have done bt-strong

branching more than τ times. The remaining candidates are called the unreliable candidates.

We have set τ = 5 in Minotaur. For reliable candidates, we estimate the lower bound increase

96

Algorithm 4.4 Algorithm for bt-reliability Branching
Input: A set B of branching candidates, vectors indicating number of times up or down

branching is done tu, td

Output: Candidate i ∈B that should be branched

Parameters: Threshold τ

procedure RELIABILITYBRANCHING

Br← φ

Bu← φ

for i ∈B do

if td
i ≥ τ & tu

i ≥ τ then

Br←Br∪{i}
else

Bu←Bu∪{i}

sr,cr←SCOREFORRELIABLECANDIDATE(Br)

su,cu←SCOREFORUNRELIABLECANDIDATE(Bu)

if sr ≥ su then

return cr

else

return cu

using pseudocosts. Initially, pseudocost ρi is set to zero for all candidates. When we bt-strong

branch on variable i, we increment the number of times bt-strong branch is done (the variables

td
i , t

u
i). Let the current objective function value be z∗, the objective function value after bt-strong

branching for down direction is zd and the violation distance for down direction computed

using Algorithm 4.1 is di then pseudocost is updated for the candidates using the formula ρd
i =

ρd
i td

i +
z∗−zd

di
td
i +1

. Similarly, pseudocost for up direction is also computed. Pseudocost measures the

average lower bound increase per unit of the violation distance. Now, to obtain an estimate of

lower bound increase for a candidate, we take the product of the pseudocost and the violation

distance for the candidate (see Algorithm 4.5).

In the initial portion of the search tree, the number of unreliable candidates can be

very high. Doing bt-strong branching on all such candidates can be computationally very

expensive. Thus, we restrict the number of candidates to bt-strong branch by MAXCANDS (20

97

Algorithm 4.5 Scoring for Reliable Candidates
Input: A set Br of reliable candidates, vectors ρd,ρu representing the pseudocost for down

and up direction respectively

Output: Candidate i ∈Br having the best score and the corresponding score

Parameters: Score factor µ

procedure SCOREFORRELIABLECANDIDATES

smax← 0

cmax← 0

for i ∈Br do

Get violation distances di,ui for the candidate (see Algorithm 4.1).

di← ρd
i di

ui← ρu
i ui

si← µ min{di,ui}+(1−µ)max{di,ui}
if si ≥ smax then

cmax← i

smax← si

return smax,cmax

for Minotaur). We need to decide which candidates to bt-strong branch on. It is desirable if

we do not bt-strong on the same candidates repeatedly, and we want to bt-strong branch on

candidates with a high violation score. Therefore, we sort the unreliable candidates based on
si

max{td
i , tu

i }+1
, which encourages the candidates with high violation scores and discourages the

candidates which are bt-strong branched many times. We then bt-strong branch on MAXCANDS

candidates and use pseudocost estimate for remaining candidates (see Algorithm 4.6).

4.4 Computational Results

We selected all instances with either nonconvex quadratic objective or nonconvex quadratic

constraints from the MINLPLib dataset [43]. There are 686 such instances. Of these, we only

keep those instances for which the root node was fully processed within a time limit of 900

seconds by all branching strategies. We consider a node fully processed when either we prune it,

98

Algorithm 4.6 Scoring for Unreliable Candidates
Input: A set Bu of unreliable candidates, vectors indicating number of times up or down

branching is done tu, td

Output: Candidate i ∈Bu having the best score and the corresponding score

Parameters: Max candidates to bt-strong branch MAXCANDS

procedure SCOREFORUNRELIABLECANDIDATES

smax← 0

cmax← 0

for i ∈Br do

Get violation score si using Algorithm 4.1

si← si
max{td

i ,t
u
i }+1

Sort Bu based on si in descending order

for first MAXCANDS candidates in Bu do

Get bt-strong branching score si

if si ≥ smax then

cmax← i

smax← si

for remaining candidates in Bu do

Get pseudocost score si (see Algorithm 4.5)

if si ≥ smax then

cmax← i

smax← si

return smax,cmax

or it returns branches. Note that although there is no branching at the root node, the processing

time still varies significantly among different branching strategies because of the time taken to

select the branching candidate and subsequently create the branches. Particularly, while doing

strong branching and bt-strong branching there were several instances for which we could not

process the root node within the time limit. After removing those instances where the root node

is not processed by some of the branching strategies, we are left with 544 instances, which we

call as set T . We have implemented all the five strategies described in the previous section in

Minotaur solver [111]. All computational experiments were performed on a computer with a

99

Maximum

Violation

Strong Bt-strong Bt-estimate Bt-reliability

Instances solved within

time limit

251 251 254 217 258

Shifted geometric mean

of time for Ts

2.06 2.68 2.47 3.38 2.01

Average nodes

processed for Ts

3161.80 9231.60 395.74 11244.79 1718.32

Instances where finite

upper bound not found

79 133 141 124 90

Average nodes

processed for Tu

168719.15 5953.48 2241 15521.11 253522.23

Average relgap for T ub
u 18.24 18.75 19.34 20.12 14.01

Table 4.2: Summary of results comparing different branching strategies

64-bit Intel(R) Xeon(R)E5-2670 v2, 2.50GHz CPU, and 128 GB RAM. We used GCC-4.9.2 to

compile our code and CLP-1.17.6 to solve the linear relaxations at every node. We ran our code

on a single core of the CPU.

For every instance, we begin by presolving the problem. Then, we transform the problem

by substituting quadratic terms with auxiliary variables and creating the McCormick relaxation

as described in Section 1.5.1. We presolve the transformed problem and obtain initial root

relaxation. We then solve the root relaxation. Let LBroot be the objective function value at the

optimal solution of the root relaxation. Cutting planes are switched off for the experiments

to assess the impact on the lower bound by a given branching strategy independently. Thus,

after root relaxation is solved, we call the specific brancher 1 which either returns two new

subproblems, called branches or sometimes provides modifications to the root relaxation which

require further processing of the root node.

We create three subsets of instances in T . Those instances solved by all branching

strategies within the time limit of 900 seconds are called the set Ts. There are 207 instances

in Ts. The instances not solved by any solver within the time limit of 900 seconds are called

1A brancher is an implementation of a particular branching strategy

100

the set Tu. There are 250 instances in Tu. And we define set T ub
u which are instances in Tu,

and all branching strategies obtained a finite upper bound. There are 100 instances in T ub
u .

Table 4.2 reports the summary of results obtained. We observe that bt-reliability branching

solves the maximum number of instances within the time limit. Although the number of

instances solved by bt-reliability branching is not significantly higher than other strategies, we

see that bt-estimate branching solves significantly fewer instances. We compute the shifted

geometric mean of time and average number of nodes processed for instances in Ts. With

respect to time, we observe that bt-reliability brancher is marginally better than maximum

violation brancher, while others take even more time. With respect to the number of nodes

processed, unsurprisingly, bt-strong branching uses the fewest nodes and beats other branching

rules handsomely. However a surprising result is that strong branching performs worse than

maximum violation branching. This happens because there are 8 instances where strong

branching performs significantly worse than expected. For example, in the instance ST_RV7,

the number of nodes processed by maximum violation branching is 397, and bt-strong brancher

takes only 71 nodes, but strong brancher takes 1,412,767 nodes. Such a marked difference

arises because while processing several nodes (including the root node), strong branching has

all candidates with 0 score i. e. both down and up direction objective value improvement is 0.

Then, it selects the variable, which is the lexicographic first variable. In comparison, bt-strong

branching provides an appropriate score for all the candidates and does very well in solving the

problem. Similar issues happen for other 7 instances as well. If we remove these 8 instances

from the average computation, we see that the average number of nodes for strong branching

reduces to 2518.52.

For instances in Tu, as one would expect, we see that the number of nodes processed by

bt-reliability branching and maximum violation branching is more than other strategies since

these are computationally less expensive. Moreover, since the number of nodes processed is

higher for maximum violation branching and bt-reliability branching, they can explore more

parts of the feasible region. Thus, finite upper bounds are found for more instances with these

strategies than others. Also, bt-strong branching processes the least number of nodes; thus, the

highest number of instances are there where it cannot find a finite upper bound. We compare the

relative optimality gap to assess the performance of branching strategies on these Tu instances.

101

We define relative optimality gap as

relgap =
UB−LB
|UB|+ ε

where UB is the upper bound on the objective value, LB is the lower bound on the objective

value, ε is a small positive number to avoid division by zero in case UB is zero. We use ε = 10−6

in our computations. If we have not obtained a finite upper bound for an instance, then the

relative gap is not well defined according to our definition. Thus, we compute the average

relative optimality gap for only 100 instances in T ub
u . We see that bt-reliability branching

performs better than other strategies.

We can see that comparison of branching strategies based on solving time can be done

only for solved instances in Ts. In contrast, branching strategies are compared based on relative

optimality gap for T ub
u instances. Also, the union of the sets Ts,T ub

u is not the entire set of

instances T . To get an overall comparison considering both time taken and gap closed, we

compare the pace of each strategy as defined in [76]

pace =
time

LBend−LBroot + ε

where time is the time taken during solving, LBend is the lower bound obtained after solving,

and ε = 10−6 is used to avoid division by zero. Since a good branching strategy often increases

the lower bound fastest, pace measures the time taken to increase the lower bound by one unit.

Therefore, a better branching strategy will have lower pace and vice versa. This allows us to

fairly compare two branching strategies, even if one has solved the instance to optimality while

the other has not solved the instance within the time limit. We plot the performance profile

[59] of all the branching strategies based on pace in Figure 4.1. For each instance, we first find

the best pace among all the strategies and then take the ratio of the pace of each strategy with

respect to the best pace. The horizontal axis in Figure 4.1 is a logarithmic axis of pace ratio.

The vertical axis is the number of instances where pace ratio for a given strategy is less than

the corresponding pace ratio on the horizontal axis. We observe that there is no clear winner

among maximum violation branching and bt-reliability branching. There are some instances

where maximum violation branching performs better while other instances where bt-reliability

102

0

200

400

600

10
10

00

10
00

00

10
00

00
00

10
00

00
00

00

10
00

00
00

00
00

Maximum Violation
Branching

Strong Branching

bt-strong Branching

bt-estimate
Branching

bt-reliability
Branching

Figure 4.1: Performance profile of different branching strategies based on pace.

branching has a better pace. Other three branching strategies perform worse. Combining results

from Table 4.2 and Figure 4.1, we conclude that bt-reliability branching is marginally better

than maximum violation branching and dominates other branching strategies.

4.5 Conclusion and Future Work

We have described five different branching strategies and implemented these in Minotaur

framework. The branching strategies are designed for spatial branching for MIQCQO

problems. For example, we define a measure for violation of nonconvex constraints that

takes into account the subsequent relaxation after branching, and our bt-strong branching

strategy takes explicitly into account the fact that bound tightening reduces the feasible region

nontrivially and allows much better scoring for branching candidates. We develop a reliability

branching type setup designed for spatial branching that initializes the pseudocosts based

on bt-strong branching instead of strong branching as done in integer branching for MILO

problems. Bt-reliability branching also integrates violation scores to compute the distance

for pseudocosts and generate a priority list for bt-strong branching. We thoroughly tested

these strategies on benchmark instances and reported the results. Our results indicate that

bt-reliability branching is better than other branching strategies described, with a close second

103

being maximum violation branching.

Bt-reliability brancher does bt-strong branching for a fixed MAXCANDS number of

unreliable candidates at each node; a possible extension would be to do bt-strong branching

for a variable number of unreliable candidates depending on the depth of the node. Another

extension is for each variable doing bt-strong branching τ1 times and then doing strong

branching τ2 times before considering the variable reliable.

104

Chapter 5

Conclusion and Future Work

MIQCQO problems are hard to solve to global optimality, both theoretically and

practically. We develop a general purpose solver based on spatial branch-and-bound algorithm

to solve MIQCQO problems. We have discussed the implementations of three components of

the solver, namely, presolver, specialized cut generator, and brancher.

In Chapter 2, we described three presolving techniques. Representing a quadratic function

efficiently helps in reducing the function and gradient evaluation times. We observe that using a

dictionary of keys format of sparse matrix representation significantly helps reduce the function

and gradient evaluation time as opposed to using a computational graph. We also described an

algorithm for detecting convexity based on separability of the variables. This helps in getting

information regarding which constraints or parts of constraints are convex. We then describe

three techniques for bound tightening for MIQCQO problems. We observe that doing OBBT

significantly reduces the bounds of the variables, and we can solve three more instances within

time limit when OBBT is turned on in our solver.

In Chapter 3, we have developed a novel cut generating algorithm for quadratically

constrained optimization problem. We prove that our algorithm will always separate an LP

basic feasible solution that is infeasible to the original problem. We show that our cuts are

105

a subset of RLT cuts when the RLT variables are projected out. Our algorithm is fast and

generates these cuts by manipulating the simplex tableau. We do thorough computational

testing on several variants of our algorithms and show that One-by-One is superior in closing

the optimality gap among the variants tested.

In Chapter 4, we describe five branching strategies developed for MIQCQO problems.

Two strategies described are analogous to maximum infeasible branching and strong branching

in MILO problems. We describe three other branching strategies developed specifically for

spatial branching by doing bound tightening before computing the improvement in the lower

bound for a given candidate. We developed bt-reliability branching strategy, which is a variant

of reliability branching for MILO. Bt-reliability branching combines pseudocost branching,

bt-strong branching, and maximum violation branching to obtain a good score for branching

candidates. We observe that bt-reliability brancher performs better than other branching

strategies in terms of both the time taken to solve and the rate of closing the optimality gap. A

close second is maximum violation branching.

In the next section, we benchmark our solver against an open source solver SCIP and a

commercial solver Gurobi. We also compare the current mglob against an older version of

mglob to show combined improvements from all the developments discussed in this thesis.

5.1 Performance of mglob

We benchmark current mglob (git hash 5592878, commit date October 6, 2023) against SCIP,

Gurobi and mglob from Minotaur 0.2.2 (git hash b944ef6, release date October 15, 2020)

when many of the developments described in this thesis were not present. The current version

of mglob has the following defaults for the algorithms described in the thesis.

• Quadratic functions are represented using qf for every instance.

• Convexity detection is turned on. Problems which are detected as convex (i.e. all

constraints are detected as convex, and the objective function is also detected as convex)

are forwarded to qg solver of Minotaur.

• simpleBT and univarBT are done on all nodes. OBBT is done at the root node only.

106

• Minimum three rounds and maximum 25 rounds of cutting is done using Algorithm 3.1.

• We keep a list of lower bounds on the objective function lbk where k is the cut round. After

three rounds of cutting are done, we do cut generation only if there is a 10% increase in

the lower bound. We compute the percent increase in the lower bound in 3 rounds using

the below formula.

percent increase in lower bound =
lbk− lbk−3

b
×100,

where b is taken as the upper bound on the objective function if a finite upper bound is

available otherwise, b = lbk−3.

• For every violated constraint ŷi j ̸= x̂ix̂ j, we generate a cut based on this constraint only if

|ŷi j− x̂ix̂ j| ≥ 0.1

(
(xi− xi)(x j− x j)

4

)

where the left side of the expression is the constraint violation and the right side is 0.1

times the maximum possible violation of that constraint. That is, we generate a cut only

if the constraint violation is more than 0.1 times the maximum possible violation of the

constraint.

• We only add a cut to the relaxation if the current LP solution violates it by at least 10−3.

• bt-reliability branching is used as the branching strategy.

We have taken all 830 convex and nonconvex MIQCQO problems from the MINLPLib

dataset [43]. All computational experiments were performed on a computer with a 64-bit

Intel(R) Xeon(R)E5-2670 v2, 2.50GHz CPU, and 128 GB RAM. For both versions of Minotaur,

we used GCC-4.9.2 to compile our code. Minotaur 0.2.2 uses CLP-1.16.9 as a linear solver for

solving linear relaxations and IPOPT-3.12.7 as an NLP solver. The current version of Minotaur

uses CLP-1.17.6 as a linear solver and IPOPT-3.14.12 as an NLP solver. Binary files provided

by SCIP Optimization Suite 8.0.2 were used to test the performance of SCIP. Gurobi 10.0.1

was used to test the performance of Gurobi. We have set a time limit of 600 seconds for each

instance.

107

mglob current mglob 0.2.2 SCIP Gurobi

Instances solved correctly within time limit 342 203 464 548

Instance with errors 3 90 2 0

Instance with incorrect bounds 7 133 5 9

Instances solved within time limit by all

solvers

186 186 186 186

Shifted geometric mean time 1.86 1.35 0.60 0.03

Instances with finite lower and upper bounds 553 330 737 788

Instances with finite lower and upper bounds

by all solvers

296 296 296 296

Average relative gap for instances having

finite bounds by all solvers

0.28 0.29 0.08 0.09

Table 5.1: Comparison of mglob current, mglob 0.2.2, SCIP, and Gurobi

Table 5.1 summarises the results obtained for all three solvers. We see that Gurobi solves

the maximum number of instances within time limit, followed by SCIP, then current mglob

comes third, and mglob 0.2.2 solves the least. mglob 0.2.2 had 90 instances for which it

failed. These were common errors reported like invalid memory access, use of uninitialized

pointers, accessing freed memory, etc. Currently, mglob fails on only three instances, while

SCIP fails on two instances, and Gurobi does not report any errors. There were 133 instances

in mglob 0.2.2, which gave incorrect solutions. A solution is considered incorrect when the

lower bound obtained is more than the upper bound available in MINLPLib or when the upper

bound obtained is less than the lower bound available in MINLPLib. Currently, there are seven

instances where such incorrect solutions are obtained, and we see that these are numerical

issues within the solver. SCIP has five instances providing incorrect solutions, which are only

numerical issues, and Gurobi has nine.

Looking at the shifted geometric mean of time taken to solve, we see that current mglob is

worse than that of mglob 0.2.2. This is because we use only 188 instances solved by all solvers

within time limit. These are easy instances, and some techniques discussed in this thesis, like

OBBT and bt-reliability branching, which solve many LPs at the root node, are optional to solve

them. This can be observed further by the fact that 253 more instances in current mglob have

108

both finite upper and lower bounds compared to mglob 0.2.2.

We can thus conclude that current mglob significantly performs better than mglob 0.2.2.

It is more stable, gives correct solutions for most instances within tolerance, and is reasonably

faster. While the current mglob does not perform as well as SCIP 8.0.2 or Gurobi 10.0.1, many

promising future developments can be done so that mglob can become a more competitive

solver. We describe some of the future work in the next section.

5.2 Future Work

There are several promising future research directions and further development of our solver

for MIQCQO problems and general nonconvex problems.

Exploiting convexity - Our convexity detection algorithm described in Section 2.2 detects

convexity for each constraint separately. For convex constraints in nonconvex problems, one

can use stronger relaxation techniques rather than McCormick relaxation as currently done in

mglob. Consider a problem with the following constraints

(2x1 +3x2− x3− x4)
2 ≤ 1,

x1 +3x1x3 ≤ 5.

Currently, mglob will create a McCormick relaxation for each quadratic term (x2
1,x1x2, etc.)

in the first constraint as well for x1x3 in the second constraint. We can easily relax the first

constraint by adding tangent inequalities at some points, and the second constraint can be

relaxed using McCormick relaxation. Such reformulations and relaxations can also be aimed at

constraints, which are convex in some variables and nonconvex in other variables.

Bound Tightening - Many advanced bound tightening approaches in the literature can be

explored. For instance, reduced cost bounding as described in [117], faster OBBT operations

[77, 46] etc. Other presolving techniques like probing, as done for MILO problems, can also be

implemented to improve the coefficients further or tighten the bounds of the variables.

Cuts - As seen in Chapter 3, our cutting plane algorithm can potentially generate several cuts

109

for a problem. A good cut selection strategy that identifies deeper cuts can be considered to

integrate our cuts nicely with a general purpose solver. Our cuts are quite dense since they

depend on the optimal simplex tableau. A good sparsification strategy that produces deep cuts

can also be studied. One can add more cutting planes like the αBB cuts, semidefinite cuts,

disjunctive cuts, etc., for MIQCQO problems.

Branching - We have presented bt-reliability branching setup in Section 4.3.5. It has a

parameters like MAXCANDS, τ . A tuning of these parameters such that the algorithm works

well for a diverse set of instances can be studied. One can also implement branching strategies

based on machine learning as discussed in [76] and others.

Heuristics - Currently, our solver only does multi-start local search for problems with no

integer variables. Other heuristics can also be implemented, like feasibility pump, diving, large

neighborhood search etc. Metaheuristics like particle swarm optimization, genetic algorithm,

and ant colony optimization can also be tried. These give good quality feasible solutions at the

start of the root node so that faster tree pruning can be achieved.

Integration with MILO solver - Many convex MINLO solvers, including those in Minotaur,

solve MILO relaxation of MINLO problems instead of LO relaxation. These algorithms then

use a single tree exploration for MINLO and MILO subproblems. Similar techniques for

nonconvex problems can be implemented. This also allows to add cuts based on specific MILO

structures like knapsack cuts, flow cover cuts, Gomory’s mixed integer cuts, etc.

Parallel computations - Many tree search based algorithms can be easily parallelized to

improve the performance. Shared memory parallel extensions to our sB&B algorithm are

an evident future work. Apart from parallelizing sB&B, many other components, like the

presolver, heuristics, etc., can also be parallelized.

110

References
[1] LP file format: algebraic representation. https:

//www.ibm.com/docs/en/icos/22.1.1?topic=

cplex-lp-file-format-algebraic-representation. Accessed:

2023-11-28.

[2] MPS file format: industry standard. https://www.ibm.com/docs/en/

icos/22.1.1?topic=cplex-mps-file-format-industry-standard.

Accessed: 2023-11-28.

[3] POLIP - library for polynomially constrained mixed-integer programming. https:

//polip.zib.de/pipformat.php. Accessed: 2023-11-28.

[4] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited.

Operations Research Letters, 33(1):42–54, 2005.

[5] Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing

12 years of progress. In Facets of combinatorial optimization: Festschrift for martin

grötschel, pages 449–481. Springer, 2013.

[6] Warren P Adams and Terri A Johnson. Improved linear programming-based lower

bounds for the quadratic assignment problem. DIMACS series in discrete mathematics

and theoretical computer science, 16:43–77, 1994.

[7] Nilanjan Adhya, Mohit Tawarmalani, and Nikolaos V Sahinidis. A Lagrangian

approach to the pooling problem. Industrial & Engineering Chemistry Research,

38(5):1956–1972, 1999.

[8] Claire S Adjiman, Stefan Dallwig, Christodoulos A Floudas, and Arnold Neumaier. A

global optimization method, αBB, for general twice-differentiable constrained NLPs—I.

theoretical advances. Computers & Chemical Engineering, 22(9):1137–1158, 1998.

[9] A Aggarwal and CA Floudas. Synthesis of general distillation sequences—nonsharp

separations. Computers & chemical engineering, 14(6):631–653, 1990.

111

https://www.ibm.com/docs/en/icos/22.1.1?topic=cplex-lp-file-format-algebraic-representation
https://www.ibm.com/docs/en/icos/22.1.1?topic=cplex-lp-file-format-algebraic-representation
https://www.ibm.com/docs/en/icos/22.1.1?topic=cplex-lp-file-format-algebraic-representation
https://www.ibm.com/docs/en/icos/22.1.1?topic=cplex-mps-file-format-industry-standard
https://www.ibm.com/docs/en/icos/22.1.1?topic=cplex-mps-file-format-industry-standard
https://polip.zib.de/pipformat.php
https://polip.zib.de/pipformat.php

[10] Faiz A Al-Khayyal and James E Falk. Jointly constrained biconvex programming.

Mathematics of Operations Research, 8(2):273–286, 1983.

[11] Mohammed Alfaki and Dag Haugland. Strong formulations for the pooling problem.

Journal of Global Optimization, 56:897–916, 2013.

[12] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine

learning-based approximation of strong branching. INFORMS Journal on Computing,

29(1):185–195, 2017.

[13] Martin S Andersen, Anders Hansson, and Lieven Vandenberghe. Reduced-complexity

semidefinite relaxations of optimal power flow problems. IEEE Transactions on Power

Systems, 29(4):1855–1863, 2013.

[14] Giuseppe Andreello, Alberto Caprara, and Matteo Fischetti. Embedding {0, ½}-Cuts in a

Branch-and-Cut Framework: A Computational Study. INFORMS Journal on Computing,

19:229–238, 05 2007.

[15] Ioannis P Androulakis, Costas D Maranas, and Christodoulos A Floudas. αBB: A global

optimization method for general constrained nonconvex problems. Journal of Global

Optimization, 7(4):337–363, 1995.

[16] D. Applegate, R. Bixby, V. Chvatal, and B. Cook. Finding cuts in the tsp (a preliminary

report). Technical report, 1995.

[17] MOSEK ApS. Introducing the MOSEK Optimization Suite 10.1.15, 2022.

[18] Charles Audet, Jack Brimberg, Pierre Hansen, Sébastien Le Digabel, and Nenad

Mladenović. Pooling problem: Alternate formulations and solution methods.

Management science, 50(6):761–776, 2004.

[19] Charles Audet, Pierre Hansen, Brigitte Jaumard, and Gilles Savard. A branch

and cut algorithm for nonconvex quadratically constrained quadratic programming.

Mathematical Programming, 87(1):131–152, 2000.

[20] Charles Audet, Pierre Hansen, and Frédéric Messine. The small octagon with longest

perimeter. Journal of Combinatorial Theory, Series A, 114(1):135–150, 2007.

112

[21] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to

branch. In International conference on machine learning, pages 344–353. PMLR, 2018.

[22] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear programming and network

flows. John Wiley & Sons, 2011.

[23] Pietro Belotti, Timo Berthold, and Kelligton Neves. Algorithms for discrete nonlinear

optimization in FICO Xpress. In 2016 IEEE Sensor Array and Multichannel Signal

Processing Workshop (SAM), pages 1–5. IEEE, 2016.

[24] Pietro Belotti, Sonia Cafieri, Jon Lee, and Leo Liberti. Feasibility-based bounds

tightening via fixed points. In International Conference on Combinatorial Optimization

and Applications, pages 65–76. Springer, 2010.

[25] Pietro Belotti, Jon Lee, Leo Liberti, Francois Margot, and Andreas Wächter. Branching

and bounds tightening techniques for non-convex MINLP. Optimization Methods &

Software, 24(4-5):597–634, 2009.

[26] Aharon Ben-Tal, Gideon Eiger, and Vladimir Gershovitz. Global minimization by

reducing the duality gap. Mathematical programming, 63(1-3):193–212, 1994.

[27] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière,

and Olivier Vincent. Experiments in mixed-integer linear programming. Mathematical

Programming, 1:76–94, 1971.

[28] Timo Berthold, Ambros M. Gleixner, Stefan Heinz, and Stefan Vigerske. Analyzing the

computational impact of MIQCP solver components. Numerical Algebra, Control and

Optimization, 2(4):739–748, 2012.

[29] Dimitri Bertsekas, Angelia Nedic, and Asuman Ozdaglar. Convex analysis and

optimization, volume 1. Athena Scientific, 2003.

[30] Dimitris Bertsimas and Ryan Cory-Wright. A scalable algorithm for sparse portfolio

selection. Informs journal on computing, 34(3):1489–1511, 2022.

[31] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.

Athena scientific Belmont, MA, 1997.

113

[32] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim

Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath,

Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen,

Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J.

Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel

Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro

Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter

Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report,

Optimization Online, December 2021.

[33] Ksenia Bestuzheva, Ambros Gleixner, and Tobias Achterberg. Efficient separation of rlt

cuts for implicit and explicit bilinear products. In International Conference on Integer

Programming and Combinatorial Optimization, pages 14–28. Springer, 2023.

[34] Daniel Bienstock, Chen Chen, and Gonzalo Munoz. Outer-product-free sets

for polynomial optimization and oracle-based cuts. Mathematical Programming,

183(1-2):105–148, 2020.

[35] Christian Bingane, Miguel F Anjos, and Sébastien Le Digabel. Tight-and-cheap conic

relaxation for the ac optimal power flow problem. IEEE Transactions on Power Systems,

33(6):7181–7188, 2018.

[36] Johannes Bisschop. AIMMS optimization modeling. Lulu. com, 2006.

[37] Robert Bixby and Edward Rothberg. Progress in computational mixed integer

programming–a look back from the other side of the tipping point. Annals of Operations

Research, 149(1):37, 2007.

[38] Immanuel M Bomze. Branch-and-bound approaches to standard quadratic optimization

problems. Journal of Global Optimization, 22(1):17–37, 2002.

[39] Pierre Bonami and Jon Lee. Bonmin user’s manual. Numer Math, 4:1–32, 2007.

[40] Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

114

[41] Christoph Buchheim, Angelika Wiegele, and Lanbo Zheng. Exact algorithms for the

quadratic linear ordering problem. INFORMS Journal on Computing, 22(1):168–177,

2010.

[42] Samuel Burer and Anureet Saxena. The MILP road to MIQCP. In Jon Lee and Sven

Leyffer, editors, Mixed Integer Nonlinear Programming, pages 373–405, New York, NY,

2012. Springer New York.

[43] Michael R Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. MINLPLib—a

collection of test models for mixed-integer nonlinear programming. INFORMS Journal

on Computing, 15(1):114–119, 2003.

[44] Michael R Bussieck and Stefan Vigerske. MINLP Solver Software. Wiley Encyclopedia

of Operations Research and Management Science, 2010.

[45] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird,

Bethany L. Nicholson, John D. Siirola, Jean-Paul Watson, and David L. Woodruff.

Pyomo–optimization modeling in python, volume 67. Springer Science & Business

Media, third edition, 2021.

[46] Michael Lee Bynum, Andrea R Castillo, Bernard Knueven, John Daniel Siirola, and

Carl Damon Laird. Decomposing Optimization-Based Bounds Tightening Problems Via

Graph Partitioning. Technical report, Sandia National Lab.(SNL-NM), Albuquerque,

NM (United States), 2019.

[47] Emilio Carrizosa, Pierre Hansen, and Frédéric Messine. Improving interval analysis

bounds by translations. Journal of Global Optimization, 29(2):157–172, 2004.

[48] Pedro M Castro, Henrique A Matos, and Augusto Q Novais. An efficient heuristic

procedure for the optimal design of wastewater treatment systems. Resources,

conservation and recycling, 50(2):158–185, 2007.

[49] Pedro M Castro and João P Teles. Comparison of global optimization algorithms for the

design of water-using networks. Computers & chemical engineering, 52:249–261, 2013.

[50] Pedro M Castro, Joao P Teles, and Augusto Q Novais. Linear program-based algorithm

for the optimal design of wastewater treatment systems. Clean Technologies and

Environmental Policy, 11:83–93, 2009.

115

[51] Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. Strengthening convex

relaxations with bound tightening for power network optimization. In International

Conference on Principles and Practice of Constraint Programming, pages 39–57.

Springer, 2015.

[52] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming,

volume 271. Springer.

[53] John Horton Conway and Neil James Alexander Sloane. Sphere packings, lattices and

groups, volume 290. Springer Science & Business Media, 2013.

[54] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of computing, pages 151–158, 1971.

[55] Gérard Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical

programming, 112(1):3–44, 2008.

[56] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines

Corporation, 46(53):157, 2009.

[57] Henrik Dahl, Alexander Meeraus, and Stavros A Zenios. Some financial optimization

models: I. risk management. Fishman-Davidson Center for the Study of the Service

Sector, Wharton School . . . , 1989.

[58] Santanu S Dey, Yatharth Dubey, Marco Molinaro, and Prachi Shah. A theoretical

and computational analysis of full strong-branching. Mathematical Programming,

205(1):303–336, 2024.

[59] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with

performance profiles. Mathematical programming, 91:201–213, 2002.

[60] Ferenc Domes and Arnold Neumaier. Constraint propagation on quadratic constraints.

Constraints, 15(3):404–429, 2010.

[61] Ferenc Domes and Arnold Neumaier. Rigorous filtering using linear relaxations. Journal

of Global Optimization, 53(3):441–473, 2012.

[62] Matteo Fischetti, Ivana Ljubić, and Markus Sinnl. Redesigning benders decomposition

for large-scale facility location. Management Science, 63(7):2146–2162, 2017.

116

[63] Matteo Fischetti and Michele Monaci. A branch-and-cut algorithm for mixed-integer

bilinear programming. European Journal of Operational Research, 282(2):506–514,

2020.

[64] Christodoulos A Floudas, Panos M Pardalos, Claire Adjiman, William R Esposito,

Zeynep H Gümüs, Stephen T Harding, John L Klepeis, Clifford A Meyer, and Carl A

Schweiger. Handbook of test problems in local and global optimization, volume 33.

Springer Science & Business Media, 2013.

[65] JJH Forrest, JPH Hirst, and John A Tomlin. Practical solution of large mixed integer

programming problems with UMPIRE. Management Science, 20(5):736–773, 1974.

[66] John Forrest, Ted Ralphs, Haroldo Gambini Santos, Stefan Vigerske, John Forrest, Lou

Hafer, Bjarni Kristjansson, jpfasano, EdwinStraver, Miles Lubin, Jan-Willem, rlougee,

jpgoncal1, Samuel Brito, h-i gassmann, Cristina, Matthew Saltzman, tosttost, Bruno

Pitrus, Fumiaki MATSUSHIMA, and to st. coin-or/cbc: Release releases/2.10.10, April

2023.

[67] John Forrest, Stefan Vigerske, Ted Ralphs, Lou Hafer, JP Fasano, Haroldo Gambini

Santos, Matthew Saltzman, Horand Gassmann, Bjarni Kristjansson, and Alan King.

coin-or/Clp: Version 1.17.6 (releases/1.17.6). Zenodo, April 2020.

[68] Robert Fourer, David M Gay, and Brian W Kernighan. A modeling language for

mathematical programming. Management Science, 36(5):519–554, 1990.

[69] Robert Fourer, David M Gay, and Brian W Kernighan. Design principles and new

developments in the AMPL modeling language. Modeling languages in mathematical

optimization, pages 105–135, 2004.

[70] Antonio Frangioni, Fabio Furini, and Claudio Gentile. Approximated perspective

relaxations: a project and lift approach. Computational Optimization and Applications,

63:705–735, 2016.

[71] Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval

research logistics quarterly, 3(1-2):95–110, 1956.

[72] Jianjun Gao and Duan Li. Optimal cardinality constrained portfolio selection. Operations

research, 61(3):745–761, 2013.

117

[73] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[74] David M Gay. Writing. nl files. Technical report, Sandia National Lab.(SNL-NM),

Albuquerque, NM (United States), 2005.

[75] Bissan Ghaddar, Miguel F Anjos, and Frauke Liers. A branch-and-cut algorithm based on

semidefinite programming for the minimum k-partition problem. Annals of Operations

Research, 188(1):155–174, 2011.

[76] Bissan Ghaddar, Ignacio Gómez-Casares, Julio González-Díaz, Brais

González-Rodríguez, Beatriz Pateiro-López, and Sofía Rodríguez-Ballesteros. Learning

for spatial branching: An algorithm selection approach. INFORMS Journal on

Computing, 35(5):1024–1043, 2023.

[77] Ambros M Gleixner, Timo Berthold, Benjamin Müller, and Stefan Weltge. Three

enhancements for optimization-based bound tightening. Journal of Global Optimization,

67(4):731–757, 2017.

[78] Ambros M Gleixner, Daniel E Steffy, and Kati Wolter. Iterative refinement for linear

programming. INFORMS Journal on Computing, 28(3):449–464, 2016.

[79] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society, 64(5):275 – 278, 1958.

[80] Ralph E. Gomory. An Algorithm for the mixed Integer Problem. Report No. P-1885,

The Rand Corporation, Santa Monica, CA., 1960.

[81] Brais González-Rodríguez, Joaquín Ossorio-Castillo, Julio González-Díaz, Ángel M

González-Rueda, David R Penas, and Diego Rodríguez-Martínez. Computational

advances in polynomial optimization: RAPOSa, a freely available global solver. Journal

of Global Optimization, 85(3):541–568, 2023.

[82] Andreas Griewank. Automatic differentiaion of algorithms: Theory, implementation and

application. Siam, 1991.

118

[83] Ignacio E Grossmann, Jagadisan Viswanathan, Aldo Vecchietti, Ramesh Raman, Erwin

Kalvelagen, et al. Gams/dicopt: A discrete continuous optimization package. GAMS

Corporation Inc, 37:55, 2002.

[84] Oktay Günlük, Jon Lee, and Robert Weismantel. MINLP strengthening for separable

convex quadratic transportation-cost ufl. IBM Res. Report, pages 1–16, 2007.

[85] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[86] Iiro Harjunkoski, Ray Pörn, and Tapio Westerlund. MINLP: trim-loss problem, pages

1469–1477. Springer US, Boston, MA, 2001.

[87] Iiro Harjunkoski, Tapio Westerlund, Ray Pörn, and Hans Skrifvars. Different

transformations for solving non-convex trim-loss problems by minlp. European Journal

of Operational Research, 105(3):594–603, 1998.

[88] C A Haverly. Studies of the behavior of recursion for the pooling problem. ACM SIGMAP

Bulletin, (25):19–28, 1978.

[89] Sunderesh S Heragu and Andrew Kusiak. Machine layout problem in flexible

manufacturing systems. Operations research, 36(2):258–268, 1988.

[90] Hassan Hijazi, Carleton Coffrin, and Pascal Van Hentenryck. Convex quadratic

relaxations for mixed-integer nonlinear programs in power systems. Mathematical

Programming Computation, 9:321–367, 2017.

[91] Reiner Horst and Hoang Tuy. Global optimization: Deterministic approaches. Springer

Science & Business Media, 2013.

[92] Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan,

Jianye Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer

programming. Pattern Recognition, 123:108353, 2022.

[93] Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method.

Mathematical Programming Computation, 10(1):119–142, 2018.

[94] R. C. Jeroslow. There cannot be any algorithm for Integer Programming with Quadratic

constraints. Operations Research, 21(1):221–224, February 1973.

119

[95] Tomáš Kaiser, Maria Saumell, and Nico Van Cleemput. 10-Gabriel graphs are

Hamiltonian. Information Processing Letters, 115(11):877–881, 2015.

[96] Josef Kallrath. Cutting circles and polygons from area-minimizing rectangles. Journal

of Global Optimization, 43(2):299–328, 2009.

[97] Julia Kallrath, Steffen Rebennack, Josef Kallrath, and Rüdiger Kusche. Solving

real-world cutting stock-problems in the paper industry: Mathematical approaches,

experience and challenges. European Journal of Operational Research, 238(1):374–389,

2014.

[98] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In

Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages

302–311, 1984.

[99] Sergei Kucherenko, Pietro Belotti, Leo Liberti, and Nelson Maculan. New formulations

for the kissing number problem. Discrete Applied Mathematics, 155(14):1837–1841,

2007.

[100] Xiang Li, Emre Armagan, Asgeir Tomasgard, and Paul I Barton. Stochastic pooling

problem for natural gas production network design and operation under uncertainty.

AIChE Journal, 57(8):2120–2135, 2011.

[101] Xiang Li, Asgeir Tomasgard, and Paul I Barton. Decomposition strategy for the

stochastic pooling problem. Journal of Global Optimization, 54(4):765–790, 2012.

[102] Leo Liberti. Linearity embedded in nonconvex programs. Journal of Global

Optimization, 33:157–196, 2005.

[103] Leo Liberti and Constantinos C Pantelides. An exact reformulation algorithm for

large nonconvex NLPs involving bilinear terms. Journal of Global Optimization,

36(2):161–189, 2006.

[104] Jeff T Linderoth and Martin WP Savelsbergh. A computational study of search strategies

for mixed integer programming. INFORMS Journal on Computing, 11(2):173–187,

1999.

120

[105] Marco Locatelli and Fabio Schoen. Global optimization: theory, algorithms, and

applications. SIAM, 2013.

[106] Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. TOP,

25:207–236, 2017.

[107] Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoît Legat, and

Juan Pablo Vielma. JuMP 1.0: Recent improvements to a modeling language for

mathematical optimization. Mathematical Programming Computation, 2023.

[108] James Luedtke, Mahdi Namazifar, and Jeff Linderoth. Some results on the strength of

relaxations of multilinear functions. Mathematical programming, 136(2):325–351, 2012.

[109] Andreas Lundell, Jan Kronqvist, and Tapio Westerlund. The supporting hyperplane

optimization toolkit for convex MINLP. Journal of Global Optimization, 84(1):1–41,

2022.

[110] Ashutosh Mahajan. Presolving mixed-integer linear programs. Wiley Encyclopedia of

Operations Research and Management Science, pages 4141–4149, 2010.

[111] Ashutosh Mahajan, Sven Leyffer, Jeff Linderoth, James Luedtke, and Todd Munson.

Minotaur: A mixed-integer nonlinear optimization toolkit. Mathematical Programming

Computation, 13(2):301–338, 2021.

[112] Garth P McCormick. Computability of global solutions to factorable nonconvex

programs: Part-I Convex underestimating problems. Mathematical programming,

10(1):147–175, 1976.

[113] Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM

Journal on optimization, 2(4):575–601, 1992.

[114] Clifford A Meyer and Christodoulos A Floudas. Convex envelopes for edge-concave

functions. Mathematical programming, 103(2):207–224, 2005.

[115] Ruth Misener and Christodoulos Floudas. Advances for the pooling problem: Modeling,

global optimization, and computational studies Survey. Applied and Computational

Mathematics, 8, 01 2009.

121

[116] Ruth Misener and Christodoulos A Floudas. Global optimization of mixed-integer

quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and

edge-concave relaxations. Mathematical Programming, 136(1):155–182, 2012.

[117] Ruth Misener and Christodoulos A. Floudas. GloMIQO: Global mixed-integer quadratic

optimizer. Journal of Global Optimization, 57(1):3–50, Sep 2013.

[118] Ruth Misener and Christodoulos A Floudas. ANTIGONE: algorithms for

continuous/integer global optimization of nonlinear equations. Journal of Global

Optimization, 59(2-3):503–526, 2014.

[119] Ruth Misener, Chrysanthos E Gounaris, and Christodoulos A Floudas. Mathematical

modeling and global optimization of large-scale extended pooling problems with

the (EPA) complex emissions constraints. Computers & chemical engineering,

34(9):1432–1456, 2010.

[120] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to interval

analysis. SIAM, 2009.

[121] Sylvain Mouret and Ignacio E Grossmann. Crude-oil operations scheduling. Available

from CyberInfrastructure for MINLP at: https://www. minlp. org/library/problem/index.

php, 2010.

[122] TJ Mullin and P Belotti. Using branch-and-bound algorithms to optimize selection of a

fixed-size breeding population under a relatedness constraint. Tree genetics & genomes,

12(1):4, 2016.

[123] Harsha Nagarajan, Mowen Lu, Site Wang, Russell Bent, and Kaarthik Sundar. An

adaptive, multivariate partitioning algorithm for global optimization of nonconvex

programs. Journal of Global Optimization, 2019.

[124] Harsha Nagarajan, Mowen Lu, Emre Yamangil, and Russell Bent. Tightening

McCormick relaxations for nonlinear programs via dynamic multivariate partitioning. In

International Conference on Principles and Practice of Constraint Programming, pages

369–387. Springer, 2016.

[125] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex

programming. SIAM, 1994.

122

[126] Laurent Perron and Vincent Furnon. Or-tools.

[127] Svatopluk Poljak and Henry Wolkowicz. Convex relaxations of (0, 1)-quadratic

programming. Mathematics of Operations Research, 20(3):550–561, 1995.

[128] Yash Puranik and Nikolaos V Sahinidis. Domain reduction techniques for global NLP

and MINLP optimization. Constraints, 22(3):338–376, 2017.

[129] Richard E Rosenthal. A gams tutorial. GAMS-A User’s Guide, 5(26):649, 2007.

[130] Nikolaos V Sahinidis and Mohit Tawarmalani. Accelerating branch-and-bound through

a modeling language construct for relaxation-specific constraints. Journal of Global

Optimization, 32:259–280, 2005.

[131] Anureet Saxena, Pierre Bonami, and Jon Lee. Disjunctive cuts for non-convex mixed

integer quadratically constrained programs. In Integer Programming and Combinatorial

Optimization: 13th International Conference, IPCO 2008 Bertinoro, Italy, May 26-28,

2008 Proceedings 13, pages 17–33. Springer, 2008.

[132] Hermann Schichl and Arnold Neumaier. Interval analysis on directed acyclic graphs for

global optimization. Journal of Global Optimization, 33(4):541–562, 2005.

[133] Hanif D Sherali and Warren P Adams. A reformulation-linearization technique for

solving discrete and continuous nonconvex problems, volume 31. Springer Science &

Business Media, 2013.

[134] Hanif D Sherali and Amine Alameddine. A new reformulation-linearization technique

for bilinear programming problems. Journal of Global optimization, 2(4):379–410, 1992.

[135] Hanif D Sherali, Evrim Dalkiran, and Leo Liberti. Reduced RLT representations

for nonconvex polynomial programming problems. Journal of Global Optimization,

52:447–469, 2012.

[136] Hanif D Sherali and Cihan H Tuncbilek. A global optimization algorithm for polynomial

programming problems using a reformulation-linearization technique. Journal of Global

Optimization, 2:101–112, 1992.

[137] Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems

Sciences, 25:1–11, 1987.

123

[138] Mohit Tawarmalani and Nikolaos V Sahinidis. Global optimization of mixed-integer

nonlinear programs: A theoretical and computational study. Mathematical programming,

99(3):563–591, 2004.

[139] João Teles, Pedro M Castro, and Augusto Q Novais. LP-based solution strategies for

the optimal design of industrial water networks with multiple contaminants. Chemical

Engineering Science, 63(2):376–394, 2008.

[140] Joao P Teles, Pedro M Castro, and Henrique A Matos. Global optimization of

water networks design using multiparametric disaggregation. Computers & Chemical

Engineering, 40:132–147, 2012.

[141] Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive

cut selection in mixed-integer linear programming. Open Journal of Mathematical

Optimization, 4:1–28, 2023.

[142] Robert J Vanderbei et al. Linear programming. Springer, 2020.

[143] Juan Pablo Vielma, Shabbir Ahmed, and George L Nemhauser. A lifted linear

programming branch-and-bound algorithm for mixed-integer conic quadratic programs.

INFORMS Journal on Computing, 20(3):438–450, 2008.

[144] Stefan Vigerske and Ambros Gleixner. SCIP: Global optimization of mixed-integer

nonlinear programs in a branch-and-cut framework. Optimization Methods and Software,

33(3):563–593, 2018.

[145] Franz Wesselmann and U Stuhl. Implementing cutting plane management and selection

techniques. University of Paderborn, Tech. Rep, 2012.

[146] Tapio Westerlund and Kurt Lundqvist. Alpha-ECP, version 5.01: An interactive

MINLP-solver based on the extended cutting plane method. Åbo Akademi Turku,

Finland, 2001.

[147] Fengqi You and Ignacio E Grossmann. Mixed-integer nonlinear programming

models and algorithms for large-scale supply chain design with stochastic inventory

management. Industrial & Engineering Chemistry Research, 47(20):7802–7817, 2008.

124

[148] Lu Zhen, Yiwei Wu, Shuaian Wang, Yi Hu, and Wen Yi. Capacitated closed-loop

supply chain network design under uncertainty. Advanced Engineering Informatics,

38:306–315, 2018.

[149] XJ Zheng, XL Sun, and Duan Li. Nonconvex quadratically constrained quadratic

programming: best DC decompositions and their SDP representations. Journal of Global

Optimization, 50(4):695–712, 2011.

125

This page was intentionally left blank.

List of Publications and Presentations
• Mustafa Vora, and Ashutosh Mahajan. "Cutting planes from the simplex tableau for

quadratically constrained optimization problems." Tech. Rep. Optimization Online,

Submitted to INFORMS Journal on Computing 2023.

• Mustafa Vora and Ashutosh Mahajan. "Cutting planes from the Simplex Tableau

for Quadratically Constrained Problems." HUGO 2022 - XV. Workshop on Global

Optimization, Szeged, Hungary, September 6-8 2022.

• Mustafa Vora and Ashutosh Mahajan, "Deriving cutting planes for Quadratically

Constrained Problems." Summer School on Large Scale Optimization, IIM Ahmedabad,

May 6-13 2022.

• Mustafa Vora, Meenarli Sharma, Prashant Palkar and Ashutosh Mahajan. "Solving

Mixed-Integer Nonlinear Optimization Problems Using MINOTAUR." 52nd Annual

Convention of ORSI & International Conference, IIM Ahmedabad, December 15-18

2019

127

This page was intentionally left blank.

Acknowledgments

There are several people who have made many contributions towards my academic and

non-academic life during my PhD journey and whose contributions have made this thesis

possible. I would like to take this opportunity to express my deepest gratitude to those who

were part of this journey.

Firstly, I would deeply thank my advisor Prof. Ashutosh Mahajan whose guidance and

support at every stage of my PhD made me sail through this journey. His cheerful attitude and

a knack of cracking pinpointed jokes always helped me stay positive and motivated. His keen

remarks with respect to my work and attention to detail allowed me to correct several of my

mistakes and provided many new ideas that I can work upon. I have also had the opportunity

to work alongside him for Institute timetabling, Teaching Assistant in several courses, and

other teaching and non-teaching assignments which broadened my perspective and made me

understand practical implications of Operations Research as a whole. It was a great privilege to

work with him and his contributions in this thesis are immeasurable.

I would also like to thank Prof. Narayan Rangaraj, Prof. Vishnu Narayanan, and Prof.

Avinash Bhardwaj for agreeing to be a part of my Research Progress Committee. I had many

insightful discussions with them during my Annual Progress Seminars and otherwise that

helped me a lot in my thesis work. I would like to thank my faculty advisor Prof. Veeraruna

Kavitha for her guidance during my first year about courses, curriculum and helping me get

accustomed to academic life at IITB easily. I would thank all the faculty of IEOR department

with whom I have taken many courses. I would also like to thank the office staff of IEOR who

helped me greatly with administrative work.

I would like to thank my seniors Prashant Palkar, Meenarli Sharma, Tejas Ghorpade,

Swapnesh Subramanian and others for their academic and non-academic advice. I would like

to thank my colleagues and friends from IEOR Khushboo, Rishav, Akul, Vanessa, Vartika,

129

Mufassir, Chhavi, Sambit, Aanchal, Akshay, Prem, Sanket, Simran, Pranav, Abhishek and

others. I had a great time with them and they helped me in many academic and personal matters.

I would also like to thank my friends Apurva and Shabnam for the many memories that we have

shared together during my time in IITB.

I am deeply grateful to my parents, Makbul and Rashida, whose constant support

and innumerable sacrifices allowed me to pursue my career. I am deeply humbled by the

patience and sacrifices of my wife Sakina during my PhD years. Her support and words of

encouragement made me going all this time and I am deeply thankful to have such a partner.

I would also like to thank MHRD Government of India for the financial support during

my PhD.

Vora Mustafa Makbul

IIT Bombay

July 10, 2024

130

	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Convex vs Nonconvex Optimization
	Convex Sets and Convex functions
	Local Minimum vs Global Minimum
	Separation

	Linear Optimization
	Structure and Properties of LO
	Simplex Method

	Mixed Integer Linear Optimization
	Branch-and-Bound Algorithm
	Cutting Plane Algorithm

	Mixed Integer Quadratically Constrained Quadratic Optimization
	Relaxation Techniques for MIQCQO
	McCormick Relaxation
	Underestimators, Overestimators and BB Relaxation
	Reformulation Linearization Technique
	Semidefinite Programming Relaxation

	Spatial Branch and Bound
	Software for Optimization
	LO, MILO and convex MINLO
	MIQCQO and nonconvex MINLO
	Modeling Tools

	Minotaur framework for MIQCQO
	Contributions and Outline of the Thesis

	Presolving Techniques
	Representation of a Quadratic function
	Computational Graphs
	Dictionary of keys
	Computational Results

	Convexity Detection
	qf as a graph
	Convexity detection using subgraphs of the qf

	Bound Tightening
	Literature Review
	Feasibility Based Bound Tightening
	FBBT for a univariate quadratic expression
	Adding Default Bounds
	Optimality Based Bound Tightening
	Computational Results

	Conclusion

	Cutting Planes for Quadratically Constrained Optimization Problems
	Properties of McCormick Estimators
	Literature review
	A Procedure for generating cuts
	Canonical form of the relaxation
	Standard form of linear relaxation

	Analogy with Gomory's fractional cuts
	Adding new variables and connections with RLT
	Computational results
	Cuts in original space of variables
	Adding variables

	Conclusion and Future Work

	Branching Strategies
	What is a branching strategy?
	Literature Review
	Branching strategies for nonconvex problems
	Maximum Violation Branching
	Strong Branching
	Bt-strong Branching
	Bt-estimate Branching
	Bt-reliability Branching

	Computational Results
	Conclusion and Future Work

	Conclusion and Future Work
	Performance of mglob
	Future Work

	References
	List of Publications and Presentations
	Acknowledgments

