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Abstract

This thesis describes the development of mglob, a general purpose solver for Mixed Integer
Quadratically Constrained Quadratic Optimization (MIQCQOQO) problems. MIQCQO problems
appear in several important applications. MIQCQO is a nonconvex nonlinear problem, which
makes it challenging to find a globally optimal solution. Typically, spatial Branch-and-Bound
algorithm is used for solving MIQCQO problems, which mglob also uses. Minotaur
framework is used for implementing mglob. Minotaur framework provides several routines
for reading and storing optimization problems, doing tree search, solving relaxations, etc.,
that are useful for solvers like mglob. We describe some algorithmic components we have
developed for mglob and how well they perform on benchmark instances.

First, we describe three presolving techniques implemented in mglob. Presolving is a
preprocessing step done in many general purpose solvers for mathematical optimization. It
simplifies the problem and collects important information about the problem that can be used

to solve the problem faster.

(i) The first technique converts a given quadratic function into a Dictionary of Keys format
of coefficients of the quadratic function (gf). We study the effectiveness of these
representations on function evaluation and gradient evaluation. Our results show that
gf takes significantly less time in almost all instances except for a few instances with a

special structure.

(11) We describe an algorithm to detect convexity for separable quadratic functions that help
detect convexity faster. Since MIQCQO are nonconvex problems in general, identifying
convex problems or convex constraints in the problems can be beneficial to design specific

algorithms for these problems.

(ii1)) We implement Feasibility Based Bound Tightening (FBBT), a specialized FBBT

algorithm for univariate quadratic expression, and Optimality Based Bound Tightening



(OBBT) in mglob. Tighter variable bounds provide stronger relaxation for MIQCQO
problems, which helps solve the problem faster. We study the effects of these three
bound tightening techniques on the performance of the solver. Our tests show that doing
OBBT at the root node can tighten the bounds of the variables significantly, and we can

solve more instances than when OBBT is switched off.

Next, we describe a novel method to generate cutting planes for quadratically constrained
optimization problems. The method uses information from the simplex tableau of a linear
relaxation of the problem in combination with McCormick estimators. The method is
guaranteed to cut off a basic feasible solution of the linear relaxation that violates the quadratic
constraints in the problem as long as finite bounds on all variables are available. These cutting
planes are computationally cheap and do not require any special structure in the input problem.
The cuts generated by the method are the well-known Reformulation Linearization Technique
(RLT) cuts. The procedure produces a large number of violated cuts. Several variants for
selecting good cuts are tested. Instead of adding many cuts, one can also add auxiliary variables
and a few cuts. Computational testing on benchmark test instances shows that, on average,
upto 30% of the gap from the optimal can be closed.

Lastly, we describe five branching strategies for spatial branching of MIQCQO problems.
Once a node in a branch-and-bound tree is solved and the solution is not feasible to the
problem, we decide to branch. Typically, several variables are available for branching, and tree
size greatly depends on the variable selected for branching. In the first branching strategy, we
develop a distance measure that can be used to estimate the violation of a point and describe
a maximum violation branching strategy. We then describe strong branching for spatial
branching. Then, we develop a new branching strategy similar to strong branching, called
bt-strong branching, that tightens bounds on variables using FBBT based approaches before
strong branching for every candidate. This strategy gives a better estimate of lower bound
update and takes fewer nodes than other branching strategies. The fourth branching strategy is
bt-estimate branching. In this strategy, we first do bound tightening and then estimate lower
bound update based on reduced costs for variables whose bounds get updated. This strategy
is fast because no linear programs are solved. Finally, we combine these strategies into a
reliability branching type setup called bt-reliability branching. We observe that bt-reliability
branching performs better than other branching strategies described.

In the end, we benchmark the current state of our solver against SCIP and Gurobi. We
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also compare our solver against an older version of mglob to see the combined effects of all

the techniques described here.
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Chapter 1

Introduction

Mixed-Integer Quadratically Constrained Quadratic Optimization (MIQCQO) refers to a
class of mathematical optimization problems where the maximum degree of objective function

and constraints is two. A general MIQCQO problem is written as

min X Q0%+ clx
X

subject to xT OFx + c,{x < by k=1,...,m,
x<x <X, Q
X, €7 Viel,
xeR Vie{l,...,n}\I,

where OF = (qu) is a given n X n symmetric matrix, ¢, € R", for k =0,...,m,b; € R, for
k=1,....,mx,x € R" I is the indicator set for the integer variables, and m,n are finite whole
numbers. A vector x satisfying all the given quadratic constraints (x” Q¥x + c,{x < by, fork =
1,...,m), the bound constraints (x < x <X), and the integrality constraints (x; € Z V i € I) is said
to be feasible to (Q). The problem is to find among all feasible vectors, the one that minimizes

the quadratic function x” Q% + clx. Such a vector £ is said to be the optimal solution to (Q),



and £7 Q% + cl % is the optimal value of (Q). This thesis describes some computational and
algorithmic techniques to solve MIQCQO. MIQCQO is used to model decision problems in

several scientific, engineering and business domains. Some of these are briefly discussed next.

In a pooling problem input material of different qualities from multiple streams (usually
crude oil procured from multiple sources) are mixed in several pools. It is one example of
MIQCQO from the domain of Chemical Engineering. The output from these pools are blended
together to form the end products. We describe a simplified example of pooling problem taken

from [88] to illustrate how MIQCQO problems are modeled.

Example 1.1. Consider three supply sources a, b, and c, a single pool, and two output products
1,2, as shown in Figure Supplies from a, and b are mixed in the pool, and supply ¢
directly feeds to the output products. The sulfur qualities in the supply at a, b, c are 3%,2%,1%
respectively, while the per unit costs are $6,$16, $10 respectively. Maximum permissible sulfur
qualities at 1,2 are 2.5%,1.5%, and the demands are 100,200 units respectively. The per unit
profit for product 1 is $9 and for product 2 is $15. We want to decide the quantity of supply
from the sources, the quality at the pool after mixing, and the quantity of flow from the pool to
the output products. We denote the quantity from source a to the pool as x,, and the quantity
from source b to pool as x,,. The quantity from source ¢ to the output 1,2 is denoted by xc1,x:2
respectively. Similarly, the quantity from the pool to 1,2 is denoted as x1,x,; respectively. The

pool quality is denoted as g. Using these variables, the problem is formulated below.

min  6x4p + 16xp, + 10(xc1 +xe2) = 9(xp1 +Xe1) — 15(xp2 +x2) (1.1a)
s.t. xp1+xe1 <100, (1.1b)
Xp2 +xc2 < 200, (1.1c)
Xap +Xpp = Xp1 +Xp2, (1.1d)
3Xap + Xpp = qXp1 + qxp2, (1.1e)
gxp1 +2xc1 < 2.5(xp1 +Xe1), (1.1)
gxpr +2x0 < 1.5(xp0 +x02), (I.1g)
XapsXppsXel X2, Xp15Xp2,q = 0. (1.1h)



pock
/2

Figure 1.1: Schematic of the pooling problem described by Haverly [88]]

Objective function (I.Ta) minimizes the difference of the cost of raw materials and the
profit from the output products. Constraints and model demand satisfaction.
Constraint (I.Id) represents the mass balance for the pool and Constraint represents
the mass balance for sulfur in the pool. Constraints (I.If) and (I.Ig) model the maximum
permissible sulfur quality at the output. Finally, nonnegativity constraints (I.Th) are added.
Constraints (I.1d)), (1.1¢)), and (I.1f] are quadratic because of the presence of bilinear terms and

hence this problem is a quadratically constrained problem. The optimal solution value of —400
is obtained when g = 1,xp, = X2 = X2 = 100,x4p = X1 = x,1 = 0. Note that 0°, 0", 0*,0?

are zero, and there are no integer variables in this example.

In practice pooling problem may be much larger in scale because of multiple pools and
variety of products that can be produced. This leads to many bilinear terms in the problem.
Several alternative formulations and extensions have been proposed for the pooling problem,

see (7,111,118, 26} 115,119, [130].

Other applications in chemical engineering include crude oil scheduling [121]], natural gas
production [[100} [101]], distillation sequences [9]], waste water treatment [48}, [50], water network

design [49, 1139, (140].

Several applications of MIQCQO also appear in computational geometry problems like
[20, 53, 195, 196, 99]. Another important application of MIQCQO is the trim loss problem in
paper industry [64, 86, |87, 97]. MIQCQO has also been applied in supply chain management
(62, 184, 189, 147, [148], optimal selection of breeding population [122], edge crossing
minimization in bipartite graphs [41], graph partitioning [75]], optimal power flow in electricity

networks [[13} 135,151, 90], portfolio optimization in finance [30, 57, 70} [72} 143]], etc.

Solution approaches to MIQCQO need to overcome two challenges: (a) nonconvexity of

the quadratic functions in the objective or constraints, and (b) integer constraints on variables.
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In the absence of these two, we get a convex quadratic optimization problem that is relatively
much simpler to solve than MIQCQO. The algorithms for convex quadratic optimization are
fundamentally different from those of MIQCQOQO, and are usually orders-of-magnitude faster.
They are usually iterative in nature, moving from a candidate solution to the next that is ‘better’
in some sense, eventually converging to the optimal solution [71, 98, [113] [125]. On the other
hand, search for a globally optimal solution of nonconvex MIQCQO relies on approximating
the problem by solving a suitable convex approximation, and refining or subdividing it many
times. A practically useful MIQCQO solver requires careful implementation and integration
of several techniques for simplifying MIQCQOs, creating approximations, refining, searching
etc. This thesis focuses on the development of mg1lob, an open-source solver developed within

Minotaur (previously written as MINOTAUR) framework [111] for MIQCQO.

In this introductory chapter, we begin by describing the role convexity plays in solving
optimization problems and highlight the difficulties when solving nonconvex optimization
problems like the MIQCQO in Section [I.I] Next, we discuss two important optimization
problems, namely, Linear Optimization (LO) in Section [1.2] and Mixed Integer Linear
Optimization (MILO) in Section [.3] Linear Optimization plays a key role in algorithms for
MIQCQO. Algorithms and techniques used to solve an MIQCQO problem are inspired from
MILO literature including Branch-and-Bound algorithm, cutting planes, presolving techniques,
branching techniques, etc. Thus an overview of MILO has been presented here. In Section
[1.6] we describe the spatial Branch-and-Bound algorithm which is used to solve MIQCQO
problems. In Section[I.5 we describe some relaxation techniques for MIQCQO available in the
literature. In Section we briefly mention software for MIQCQO and related problems. In
Section [I.8] we discuss several algorithmic components of Minotaur framework. We finally

outline the remainder of the thesis and highlight our contributions in Section[I.9

1.1 Convex vs Nonconvex Optimization

Convexity plays an important role in optimization, and many algorithms for nonconvex
problems solve some convex optimization relaxations or approximations repeatedly. MIQCQO

in the general form is a nonconvex problem.
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Figure 1.2: Examples of convex and nonconvex sets

Convex optimization problems are in general ‘easy’ to solve and several interior point
algorithms exist which can provably reach the optimal solution within a small polynomial (in
the size of the input) number of steps. More details about convex optimization problems can
be found in 29, 40]. On the other hand nonconvex optimization problems are ‘hard’ problems.
There are no known algorithms which can find an optimal solution within polynomial (in the
size of input) number of steps. Formal definitions of computational complexity and hardness

can be found in [73]]

1.1.1 Convex Sets and Convex functions

A convex set C is a set such that given any two points x,y € C the line segment joining x,y is

contained in C. More formally,

Definition 1.2. Convex set - A set C C R” is a convex set if for any x, y € C, and A € [0, 1],

we have Ax+ (1 —A4)y e C.

Figure 1.2 shows some examples of convex and nonconvex sets. The left figure, a polyhedron,
is a convex set defined by the intersection of four linear constraints, S; = {(x1,x2) | x| +x2 >
1, —3x1 +2x2 < 2,2x1 — 5xp < 2,x1 +2xp < 10}. The middle figure, a circle, is a convex set
defined by a single quadratic constraint, Sy = {(x1,x2) | x} +x3 < 4}. The right figure, a crescent
shape, is a nonconvex set defined by the intersection of two quadratic constraints, S3 = {(x1,x2) |
x% —2x <0, —x% +4x; < 4}. S3 is a nonconvex set since the red line segment joining the two

points marked in S3 is not contained in S3.
Definition 1.3. Convex hull - Given a set S C R", a set conv(S) is the convex hull of S if:

5



(i) conv(S) is a convex set.
(ii) S C conv(S).

(iii) If T is a convex set such that S C T then conv(S) C T.

The convex hull of a set is a smallest convex set containing the set. For example, convex
hull of set S5 in Figure |1.2]is conv(S3) = {(x1,x2) | x3 — 2xp < 0,x; < 2} shaded in in

Figure[I.2] Note that the convex hull of a convex set is the set itself.

A convex function is a function for which the line segment joining any two point on the

graph of the function lies above the graph between those points.
Definition 1.4. Convex function - A function f : R” — R is convex if for any x,y € R*, A €

[0,1] we have f(Ax+ (1—A)y) <Af(x)+(1—21)f(y).

Figure[[.3]|shows two functions f, g. f is a convex function and as shown in the figure the
line segment joining the graph of the function overestimates the function. On the other hand,
g 1s a nonconvex function since the red line segment joining the graph of the function does

not overestimate at every point. We describe two important properties of differentiable convex

~ AT g@) =2 +2% —222 —2+2
f() f(z) = 22 o) |

\ . |

\ /A
\ AN
NV

/ T z

Figure 1.3: Examples of a convex (left) and a nonconvex (right) function

functions using the first and second order derivatives of the functions.

Property 1.5. First order condition [40] - If f is a convex function and f is differentiable then

for any x € R",

f@) 2 f@)+Vf(D) (x—%) VxeR"
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This property shows that a tangent hyperplane to the graph of a convex function at any point is
always below the graph of the function. In Figure [I.3] the blue hyperplane is a tangent to the

graph of the function f(x) = x? and is always below the graph of the function.

Property 1.6. Second order condition [40] - Let f be a twice continuously differentiable

function then f is a convex function if and only if its Hessian is a positive semidefinite at all

points i. e., V2f(x) = 0V x € R",

Definition 1.7. Convex constraint - Let f : R” — R be a convex function then for all f € R
the set of points satisfying the constraint f(x) < 3 is a convex set, and the constraint is called a

convex constraint.

If f is not a convex function it may still be possible that the feasible region defined by the
constraint f(x) < B is a convex set for some given 3. For example, consider the function f(x) =
—e*, given any B € R the region bounded by the constraint f(x) < 8 is a convex set in R but

this is still not a convex constraint since —e* is a not a convex function.

Now we define convex and nonconvex optimization problems. Suppose we have an

optimization problem of the form,

min fo(x)
X
filx) < Bi Vie{l,...,m}, (1.2)
x € R,
where the functions fy, ..., f;,; and the constants fBy,..., B, are given. If f;, i € {0,...,m} are

all convex functions then the optimization problem is called a convex optimization problem. If

any one of the f; are not convex then it is a nonconvex optimization problem.

1.1.2 Local Minimum vs Global Minimum

Consider the optimization problem (1.2)), and let the feasible region of the problem be .# =
{xeR"| filx) <Bi Vie{l,...,m}}. A point x* is a global minimum for the problem if

fo(x*) < fo(x) V x € Z. On the other hand, a point £ is local minimum of the problem if

7



So(x*) < fo(x) Vx € FNABe(X) where B¢ (X) is the ball of radius € centered at £ i.e. Be(£) =

{xeR"|||x—Z%|| < &} for some € > 0.

For a convex optimization problem, every local minimum is also a global minimum for
the problem. For a nonconvex optimization problem, a local minimum may not be a global

minimum for the problem.

Example 1.8. Consider the optimization problem min{x; — 2x; | (x1,x) € S3} where S3 is
the nonconvex set shown in Figure Consider the point £ = (2,2) with objective value
f(®) = —2. There is no feasible point in the neighborhood of £ for which the objective value
can be decreased further i.e. f(£) < f(x)V x € S3 N HBe(£) with € = 0.01. Thus £ is a local
minimum of the problem. The global minimum of the problem is the point x* = (—2,2) shown

in in Figure 1.2 with objective value f(x*) = —6.

1.1.3 Separation

Another important distinction between convex sets and nonconvex sets comes from separating
a point outside of the set. Let us consider a closed convex set C and a point £ ¢ C, then the

following theorem shows that we can construct a hyperplane that separates £ from C.

Theorem 1.9. Separating Hyperplane Theorenﬂ - Let C be a closed convex subset of R” and
let £ ¢ C then there exist a vector a € R" and a scalar b € R such that ¥V x € C,a’ x < b and
a’ £ > b. That is, the hyperplane denoted by the constraint a’ x = b separates £ from C and is

called a separating hyperplane.

Constructing a separating hyperplane for a convex optimization problem of the form (I.2)
is straight forward. Let us consider a point X which is infeasible to the problem, then there exists
ani € {1,...,m} such f;(£) > B;. Now since f; is convex, using Property we have for all
x, fi(®) + V£ ()T (x — £) < fi(x). Since we have f;(x) < B;V x feasible to the problem, we must

have

[il®)+VAET (x— %) < Bi. (1.3)

IThis is a special case where we separate a convex set and a point, a more general version of the theorem

separates two disjoint convex sets



Constraint (T.3)) is not satisfied by £ because f;(£) > fB;, and hence f;(£) + Vf;()T (x — %) = B;

defines a separating hyperplane. Let us illustrate it using an example.

Example 1.10. Consider the set

S1={x1x2 >4,1<xy,x <5}.

This set is actually a convex set but due to the presence of the nonconvex constraint xjx, > 4 it

represents a feasible region of a nonconvex optimization problem. Now consider the set

Sy = {\/(xl —x2)2+16 < x;+x2,1 <xp,x <5}.

S, defines the same set as S; and all constraints in S, are convex. The point X = (1,2)T i
outside S1, and S;. For S, we can derive a hyperplane separating X from S;. Property [1.5|gives
the inequality (v/17 + 1)x; + (v/17 — 1)x, > 16 which separates £ from S,. Applying Property
[I.5]to Sy gives us the inequality 2x| +x, > 6. This inequality is not valid for S; since the point
(1.4,3)7 in Sy violates it. This shows that we cannot apply Property When the functions are

nonconvex.

1.2 Linear Optimization

An important class of convex optimization problems is that of Linear Optimization (LO)
problems. Consider the optimization problem (I.2)), if all fy,..., f, are linear functions then it

is an LO problem. In its canonical form an LO problem is written as

min ¢! x

Ax < b, (1.4)

xeR",

where c € R", A € R™*" b € R™ are given and n,m are finite. Many nonconvex optimization

problems including MIQCQO are solved by first creating and solving an LO problem. Since

9



we also use LO extensively, we describe the most relevant properties and methods briefly. A

detailed treatment of LO can be found in [22, [31]].

1.2.1 Structure and Properties of LO

In this section we describe the polyhedral structure of an LO problem and discuss the idea of

corner point solution.
Property 1.11. [31]] The feasible region {x € R" | Ax < b} of an LO problem is a polyhedron.

Definition 1.12. Corner Point [31] - Let P := {x € R" | Ax < b} be a polyhedron. A point x*

is corner point of P if there exists some ¢ € R” such that ¢’ x* < cTxV x € P.

Property 1.13. [31] For a polyhedron P with at least one corner point and a given ¢ € R",
if there exists a point £ such that ¢’ £ < ¢ x V x € P then there exists a corner point x* with

T =cTx.

This property shows that for an LO problem whose optimal solution exists there must be a

corner point which is also optimal.

Property 1.14. [31] If x* is a corner point of P = {x € R" | Ax < b} then there exists n X n

invertible submatrix of A, say B, such that Bx* = b.

The above property says that if x* is a corner point then there are a set of n constraints from
Ax < b satisfied at equality. These constraints which are satisfied at equality are called active
constraints. Since there can be only finitely many submatrices B, there are only finitely many
corner points of a polyhedron. Now, using Property [[.13] this reduces the LO problem to that

of enumeration and thus LO can always be solved in finite number of steps.

1.2.2 Simplex Method

There are broadly two categories of algorithms for solving an LO problem, namely, interior

point methods and simplex method. There are several interior point methods, which in theory

10



are polynomial time algorithms, and can reliably solve LP problems fast. On the other hand
simplex method is an exponential time algorithm in the worst case. In spite of the poor worst
case complexity, simplex method is extensively used in many state-of-the-art LO solvers
because of its practical speed, warm starting abilities, fast and reliable computations and a
guarantee to provide a corner point solution. We now briefly describe the simplex method. A
detailed description and important computational and practical aspects of the simplex method

can be found in [142].

Simplex method considers the LO problem in its standard form

min ¢! x

Ax=b, (1.5)

x>0,

where c € R", A € R"™*" b € R™ are given. Note that an LO problem in canonical form can be
easily converted to standard form by introducing additional nonnegtaive variables. It is assumed

that A is a full rank matrix.

Definition 1.15. Basic Feasible Solution (BFS) - Consider the feasible region of the LO
problem {x € R" | Ax = b, x > 0}. We divide the matrix A into two submatrices B, N where
B € R™*™ is invertible and, N € Rm>(n=m) | et xp, xn be the variables corresponding to the
columns of B, N respectively. Then the solution xz = B~'b, xy = 0 is known as basic solution

and if x5 = B~'b > 0 then it is a basic feasible solution.

. XB . . CB
Definition 1.16. Reduced Costs - Let x = be a basic solution and ¢ = be the
XN CN
cost function then the vector & = cy — c5B~IN is known as the vector of reduced costs.

Simplex method starts by selecting an initial BFS. There are several methods of obtaining
an initial BFS, for example, the Phase I of the simplex method. Then it chooses an entering
nonbasic variable with a negative reduced cost and a leaving basic variable such that feasibility
is maintained. We then move to the next basic feasible solution with the new basis iteratively.

We have reached an optimal solution when the vector of reduced costs is nonnegative.
There are several more details regarding an efficient implementation of the simplex method
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for general purpose use. For example, exploiting sparsity of A,b, deciding the entering and
leaving variable at every iterate (pivoting rules), handling degeneracy, getting a starting basic

feasible solution etc.

After an LO problem is solved, we sometimes want to solve it again after modifying the
vectors b and c, or after adding or removing some constraints. Variants of simplex method can
be used to solve the modified problem starting from the last basic solution obtained previously
to quickly find the solution to the new problem. This process is called warm-starting. Warm
starting is a key enabler for developing LO based methods for solving other more difficult
problems like Mixed-Integer Linear Optimization (MILO) and MIQCQO. We next discuss
MILO.

1.3 Mixed Integer Linear Optimization

An MILO problem is an LO problem in which some or all variables are constrained to take

integer values. In its general form, an MILO problem is represented as

min ¢’ x
Ax < b, (1.6)
x; €L iel,
x€R ie{l,...,n}\I,

where c € R", A e R™" b€ R™ and I C {1,...,n} are given. MILO is used to model a
diverse set of problems arising in practical situations like scheduling, routing, transportation
etc. and important theoretical questions in graph theory, set theory, number theory, and many

combinatorial problems.

MILO problem is an NP-hard [54] problem which means that all known algorithms
to solve MILO require at least exponential number of steps in the size of the problem.
Many state-of-the-art solvers for MILO use Branch-and-Cut algorithm augmented by several

techniques including presolving, heuristics, conflict resolution etc.
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We now discuss two important algorithms that are integrated together to solve an MILO
problem because they are also extended to the case of MIQCQO. Both these algorithms start
by creating a linear relaxation for the MILO problem and proceed by analyzing the optimal
solution of the linear relaxation. The Branch-and-Bound algorithm is a divide and conquer
type of algorithm that iteratively searches different parts of the feasible region by restricting the
search space and solving LO subproblems at every iteration. On the other hand, cutting plane
method solves a single linear relaxation but iteratively strengthens it to get closer to the integer
optimal solution. In theory, both of these algorithms will reach optimal solution but in practice

a combination of both is used.

1.3.1 Branch-and-Bound Algorithm

We now describe the Branch-and-Bound (B&B) algorithm using an example. Consider the two

variable MILO problem below.

min  —Xx; —Xxp

s.t. 2x1 —xp <4,
4x1 +16x; <71, 1.7)
—3x1+x <2,
x1,x2 > 0,

X1,X € 7.

We begin by solving the natural linear relaxation of by relaxing the integrality constraints
on both the variables. The optimal solution of the linear relaxation is £ = (3.75,3.5). Since
x1,X2 do not take integral values at X, we partition the problem in two subproblems. Noting that
xp must be integral we create two subproblems one with x; < 3 and another with x, > 4. Thus
we ensure that every feasible solution of the MILO is present in one of the subproblems. This
process is known as branching. The objective value Z = —7.25 is a lower bound on the optimal
objective value of the MILO problem. The upper bound on the optimal objective value currently

is unknown (infinite). Once an integer feasible solution is found a finite upper bound will be
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obtained as well. This is known as bounding. B&B algorithm iteratively solves subproblems by
branching and bounds the objective value by updating lower and upper bounds. The algorithm
stops when lower and upper bound are the same and we know that we have obtained an optimal

solution to the problem.

The optimal solution for the left branch (node 1) with x, < 3 is £ = (3.5,3) and for the
right branch (node 2) with x, > 4 is £ = (1.75,4). We further branch at node 1 on x; to obtain
nodes 3 and 4. The optimal solution of node 3 £ = (3,3) is feasible to the MILP and we obtain
an upper bound on the problem —6. This node is pruned by feasibility. Node 4 is infeasible
and is pruned by infeasibility. We need not explore node 2 now since the objective value of the
node is worse than the current upper bound. Thus node 2 is pruned by bound. The solution
x* = (3,3) is optimal to the MILO problem. The full B&B tree for the MILO problem in (I.7)
is shown in Figure In practice, a B&B tree can become large because of branching again

and again.

Root node
Z2=-7.251=(3.75,3.5)

Node 2
= —5.75,% = (1.75,4)

N>

Figure 1.4: B&B tree for the MILO problem in (1.7)

1.3.2 Cutting Plane Algorithm

A cutting plane algorithm repeatedly solves a single LO problem by adding more and more
constraints to the relaxation. This is in contrast with the B&B algorithm where multiple
subproblems are solved. We begin by solving the natural linear relaxation of the problem. If

the solution obtained is fractional then we solve a separation problem. This separation problem
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returns a linear inequality that separates the current fractional solution from the feasible region
of the MILO problem. We add this linear inequality as a constraint in the MILO problem
and solve the relaxation again. This process is repeated until the optimal solution obtained
is feasible to the MILO problem. The linear inequality obtained after solving the separation

problem is also known as a cut.

There are several ways of obtaining a cut described in the literature. For a thorough
discussion on different types of cuts see chapters 5, 6, and 7 of [52]. In branch-and-cut
based solvers, several cuts are added at the root node to strengthen the relaxation initially
and few cuts are added once branching is started. Two important algorithmic choices arise
from any branch-and-cut based algorithm. Which cuts to add and what variable to branch on.
Several empirical studies have considered these questions and have led to improvements in the

performance of the solvers [4, 92,141, 145].

1.4 Mixed Integer Quadratically Constrained Quadratic

Optimization

We are now equipped to visit MIQCQO. Consider the problem (Q), if 0 =0, k =0,...,m
then (Q)) reduces to (1.6). Thus MILO is a special case of MIQCQO and therefore, MIQCQO
is as hard as MILO. Since MILO is NP-hard, we know that MIQCQO is also at least
NP-hard. Solution methods and algorithms for solving MIQCQO problem are inspired from
branch-and-bound and cutting plane algorithm described for MILO problem in the previous
section. Although similar in principle there are some significant differences between algorithms
for MIQCQO and MILO. First, creating a relaxation for MILO requires only relaxing the
integrality while for MIQCQO specialized techniques are required for creating a relaxation.
We describe some of these in Section @ Second, Branch-and-bound for MILO problems
terminates in finite time with exact global optimal solution while spatial branch-and-bound
for MIQCQO terminates only in the limit and solution obtained in finite steps are optimal
within some tolerance. We describe spatial branch-and-bound algorithm in Section[I.6] Lastly,
Jeroslow [94] showed that there can not be an algorithm that provides an optimal solution to

quadratic problems with unbounded integer variables. This result shows that finite bounds on
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all variables appearing in quadratic terms is necessary for MIQCQO problems.

1.5 Relaxation Techniques for MIQCQO

There are several approaches to relax an MIQCQO problem. After relaxing the integrality
constraints, an MIQCQO problem may still have nonconvexities from the quadratic constraints
or the objective function can be nonconvex. As discussed in Section [[.1.2] we need special
techniques to obtain convex relaxation of the nonconvex problem before we start the
branch-and-bound process. In this section we will describe several relaxation techniques which

obtain different types of convex sets as the relaxation to the MIQCQO problem.

1.5.1 McCormick Relaxation

McCormick relaxation [112] is a popular way of creating a linear relaxation of an MIQCQO
problem. We first transform the problem (Q)) by introducing auxiliary variables y;; for each

quadratic term x;x; and adding new quadratic constraints each having only one quadratic term.
yij=xixj Vi,je{l,...,n}, qu # 0 for some k € {0,...,m}.
Example 1.17. Consider the following problem

min X1X2 — X2X3
st xi4m4xn<l, (1.8)
—xX1+2x+2x3 <1,

0<xy,x,x <1
We add auxiliary variables y11,y12,y23 to obtain the following reformulation

min Y12 —¥23
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S. t. yi1+x2+x3 <1, (1.9)
—X1+2x+2x3 <1,

0 S)Cl,XQ,)C:; < 17

2
Y11 =Xy,

Y12 = X1X2,
Y23 = X2X3.

Note the Problems (I.8) are (1.9) are equivalent to each other.

We then relax these nonconvex constraints using the following inequalities

Vij 2 XiXj+ XX — XX,
Yij = XiXj+Xjx;i — XiXj, (1.10)
Vij S XiXj XX — XX,

Vij SXXj+X X — XX

to obtain the linear relaxation:

min Z q?jyi j ~|—ch
(i,j)€Eo

s.t. Z quyij—ka)cgbk, Vk=1,...,m,
(i7j)EEk

Vij 2 XiXj XX — XX,

Vij = XiXj+XjX; — XX},

vV (i,j) €E, (1.11)
Vij S XiXj 4 XX — XiX
Yij S XiXj+Xjxi — XX, |
x<x<X,
xeR",
yij€R V (i,j) €E.

Let E; be the set of pairs (i, j) for which qf?j # 0, in other words the term x;x; is present in the
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corresponding quadratic function. Then £ = EgUE; U...UE,, is the union of all the E} sets,

i.e. E is the set of pairs (i, j) for which the term x;x; exists in the problem.

Example 1.18. Consider the reformulated Problem (1.9) in Example McCormick

relaxation of this problem is shown below.

min  y;2—y23
s. t. yir+x2+x3 <1,
— X1 +2x+2x3 < 1,
0§X1,X2,X3 S 17
\

vij > 0,
yij = Xi+xj—1,

v (i,7) €{(1,1),(1,2),(2,3)}.
yij < Xi,

yijSXp

The optimal solution to the above relaxation is £ = (0.6,0.4,0.4),y = (0.2,0,0.4). This
relaxation solution is not feasible to the reformulated problem (1.9) since none of the quadratic
constraints yj; = x%,ylz = X1Xx2,y23 = Xpx3 are satisfied. Also X is not feasible to the original

problem (T.8)) since the quadratic constraint x3 +x, +x3 < 1 is not satisfied.

1.5.2 Underestimators, Overestimators and BB Relaxation

Another approach to relax (Q) is to replace the nonconvex functions by nonlinear convex
underestimators and concave overestimators. An underestimator f of a function f has a function

value less than the function value of f. That is

flx) <f(x) VxeR"

If f is convex then it is a convex underestimator and if f is a maximal convex function then it

is called a convex envelope.
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Definition 1.19. Convex Envelope: [91] Let . C R" be a convex and compact set, and let
f 8 — R be a lower semicontinuous function. A function f : . — R is the convex envelope

of f on .7 if:

(i) fis convex on .
(i) f(x) < f(x)Vxes

(iii) there is no function g : .¥ — R satisfying and g(%) < f(%) for some X € ./

Similarly a concave overestimator f of f is a concave function that has a function value
more than that of f. Analogous to the definition of convex envelope we can define concave

envelope f of f on .7 as the lowest overestimator of f on .7.

Relaxation using convex and concave envelopes of a function f gives us a convex
relaxation of the epigraph of f on .”. There are few functions for which exact convex and
concave envelopes are known. The following result gives us the exact convex and concave

envelopes of the bilinear terms.

Theorem 1.20. [10] Let . = {(x1,x2) | x < x <X} C R? and let f(x) = x;x, then convex

envelope f and concave envelope fof fon.” are

f(x) = max{xpx) +x1Xp — X1X2,¥2X1 +X1X2 —X1X2},

f(x) = min{xpx; +X7x2 — X1x2, X2X1 +X1X2 — X1 X2 }

The above theorem is limited to a single bilinear term (x;x;). Applying this result to a
general quadratic function by taking a sum of convex envelopes of individual terms does not
give a convex envelope of the function. Meyer and Floudas [114] use some properties like edge
concavity to find the convex envelopes of those functions in R3. Misener and Floudas [116]] use
these results to aggregate bilinear terms to get stronger convex relaxations of general quadratic

functions.

A closely related approach to nonconvex optimization problems is the «oBB
underestimators [8, [15]. For a quadratic function xT OFx + c,{x, a vector of > 0 € R”

is chosen such that QF + Diag(a¥) = 0. Now, the function x”(Q* + Diag(otf))x + cfx
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is a convex quadratic function (since Hessian is positive semidefinite) but does not
underestimate the function since we have added Y, afx?. To obtain an underestimator,
we subtract the secants for the univariate quadratic functions Oﬂikxiz. Thus, the function
xT(QF + Diag(otF))x + cfx — ¥, af((x; +%;)x; — x;%;) is an underestimator for the quadratic

function. Now we can construct a convex relaxation

n
min  x’ (Q° + Diag(a®))x+ cfx— Za?(()_ci+fi) — X;X;)
i=1

n
s.t. xT'(Q* + Diag(a*))x+ cfx — Z oF (x4 %)% —x%) <be ¥ k=1,...,m, (1.12)
i=1

xeR" (1.13)

1.5.3 Reformulation Linearization Technique

Reformulation Linearization Technique (RLT) is a well studied method of generating a
linear relaxation for (Q). This method was first described for bilinear problem by Sherali
and Alameddine [[134] and then extended to polynomial problems by Sherali and Tuncbilek
[136]. We first divide the constraints into two sets namely, linear constraints where Qk =

and nonlinear constraints where Q¥ = 0. Although in [136] bound constraints are considered
separately we include bounds on the variables in the linear constraint set for the sake of

simplicity.

Now take the product of any two pair of linear constraints and substitute the quadratic

terms with auxiliary variables to obtain a linear constraint as shown below.

T
(bkl - Ckl‘x) (ka Ck2 )> O
T T
- bkl bkz — bkzcklx — bkl Ck2X+ cklxx CkZZ 0

T T T
= by, by, — bkzc,qx — by, Cp, X+ C Xk, > 0

where X;; = x;x; are auxiliary variables used for linearization. These linearized constraints

are called RLT constraints. Adding all possible RLT constraints along with original linear
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constraints and bound constraints generates the first order RLT relaxation for (Q). These
relaxations can be strengthened using difference of convex underestimators as described in

[[149]].

1.5.4 Semidefinite Programming Relaxation

Let x € R" be any vector, and X be a symmetric matrix satisfying X = xx” . The set S = {(x,X) |
x € R",X = xxT} can be written using several quadratic equations of the form X; i —xixj = 0.
This set is nonconvex. If we relax X —xx’ =0to X —xx! >0, we get a convex relaxation [[137].

The constraint X —xx” > 0 is equivalent to

This observation can be applied to any QCO to obtain a convex, positive semidefinite relaxation.

For example, the following Semidefinite Optimization (SDP) problem is a relaxation for (Q)

min (0, X)+clx
0", X) +

s.t. (

This relaxation can be strengthened in the presence of binary variables by adding constraints

Xii = x; ViEI,OSX,’S 1.

1.6 Spatial Branch and Bound

The relaxations obtained by the above methods can be solved relatively easily to obtain a lower

bound on the optimal value of the (Q)). If the relaxation is infeasible, then so is the Problem (Q).

21



If the optimal solution of the relaxation satisfies all the constraints of the Problem (Q), then it
is also optimal to (Q)). Otherwise we need to search more. One method for this search is the
spatial branch and bound (sB&B) [91,1105]. The main components of the algorithm are given in
Algorithm [I.T] We create a tree of nodes each involving a subproblem of the original problem
(Q). A relaxation is then created for the subproblem using one of the techniques described in
the previous section. sB&B is similar to B&B described for MILO in Section [I.3.1] with an
added feature that branching on continuous variables is also possible. This type of branching is

known as spatial branching and we describe it next.
Spatial Branching

In a nonconvex optimization problem, branching is done on both integer as well as
continuous variables. Integer variable branching is similar to MILO (see Section [[.3.T).
But that is not sufficient when some of the variables in quadratic constraints are continuous.
Consider an MIQCQO problem involving the constraint y = x*x € [0,1], its standard
McCormick relaxation is shown in Figure [[.5] Now let us assume that the optimal solution
of the relaxed problem (x*,y*) = (0.5,0.5). If we branch on x < 0.5,x > 0.5, the relaxation
after branching in either direction is shown in Figure [[.6] The infeasible point is eliminated
from the relaxation in either direction of branching but all feasible solution are present in at
least one of the relaxation. Although, it is clear from Figure [I.6] that spatial branching does not
create disjoint relaxations after branching as is the case with integer branching, it ensures that

the intersection of the feasible regions of the relaxations will always be feasible to the original

problem.

10 10
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-
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0z 0.2 ;";

00 0.0
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Figure 1.5: Relaxation of y = x> before Figure 1.6: Relaxation of y = x> after
branching branching at x = 0.5

For integer branch and bound algorithm, theoretically finite termination of standard branch
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Algorithm 1.1 Spatial branch and bound
Input: Problem@,S ={xeR" | xTQx+cTx<bgk={1,....m}x<x<Xx,€Z Vi€

1} is the feasible region of (Q), f(x) = xT Q% + ¢l x is the objective function of (Q), & > 0
Output: x* such that f(x*) < f(x) —€ Vx€S
1: procedure SPATIALBRANCHANDBOUND
2: Create a set of nodes .4 < {(Q] S, —oo) } where each node is a tuple of the subproblem

to be solved, its feasible region, and node lower bound.

3: Ty < Fo0
4: while ./ # ¢ do
5: choose A := (P, Sk, zx) € A and remove 4 from A
6: Create a Linear Relaxation ., of &
7 Let fi be the objective function of Ly
8: Solve %
9: Let X be the optimum of %,
10: %k < Ji(%)
11: if ¥ is feasible to &7, then
12: if f(X) < z, then
13: zu < f(%)
14: X=X
15: Remove all .4 from .4” with node lower bound z; > z, — €
16: else if &7, is infeasible then
17: continue
18: else
19: Choose a variable x; for branching
20: if i € I then
21: Steft — SN{x € R" | x; < [ %]}, Seight ¢+ SN{x e R" | x; > [ 5]}
22: else
23: Stefe — SN{x € R" | x; < X5}, Sright <~ SN{x € R" | x; > %}
24: Pt <— min{ f(x) | x € Steft }, Pright < min{ f(x) | x € Srignt }
25: Neft < (Peft, Steft, 2k ) Night < (Pright, Sright 2k )
26: N = N U{Nett, Nright }
27: return x*
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and bound algorithm is ensured. For spatial branch and bound, since continuous variables are
branched as shown above, finiteness of the algorithm cannot be guaranteed. We now describe
three properties of the sB&B algorithm that are useful to prove convergence of sB&B algorithm.

By convergence, here we mean that

minzg — f(x*) as k — oo

where z; are the node lower bounds of the open nodes .#". That is lower bound of the problem

approaches optimal value of the problem in the limit.

* Bound improving node selection [105] : Line 5 of Algorithm [I.1]is to choose a node
from the set of open nodes. We do not exactly describe how this can be done. One way to
select the nodes is choose that node which has the least node lower bound. This is called
the best-first strategy. Any node selection strategy is said to be bound improving if the
number of number of successive iterations in which node selected is different from the

best first strategy is finite.

* Exactness [105] : When the box of bounds of the variables [x,x] approaches a singleton
the corresponding gap between the feasible region of the relaxation and the feasible region

of the problem approaches 0. That is the relaxation becomes exact in the limit.

* Exhaustiveness [[105] : sB&B algorithm equipped with the box branching as described in
Algorithm [I.1]is said to be exhaustive if each infinite nested sequence generated by the

algorithm converges to a singleton.

Under the assumptions of bound improving node selection, exactness, and exhaustiveness
sB&B algorithm will either prove terminate in finite number of steps if the problem is infeasible,
or terminate in finite number of steps and returns an optimal solution or converge to the optimal
solution in the limit. For € tolerance optimal solution, finite termination of the sB&B algorithm

can be guaranteed without the requirement of the bound improvement condition.

24



1.7 Software for Optimization

There are many software packages available for a variety of classes of optimization problems.
These software, or ‘solvers’, are implementations of algorithms to solve a particular class of

optimization problems. We describe some of these software packages in this section.

1.7.1 LO, MILO and convex MINLO

Solvers for LO problems typically implement routines for simplex method and interior point
methods. Some commonly used solvers for LO problems are CLP [67] under the COIN-OR
project, HIGHS [93]], Glop available in Google OR-Tools [[126], SoPlex [78]], etc.

MILO solvers implement branch-and-bound algorithm along with cutting planes and many
other techniques to provide fast solutions on a large class of problems. Some commonly used
solver for MILO include CPLEX [56], Xpress [23]], Gurobi [85], CBC [66] under the COIN-OR
project, HIGHS [93], SCIP [32], etc. Among these, the commercial solvers like CPLEX,
Gurobi, and Xpress use their own inbuilt LO solvers. Open-source solvers, on the other hand,

depend on other open-source or commercial LO solvers.

Several convex MINLO solvers use some form of branch-and-bound. The relaxations
solved for the branch-and-bound may be linear or nonlinear depending on the solver. Some of
these are Mosek [[17], AlphaECP [146], BONMIN [39], DICOPT [83]], Minotaur [111], SHOT
[109], etc.

1.7.2 MIQCQO and nonconvex MINLO

Solvers for MIQCQO and nonconvex MINLO problems implement the spatial branch-and-bound
algorithm along with many other techniques like cutting planes, bound tightening, etc. Some
solvers for nonconvex MIQCQO problems are Alpine [124,[123]], ANTIGONE [118]], BARON
[138]], COUENNE [25]], Minotaur [111]], Octeract, RaPosa [81], SCIP [32] etc. Of these,
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Alpine, ANTIGONE, BARON, COUENNE, Octeract, and SCIP are designed for global
optimization of nonconvex MINLO. While RaPosa is designed for polynomial problems and
Minotaur solves nonconvex MIQCQO only. For a detailed overview of solvers for MINLO see

[44].

1.7.3 Modeling Tools

Often solvers require input problems in a specific format which may sometimes be quite difficult
to create for large problems and can be difficult to read for a human. For example, solvers for
nonlinear problems sometimes use nl file format [74] to input the problem, some solvers for
polynomial problems allow pip format [3]], solvers for MILO and LO problems require 1p [1]]
and mps [2]] format etc. To overcome this, there are several software packages which provide
an interface to create a dialogue between solvers and human readable models. These packages
allow the users to input the model in a much simpler way using a programming language and
then they create an appropriate input for the solver. Some modeling tools commonly used to
model optimization problems are AIMMS [36], AMPL [68, 69], GAMS [129], Pyomo [43]],
JuMP [107] etc. Pyomo and JuMP are open-source. Pyomo is based in Python programming
language. A user can leverage many other features of Python (like reading from data files,
plotting, sorting, etc.) and call the optimization solver. Similarly, JuMP is based in Julia

programming language.

1.8 Minotaur framework for MIQCQO

Minotaur is a framework for development of solvers based on Relaxation based Branch-and-Bound
algorithm. It is an open source software under the COIN-OR project. Source code for Minotaur
can be accessed at https://github.com/coin—-or/minotaur and its documentation
can be found hereﬂ It has several software components and data structures which makes it

easier to develop algorithms that use tree search methods. For solving MIQCQO problems, we

The code is written in C++ programming language. Most of the key algorithms and data structures use C++

classes. The modular code enables easy extensions and customization.
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have developed mglob solver in Minotaur. Figure shows an overview of the algorithmic
framework of mglob for solving MIQCQO problems using sB&B. We now describe some of

the Minotaur components.

Read Instance
Create Handlers

convex Forward to Convex MINLO solver

XOAUOOUOU

Transform

Presolve Transformed Problem

Heuristics

Branch-and-Bound

Figure 1.7: Algorithmic framework of mglob

Reader - Minotaur accepts problem instance in two formats, namely, n1, and mps. The n1 files
are read through a freely available external library (ASL). The reader for mps files is written
within Minotaur. mps reader is limited to LO and MILO inputs only. Reader parses the input

problem file and creates an instance of Problem class in Minotaur.

Presolver - Presolver identifies reductions and simplifications for the problem such that it
reduces the overall computational effort to solve the problem. Many techniques are available in
Minotaur for presolving like bound tightening, checking for redundant constraints, scaling and
coefficient improvement, dual fixing etc. For sB&B algorithm in Minotaur, presolving is done
twice before processing the root node. Once right after we create the Problem instance and
once after we transform the problem by adding auxiliary variables. Presolving is also done at

every node of the B&B tree.
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Handler - Nonlinear problems can have several constraint types having specific structure which
can be exploited individually. Minotaur offers a way to handle different constraints separately
by creating a Handler for the constraint type. Currently, there are several Handlers
in Minotaur like LinearHandler for handling linear constraints, IntVarHandler for
handling integer variables, QuadHandler for handling quadratic constraints etc. Each
Handler has a set of constraints and is responsible for creating a relaxation for its constraints,
presolving the problem based on reductions implied by its constraints, check feasibility of its
constraints, providing branching candidates for its constraints, and generating cuts based on its

constraints.

Transformer - A Transformer in Minotaur is used to reformulate the problem by adding
auxiliary variables and substituting nonlinear functions with those auxiliary variables. For every
instance, Minotaur first reformulates the problem such that every constraint in the transformed
problem can be handled by one of its Handlers. For example, given an MIQCQO instance
Minotaur will replace all bilinear or square terms in the problem with auxiliary variables and

adds additional nonlinear constraints that will be handled by QuadHandler.

Heuristics - Minotaur has a library of primal heuristics like feasibility pump, diving,
multi-start, etc. that are used to get good upper bounds at the root node. Currently, our sB&B

implementation uses only multi-start heuristic for problems with no integer variables.

Brancher - A Brancher is an implementation of a branching strategy that selects a
branching candidate given a set of branching candidates. Every Handler provides a
set of branching candidates and the Brancher then scores each candidate using some
algorithm and returns a candidate variable to branch on. There are several Branchers
in Minotaur, like, MaxVioBrancher, MaxFregBrancher, StrongBrancher,

ReliabilityBrancher, etc.

There are many other components in Minotaur like, node processors which processes the
nodes, a tree manager for managing the B&B tree, several interfaces to third-party solvers that
solves the relaxations etc. A detailed overview of Minotaur and its components can be found in

(LT
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1.9

Contributions and Outline of the Thesis

The main contribution of this thesis is the development of a general purpose solver mglob for

MIQCQO problems in Minotaur framework. To this end we have done many improvements in

existing code as well as made new developments. Thus one important outcome of this thesis is

that mglob is now able to solve MIQCQO problems more reliably and faster. To describe the

developments we have done in Minotaur we divide this thesis into four chapters.

Chapter [2] describes a presolver for MIQCQO problems in mglob. There are many

presolving techniques in the literature, several of which were already implemented in Minotaur.

We focus mainly on three techniques that we have implemented for MIQCQO specifically. We

make the following contributions in Chapter [2]

@

(i)

(111)

We study the impact of using two different representations of quadratic functions in our
solver, namely, representation using computational graphs and dictionary of key format of
a sparse matrix representation. We test the effectiveness of these two representations on
function evaluation and gradient evaluation for quadratic functions. Our study shows that
using a sparse matrix representation as we have described leads to much faster evaluations

in most instances that we have tested.

We then describe a simple algorithm to decompose a quadratic function into different
parts such that each part has mutually exclusive set of variables. This allows us to check
the convexity of quadratic function much faster. This decomposition also allows us to
gather information regarding separability which can be further used to develop better

relaxations for the problem.

We also implement three different bound tightening techniques in mglob and study their

effectiveness on reducing the range of variables.

In Chapter 3] we develop a novel general purpose cut generating algorithm for

quadratically constrained optimization (QCO) problems. Cuts or cutting planes are additional

constraints that are derived to tighten the relaxation for a nonconvex problems. Tighter

relaxations provide better lower bounds for the problem. We analyze the simplex tableau of the
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linear relaxation of a QCO and use McCormick estimators to generate cuts. Following are the

key contributions in Chapter 3]

@

(i)

(iii)

@iv)

We describe a novel cutting plane algorithm for quadratically constrained optimization
problems that is guaranteed to cut an infeasible solution of a linear relaxation for the

problem.

Our procedure is computationally cheap and does not require any matrix factorization
or decomposition, or solving cut generating LP etc. Thus we give a fast algorithm to

separate an infeasible LP point from the problem.

Our algorithm has several choices and we devise six different variants of our algorithm

on which we test the effectiveness of the cuts on benchmark instances.

We also describe a method to add additional variables to generate an RLT type relaxation
based on our algorithm. The relaxation we describe is equivalent to adding all possible

cuts from our algorithm.

In Chapter 4, we describe five branching strategies that we have implemented for spatial

branching of MIQCQO problems. We make the following contributions in Chapter [4]

(@)

(i)

(iii)

(iv)

We describe a branching scheme analogous to the maximum infeasible branching for
MILO problems. We describe a distance measure that can be used to score the violation

of a point that is infeasible to nonconvex nonlinear constraints.

We describe an extension to strong branching called bt-strong branching which does

bound tightening before strong branching calls for every candidate.

We describe another branching scheme called bt-estimate branching where we do bound
tightening for every candidate and then use reduced costs to estimate the lower bound

improvement for each candidate.

We then combine these branching strategies to develop a reliability branching setup that
can be used for spatial branching for MIQCQO problems. We call this branching scheme

as bt-reliability branching.
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In Chapter [5] we finally conclude this thesis. We benchmark the performance of mglob
against SCIP, Gurobi and also an older version of mglob to see the effects of the techniques

described. We also discuss some future research directions for development of mglob.
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Chapter 2

Presolving Techniques

A general purpose solver for optimization problems usually begins by preprocessing the
input problem. This preprocessing step is commonly known as presolving. It constitutes a
wide range of techniques to transform the problem or collect important information about it.
Transformation of the problem may include identifying and removing redundant constraints,
substituting variables, tightening variable bounds, scaling, coefficient reduction, and more
advanced techniques like reduced cost fixing. Presolving also allows for collecting important
information regarding specific constraints or a group of constraints. It can help identify specific
structures (like knapsack constraints, network flow structure, etc.) in the problem for which
efficient solving techniques can be employed. For nonlinear problems, convexity detection and
information regarding variables participating in nonlinear constraints also help devise special

solution methods for specific problem types.

Achterberg and Wunderling [S)] have done extensive computational analysis of various
presolving components. Bixby and Rothberg [37] show that if root node presolve is disabled
in CPLEX 8.0, then the performance of the solver degrades by a factor of 10.8, while if
node presolve is disabled, performance degrades by a factor of 1.3. A detailed survey about

presolving techniques for MILO problems can be found in [110]. Puranik and Sahinidis [128]]
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survey presolving techniques for NLO and MINLO problems.

This chapter describes three presolving techniques implemented in mg1ob for MIQCQO.
In Section [2.1] we describe how representation of a quadratic function efficiently helps reduce
function and gradient evaluation times while enabling easy access to the terms of the quadratic
function. Section shows the importance of convexity detection and describes an algorithm
for fast convexity detection for a quadratic function. Section [2.3] describes several bound
tightening techniques implemented in mg1ob for MIQCQO. In Section [2.4] we finally describe
how all the presolving techniques described here are integrated with other techniques already
present in Minotaur to get a functional presolver for MIQCQO problems, along with some
concluding remarks. The presolving techniques implemented in mglob as part of this chapter
makes the solver robust by significantly reducing the number of failing instances. It also helps
in getting correct solutions for more instances than previously obtained. This creates a base

solver that is used to implement and test ideas presented in the subsequent chapters.

2.1 Representation of a Quadratic function

To solve an optimization problem efficiently, appropriate data structures must be used to
represent the problem such that fast and reliable computations are possible. Most algorithms
for solving a nonlinear problem, including the branch-and-bound algorithm, require fast
function, gradient, and Hessian evaluations of the nonlinear function. Typically, nonlinear
functions are stored as a computational graph, and we use automatic differentiation to evaluate
gradient and Hessian. Since quadratic functions are a special kind of nonlinear function, we

can also use sparse matrix representation to store quadratic functions separately.

In this section, we describe both representations and how function and gradient evaluation
are done for each. Since quadratic functions have constant Hessian and can be easily stored, we

do not compare the efficiency of computing Hessian with either representation.
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2.1.1 Computational Graphs

A Computational Graph (CG) is used to store an instance of a nonlinear problem in solvers for
MINLO [144], nonlinear functions for automatic differentiation [82] in scientific applications,
and for interval analysis of nonlinear functions [132], etc. A CG is a directed acyclic graph
(DAG) where each node represents either an operator, a constant, or a variable of the problem.
Edges entering an operator node are the inputs of the operator, and edges exiting a node carry
the output value of the operation defined in the node. Consider the quadratic problem, (nvs03)),
from MINLPLib [43]].

min  (x; —8)% 4 (xp —2)?
xcZ?

st. —0.1x7 4+ x>0, (nvs03)
—0.33x1 —xp, > —4.5,

100 < x1,x < 200.

The computational graph for is shown in Figure 2.1] The green source nodes
Xx1,Xxp are the variables of the problem. The blue sink node represents the objective function
to be minimized. The yellow sink nodes are the constraint functions for which lower and
upper bounds are provided according to the constraints. For a non-commutative operation
like subtraction, the left and right nodes are defined appropriately to identify the order of
operations correctly. A computational graph can thus store a nonlinear function composed
of operators from a fixed set. They can not represent more general nonlinear functions like
integro-differential equations. We next discuss how function evaluation and gradient evaluation

are done using CG.
Function Evaluation

Given an £ and a CG for a nonlinear function f(.), function evaluation f(%) is done using
forward propagation of values from the variables in the graph. We propagate the values of
the variables starting from the source node till the sink node corresponding to the nonlinear
function. Each intermediate node computes its output from the values of the parent nodes.

Figure [2.2] shows the computation at each node while evaluating the objective function value of
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min

[0,00)

Figure 2.1: Computational graph of (nvs03

T
nvs03) at X = (6 3) . The values evaluated at each node is shown below the corresponding

node and the function value, 5, is shown below the output node.
Gradient Evaluation:

Gradient evaluation is done using automatic differentiation techniques. We begin by
evaluating the value of each node at a given X. This step is the same as the function evaluation
described above. For clarity, we have named each node N; in Figure 2.2 Each pass of the
CG evaluates the partial derivative with respect to a single variable using the chain rule of
derivatives. Given a variable, say xi, for which partial derivative needs to be computed, we
begin by initializing the partial derivatives with respect to each variable at the variable nodes.
The partial derivative with respect to the x1 node is initialized with 1 and O for all other variable
nodes. For all other nodes, the partial derivative with respect to x; is computed using the partial
derivatives of the parent nodes and the chain rule for differentiation. Finally, we obtain the
partial derivative of the function with respect to x| at the sink node. For illustration, the steps
taken to compute the partial derivative with respect to x; for the objective function of
is tabulated in Table 2.1l This method is called the forward mode in automatic differentiation.
A somewhat less intuitive but more efficient way is to compute the partial derivatives in the

reverse mode [82]]. Minotaur uses the reverse mode.
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Figure 2.2: Objective function evaluation at £ = (6,3) for the CG of

Node | Function value | Partial derivative expression Derivative evaluation

Ny 6| 9 1
N> 3 (3—1;,12 0
N3 8 ?9—];’13 0
Ny 2| gL 0
Ns —2 | G =gy gasalh 1x1+(=1)x0=1
Ne 1| 9 =ghegh 4 glecl 1x0+(—1)x0=0
Ny 4 g_ygzg_xgg% INsx 1= —4
Ng 1| o =gl 2N x 0 =0
No 5| g = ool gr ol 1% (—4)+(—=1) x 0 = —4

Table 2.1: Partial derivative evaluation of the objective function of (nvs03)) with respect to x;
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2.1.2 Dictionary of keys

Although CGs are powerful objects for representing a nonlinear function in general, quadratic
functions have a particular structure in the sense that every term has a maximum degree of two
and hence can be stored more efficiently using other methods. A quadratic function can be
represented mathematically as x” Qx + a’ x, given Q and a. Thus, one may use a sparse matrix

for Q and a sparse vector for a to store a quadratic function.

There are various ways of storing sparse matrices. For example, the Compressed Sparse
Row format stores three arrays, one each for nonzero entries, column indices, and row starts. It
is used when row operations are done on the matrix frequently. We use the dictionary of keys
format for storing the matrix Q and the vector a. We store the Q matrix as a dictionary where
the key is the pair of variables, and the value is the coefficient of the term. The vector a is
stored as a dictionary whose key is the variable, and the value is the coefficient of that variable.
Since our primary use for storing the quadratic function is for reformulation and its relaxation
rather than doing advanced matrix operations, a dictionary of keys format works very well for
our purpose. It also allows us to easily access the pairs of variables for which a product exists
and easily store all the nonlinearly participating variables. These additional features become
helpful while doing presolving operations like Optimality Based Bound Tightening, described
in Section[2.3.5] For illustration, we again consider the quadratic problem and represent

it in a dictionary of keys format.

68+mir% {<x1,x1 > I, <xp,xp >0 1}, {x;: —16,x3 : —4}
XEZL

S.t. {< X1,X1 >: —0.1},{)62 : 1} >0,
{x1:-033,xp: —1} > —4.5,

100 < x1,x, < 200.

Here < -,- > represents a pair of variables and {- : -, : -,...} represents a dictionary of (key :
value) pair. For notational convenience, we will denote the representation of the Q matrix as
the gf part of the quadratic function and the representation of the a vector as the 1 f part of the

quadratic function.
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Function Evaluation

Function evaluation for this format of representation is pretty straightforward. We start by
initializing s = 0. Given an £, for each term, g;;x;x;, in the gf we increment s by ¢g;;X;X;. Then,
for each term, /;x;, in 1 £, we increment s by /;X;. s is then returned as the value of the quadratic

function at Xx.
Gradient Evaluation

For gradient evaluation, we start by initializing g = 0 € R". Given an £, for each term,
gijxixj, in the gf we increment g; by ¢;;X; and g; by g;;X;. Then, for each term, /;x;, in 1 £, we

increment g; by /;. g is then returned as the gradient of the quadratic function.

2.1.3 Computational Results

In this section, we compare our implementation of CG and gf in Minotaur with respect to
function and gradient evaluation. We used the MINLPLib [43]] dataset and selected all instances
with quadratic objective or constraints. There are 830 such instances. For each instance, we
sample 1000 points uniformly from the box [x,X]. If x; is not given for a variable, then we
choose x; = —1000 for that variable. Similarly, if X; is not given, then we choose X; = 1000.
For all 1000 points sampled, we evaluate the function and gradient value using CG and gf for
all quadratic functions in the problem. Finally, we report the total time taken for function and
gradient evaluation for CG and gf. We keep a time limit of 120 seconds for this evaluation
to complete. We removed those instances for which the total time for function and gradient
evaluation for the 1000 sampled points by CG and gf is more than 120 seconds. This leaves us

with 614 instances for which we present the results.

Table [2.2] shows the average time taken for function and gradient evaluation by CG and
gf for the 614 instances. We see that gf is more than six times better in function evaluation
than CG and more than eight times better in gradient evaluation. There are only 14 instances
for which the function evaluation time for CG is better than that of gf, and we observe that in
all those instances, either the quadratic functions present are very dense or there is a square of
a linear function or a product of two linear functions. In the first case, representing a quadratic

function using a sparse matrix has no additional benefits. Additionally, for such cases, CG
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CG gqf

Average time in function evaluation (ms) | 1019.15 | 161.50

Average time in gradient evaluation (ms) | 1644.83 | 192.89

Table 2.2: Average time for function and gradient evaluation by CG and gf

performs marginally better because, for a square term, CG computes the square of the given
input, but gf will multiply the input with itself, which is slower. In the second case, the number
of operations required for CG are just kK — 1 additions and 1 square operation, while for gf, the
number of operations are ¢(k?), where k is the number of linear terms. Thus, CG can perform
better in this case. A similar analysis for the third case shows that CG will do &'(k; + k)
operations while gf will do &'(k k) operations, where k1, k, are the number of linear terms in
the product. For gradient evaluation, there are only four instances where CG performs better
than gf, three of which are small instances with only 4 or 5 variables and only square terms
present in the problem, and one instance has a product of linear functions as input. Again, in

these situations, CG performs better than gf.

2.2 Convexity Detection

Convexity plays an important role in solving optimization problems, as discussed in Section|I.1]
For nonconvex problems, identifying convex constraints can lead to tighter relaxations, and we
can also generate stronger separation algorithms. In this section, we describe a decomposition

based algorithm that exploits the graph structure of a quadratic function to detect convexity.

2.2.1 gf as a graph

A gf can be represented as a graph where nodes represent the variables in the gf and edges

are connected if the product of the two variables in the gf exists. A square term in the gf is
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Figure 2.3: Representing gf (2.1)) as a graph

represented as a self loop on the node of the variable. For example, consider the gf

xX1xp — 3x1x3 + 2x% — X4X5 —|—x§ 2.1)

This can be represented as a graph as shown in Figure The coefficients of the term can also

be represented by adding edge weights, but we have avoided it in this example for simplicity.

2.2.2 Convexity detection using subgraphs of the gf

A function is convex if its Hessian is positive semidefinite over all points in its domain, as seen
in Property Since quadratic functions have constant Hessian, we can check the convexity of
a quadratic function by checking the positive definiteness of its Hessian matrix. Computational
complexity of checking positive semidefiniteness of a matrix is ¢'(n’) either using Cholesky
decomposition or eigenvalue decomposition. Thus, checking positive semidefiniteness of a set
of smaller matrices is desirable rather than checking for a large matrix. This section describes
a simple algorithm to decompose a gf into smaller parts to detect convexity quickly. This
algorithm also allows us to separate variables of a gf to exploit separability to obtain stronger

relaxation or better reformulations.

Our objective is to decompose the gf so that each separate part has a mutually exclusive
set of variables from other parts. This decomposition is the same as finding disconnected

subgraphs of the gf. We say that a subgraph S of graph G is a disconnected subgraph if, for a
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Algorithm 2.1 An algorithm to find subgraphs of a gf

Input: A quadratic function gf

Output: A set S of quadratic functions which are subgraphs of gf

1: procedure FINDSUBGRAPHS

2:

3:

4.

10:

11:

13:

14:

15:

16:

17:

18:

20:

21:

22:

23:

24:

25:

26:

27:

S ¢
I+—0eR"
k<0
for each term g;;x;x; in gf do
if ; =0 & I; = 0 then
k+—k+1
afy < qijxix;
i<k
Ik
S+ Su{gfi}
else if /; = O then
afy < afy; +qijxix;
else if /; = O then
afy < af; +gijxix;
else
if I; = I; then
afy < afy +gijxix;
else
k<—k+1
afy < qfy +afy, +qijxix;
forr € {1,...,n} do
if , =ior ;= j then
I, —k
S+ Su{gfi}
S« S\{af;,afy}

return S

42



node v; in § and a node v, not in S there does not exist an edge connecting vy, v, and additionally
any two nodes in S are connected via a path. We use Algorithm [2.1|to find subgraphs of a gf.
Given a gf, Algorithmreturns a set S of gfy, fork=1,...,|S| such that gf = ZLS:'l afi

and every variable in gf appears in exactly one gfy.

Algorithm describes an approach to find block diagonal structure of a matrix when
it is stored as a dictionary of keys format (as a gf). Most implementations of finding block
diagonal decomposition use the sparse matrix format. We use the gf representation for many
purposes other than convexity detection. For example, it allows us to easily identify pairs of
variables that has a product among them, create relaxation for such products easily, identify and
store branching variables faster etc. Converting gf to sparse matrix and back to gf has extra
computational overheads which is avoided by implementing Algorithm Thus, we believe

that our implementation will perform well within the context of the solver.

2.3 Bound Tightening

Stronger relaxations can be obtained if the variable bounds are tightened. For nonconvex
problems where relaxations are created based on the bounds of the variables (for example,
McCormick relaxation described in Section [[.5.1)), tightening variable bounds allows us to
create much tighter relaxation, and there is a nontrivial reduction in the size of the relaxation.
For instance, consider the constraint y = x?, x € [x, %], region showed in gray in Figure shows
the McCormick relaxation of the constraint. On the other hand, if we have tighter bounds for
x € [x/,X'] then the feasible region of the relaxation gets tightened as shaded in blue in Figure
2.4 This shows that bound tightening reduces the search space beyond the trivial reduction.
Tighter relaxations provide better lower bounds, reducing the number of nodes visited in the

B&B tree.

Many bound tightening techniques have been studied in the literature and practically
implemented in state-of-the-art solvers for global optimization. Two important bound
tightening techniques studied extensively in the literature are Feasibility Based Bound
Tightening (FBBT) and Optimality Based Bound Tightening (OBBT). FBBT uses simple

interval arithmetic to forward propagate variable bounds to the constraints and then backward
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Ty 7 T
Figure 2.4: Relaxation of y = x?,x € [x,%] shaded in gray and relaxation of y = x?,x € [x/,¥]

shaded in blue

propagate the constraint bounds to the variables using inverse interval arithmetic operations.
On the other hand, OBBT uses a tractable relaxation of the original problem and then solves
several optimization problems by maximizing and minimizing a variable over the feasible

region of the relaxation.

In this section, we present three techniques for bound tightening implemented in mglob.
All the techniques described in this section are taken from [60, 120, 128}, [132]. We then present

computational results to show the effectiveness of these techniques on benchmark instances.

2.3.1 Literature Review

FBBT is performed on a DAG of the constraints and uses interval arithmetic techniques to
obtain bounds through the graph [[120,|132]]. Puranik and Sahinidis [128]] survey several domain
reduction techniques and describe several extensions to FBBT. Belotti et al. [24] describe a
large Linear Program (LP) that converges to the fixed point of FBBT operations. They show
that instead of solving multiple passes of FBBT, one can solve the LP and get tighter bounds for
all the variables. Carrizosa et al. [47] describe how translating variables can improve bounds in

univariate and multivariate polynomials. Domes and Neumaier [61] give rigorous methods for
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bound tightening of Constraint Satisfaction Problems (CSP) using linear relaxations. They also
give an algorithm for constraint propagation for quadratic constraint using univariate quadratic

expression and removing bilinear terms from the constraints [60].

OBBT, although computationally expensive, is highly effective on some problems like
optimal power flow problem [S1]. Bynum et al. [46] describe a method to solve a series of
small OBBT problems. They partition a bipartite graph of variables and constraints to obtain
smaller OBBT problems. Gleixner et al. [77] describe three techniques to make OBBT more
efficient, namely, aggressively filtering those OBBT problems which necessarily does not lead
to tightening, ordering variables for OBBT problems so that less number of simplex iterations
are done in each solve, and obtaining some additional redundant cuts which can be used to

obtain better bounds.

2.3.2 Feasibility Based Bound Tightening

Feasibility Based Bound Tightening (FBBT) is a simple method to infer bounds for constraints
and variables. Each iteration of FBBT has two steps. Forward propagation uses variable
bounds and employs interval arithmetic operations to infer bounds on the constraints. Backward
propagation uses bounds on the constraints and employs reverse interval arithmetic operations
to infer tighter bounds on the variables. For an MIQCQO, the following are some interval
arithmetic operations frequently used in FBBT. For any x € [x,X] where x € RU {—} X €

R U {e}, we denote its corresponding interval variable as x = [x,x].

* Sum of two intervals - x+y = [x+y,X+7]

[ax,ax], o>0
¢ Product of a scalar and an interval - ox =

[ox,0x], a<O0

* Product of two intervals - x X y = [min(xy,¥y,xy,Xy), max(xy,xy,xy,xy)]
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;

[1/%,1/x], 0¢ [x,5]
[—eo,1/x], 0=X

* Reciprocal of an interval - 1 /x =
[1/)_C7 °°]7 0=x
[_°°>°°]’ IS (&3)

* Quotient of two intervals - T =x x 1/y

[0,max(x*,7)], 0 € [x,]

* Square of an interval - x> = ¢ [z2, 7, ¥<0

2, %%, x>0

VX,V x>0

(0] x<0

* Square root of an interval - \/x =

Forward Propagation

We propagate variable bounds to obtain lower and upper bounds for each constraint of the

problem during forward propagation. Given a quadratic constraint of the form

[ < Z Z Qijxixj+ ZC,’X,‘ <u
i=1j=1 i=1
We define Q(x) = Y X5 Qijxixj + X ¢ix; and the interval Q(x) := (07, Q5] where Q7 , Q5
is the optimal solution to the problem min{Q, — Q;|Q(x) € [Q;, Qu],x € x} and X is the box
defined by the corners (x;,%,,...,x,)’, (¥1,%,...,%;). Q(x) is the best possible bound for the

constraint with the given bounds on the variables. In general, we get an interval which is larger

than Q(x).

We begin by substituting each variable in Q(x) by its interval counterpart. Using interval
arithmetic we then obtain an interval I(x) O Q(x). Then, updated bounds on the constraint are
I(x) N [l,u]. Note, if [/,u] D I(x), then the constraint is redundant and can be removed from the

problem.

Example 2.1. Consider the quadratic constraint in R?

2x%—x%+5x1 —4x; < 1,x1 € [0,4],x2 € [-2,2].
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Here [ = —oo,u = 1,Q(x) = 2x} — x3 + 5x| — 4x, and if we minimize and maximize Q over the
given bounds of the variables then we get Q(x) = [—12,56]. Now if we replace every variable

in Q(x) with its interval variable and apply interval arithmetic operations we get

I(x) = 2x] — X3 + 5X; — 4%,
=2x[0,4]2 4+ (—1) x [=2,2]* +5 x [0,4] + (—4) x [-2,2]
=2x[0,16] + (—1) x [0,4] 4 [0,20] +[—8, 8]
= [0,32] + [—4,0] +[0,20] + [8, 8]

= [—12,60]
Thus the new bounds on the constraint are [—12, 1].

For a quadratic constraint, it is clear that if all the bounds on variables are finite, then finite

bounds on the constraint can be computed.
Backward Propagation

Once we have forward propagated variable bounds on all constraints, we use constraint
bounds to infer new bounds on the variables. For a given interval I(x) on the quadratic function
Q(x) we define x" as the smallest box such that if x € x, Q(x) € I(x) then x € x". The following

inverse interval arithmetic operations give us new bounds on the variables.

Sum of p terms - if z =Y} _ e thenti=z—Y7 , tg
it

* Linear term - if z=at,ac Rthent= (1/a) xz

Quadratic term - if 7 =¢?> then t = \/z

Bilinear term - if z = #1, then t; = %

Example 2.2. Let us again consider the constraint illustrated in Example

203 — X3+ 5x] —4xy < 1,x; € [0,4],x2 € [-2,2]

Using forward propogation we have derived I(x) = [—12, 1] and we have calculated the bounds

for each term. We note that x* = [0, 1.5894] x [—0.2679,2]
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For each term we find

2 x x§ =I(x) — (x5 — 5x1 +4x;)

— [—40,13]

X = [~V/6,V/6]

—x3 = I(x) — (—2x3 — 5% +4x;)

= [~72,9]

x2 = [-V72,V/72]

5xxp = I(x) — (—=2x3 +x3 +4x;)

= [~52,13]

x1 = [—10.4,2.6]

—4 x xp = I(x) — (—2x7 + X3 — 5X)
= [—64,5]
X = [~1.25,16]

Thus x; = [—v/6,v/6]N[—10.4,2.6]N[0,4] = [0,2.4495] and x, = [—/72,V/72] N [—1.25,16]N
[-2,2] = [-1.25,2].

2.3.3 FBBT for a univariate quadratic expression

In the previous section, we used the most straightforward bound propagation technique to
identify better bounds on variables. Although inexpensive, it computes very weak bounds on
several instances. In this section, we describe a computationally inexpensive method to get
better bounds for some cases of quadratic constraints. We have implemented these techniques

in mglob, but the ideas presented in this section are directly taken from [60].

Let us consider a univariate quadratic expression g(x) = ax® + bx. We know that ¢(x) is
a parabola with a minimum or maximum depending on the sign of a. We can use this to get
better bounds on the expression. Once we know ¢(x) € [l,u], we can use quadratic formula to

get bounds on the variable during backward propagation. Next, we describe the forward and
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backward propagation for univariate quadratic expressions.
Forward Propagation

Consider g(x) = ax?> + bx,x € [x,%] then we want to [, u such that g(x) € [I,u]. We assume
both a,b # 0 because we a = 0 then we have a linear term and if » = 0 then we can do forward
propagation as described in Section[2.3.2] Now, if @ > 0 we know that g(x) is a convex parabola
and has a minimum at x* = —2. Thus if x* € [x,X], we set [ = g(x*) = —S—Z,u = max{ax® +
b,ax>+b}. If x* < x, we set| = ax*> +b,u = ax*> +b and if x* > X, we set | = ax’> +b,u = ax* +b.
Similarly, if @ < 0 then g(x) is concave and we can find the values of /, u based on the region in

which ¢(x) attains its maximum.

Example 2.3. Let us again consider the constraint illustrated in example
2x7 — x5+ 5x1 — 4wy < 1,x1 € [0,4],x € [-2,2]

We define g (x) = Zx% + 5x1,q2(x) = —x% —4xp,0(x) = q1(x) + q2(x). qi1(x) is convex with
minimum at x* = —3 < 0. Therefore, we get g;(x) € [0,52]. Also, g»(x) is concave with
maximum at x* = —2 € [—2,2]. Therefore, we get g»(x) € [—12,4]. Thus, I(x) = [—12,56].

And the bounds on the constraints are [—12, 1].

Backward Propagation

For backward propagation of a univariate quadratic expression, we use the quadratic
formula to get the bounds on the variables. Consider ¢(x) = ax* 4 bx,x € x,q(x) € [I,u] then we
want to find x’ such that x € x'. Note, g(x) = ax> +bx € [l,u] = ax*+bx—1>0,ax* +bx—u <

0. Now, if a > 0 then using ax>+bx—1>0we getx € [—00, —b= V2b2+4“l} U [*H ”2Z2+4“l] and

a

using ax® +bx —u < 0 we get x € [_b = Vz};2+4““, —bt V2Z2+4a”- . Finally,
Jx ([ ~b— VBt dal| | b+ VPt aal ) . —b— VD2 +dau —b+ /b2 +dau
B 7 2a 2a 2a ’ 2a

Similarly we can find updated bounds on x when a < 0.

Example 2.4. In Example we derived bounds for Q(x) using forward propagation of

univariate quadratic expressions ¢qj(x),g2(x) as I(x) = [—12,1]. We also derived bounds
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on qi(x) € [0,52],g2(x) € [—12,4]. Now backward propagation of I(x) to g;(x),q2(x) we
see that ¢q;(x) € ([—12,1] — [-12,4]) N [0,52] = [0,13]. Now using 2x3 + 5x; > 0 we get
x| € [—o0, —2.5]U[0,00] and using 2x% + 5x; — 13 < 0 we get x; € [—4.0894,1.5894]. Thus, we
get x € [0,1.5894]. Similarly computing the bounds using ¢, (x) we get x, € [—0.2679,2].

2.3.4 Adding Default Bounds

After employing the FBBT operations described in the previous sections it may happen that
we still have variables with infinite bounds. Jeroslow [94] showed that there cannot be any
algorithm for solving quadratic problems with unbounded integer variables. Many relaxation

techniques for MIQCQO problems depend on having finite bounds for the variables, see Section

Thus after employing the FBBT if we do not have finite bounds on some variables then we
assume default bounds for those variables. For both lower and upper bounds, we first compute
the largest magnitude of that bound among all the variables that has a finite value for that bound.
Let that magnitude be m then we set the default bound for all other variables to be £100m where
the sign is + if the we need default upper bound and it is — for default lower bound. It may
happen that m 1s O or all variables do not have finite bounds still. In that case we set the default

bound value to be £1000 depending on the bound type.

2.3.5 Optimality Based Bound Tightening

In the previous sections we have looked at methods which depend on a single constraint of the
original problem and derives bound based on the feasibility of the constraint. In this section we
look at a method where we first obtain a valid tractable relaxation and compute bounds based on
the feasibility of the entire relaxation. We solve a series of linear optimization problems whose
objective function is minimizing or maximizing certain variable and the feasible region is same
as that of the linear relaxation of (Q)) along with additional constraint that bounds the objective
function based on the relaxation solution obtained. This method is known as Optimality Based

Bound Tightening (OBBT).
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OBBT requires a relaxation for (Q). We use McCormick relaxation (I.TT)) described in
Section[I.5.1] Let R be the feasible region of the McCormick relaxation and let Z be the optimal

objective value of the relaxation, then OBBT solves a sequence of LO problems as follows.

min /max x;
s.t. (x,y) €R

Z q?jyij +ng >z
(i,J)€Ey

This gives us lower and upper bounds for each variable by solving 2n LPs. OBBT is
computationally very expensive and we wish to eliminate solving those LPs that are necessarily
not going to improve the bounds of a variable. To do so we use a filtering approach for solving

OBBT problems.

We begin by creating a set of objective functions
O = {minx; | x; € NL} U{maxx; | x; € NL}

where NL is the set of variables that appear in any product term or square term in (Q). Let X
be the optimal solution of the linear relaxation of the problem. For all x; € NL, if X; < x; + €
then remove minx; from O and if X; > X; — € then remove maxx; from O. We now choose
an objective function from O and remove it from O. We solve the OBBT problem with the
chosen objective function. We again filter O as described above using the optimal solution of
the OBBT problem. We repeat this process until O is empty. Since optimal solution for an LP
contains many variables at one of their bounds, this strategy reduces the number of LP solves

dramatically.

2.3.6 Computational Results

We have implemented the three bound tightening techniques described in the previous sections
in mglob. Given an instance we do FBBT as described in Section on all nodes of the

sB&B tree. We call this technique as simpleBT in this section. We then do FBBT for univariate
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quadratic expression as described in Section [2.3.3] on all nodes of the sB&B tree and call this
technique as univarBT in this section. If any variable appearing in a quadratic term still does not
have finite bounds then we add default bounds as described in Section[2.3.4] The problem is then
transformed with the addition of auxiliary variables and we create the McCormick relaxation.
We then solve this relaxation to get a lower bound on the problem. We then solve OBBT
problems as described in Section [2.3.5] at the root node only. We will call this technique as
OBBT in this section.

We selected all instances with either nonconvex quadratic objective or nonconvex
quadratic constraints from the MINLPLib dataset [43]. There are 685 such instances. We
removed 6 instances which got solved even before OBBT was done. We also removed instances
which takes more than 900 seconds for root node processing. Instances that are removed from
the test set are those which have number of variables, or number of constraints, or the number
of quadratic terms are very high. This increases the time taken in processing the root node.
Root node processing includes presolving, creating a root relaxation and OBBT iterations. We
