
Shared-Memory Parallel Algorithms for
Mixed-Integer Nonlinear Optimization

A Thesis
Submitted in partial fulfillment of

the requirements of the degree of
Doctor of Philosophy

by

Prashant Palkar
(Roll No. 134190002)

Supervisor:
Prof. Ashutosh Mahajan

Industrial Engineering and Operations Research

Indian Institute of Technology Bombay
Mumbai 400076 (India)

September 26, 2022

Acceptance Certificate

Industrial Engineering and Operations Research

Indian Institute of Technology, Bombay

The thesis entitled “Shared-Memory Parallel Algorithms for Mixed-Integer Non-

linear Optimization” submitted by Prashant Palkar (Roll No. 134190002) may be

accepted for being evaluated.

Date: September 26, 2022 Prof. Ashutosh Mahajan

Approval Sheet

This thesis entitled “Shared-Memory Parallel Algorithms for Mixed-Integer Non-

linear Optimization” by Prashant Palkar is approved for the degree of Doctor of

Philosophy.

Examiners

Supervisor (s)

Chairman

Date:

Place:

Declaration

I declare that this written submission represents my ideas in my own words and

where others’ ideas or words have been included, I have adequately cited and

referenced the original sources. I declare that I have properly and accurately ac-

knowledged all sources used in the production of this report. I also declare that

I have adhered to all principles of academic honesty and integrity and have not

misrepresented or fabricated or falsified any idea/data/fact/source in my sub-

mission. I understand that any violation of the above will be a cause for disci-

plinary action by the institute and can also evoke penal action from the sources

which have thus not been properly cited or from whom proper permission has

not been taken when needed.

Prashant Palkar

Date: September 26, 2022 (Roll No. 134190002)

vii

Abstract

Mixed-integer nonlinear programming problems (MINLPs) are optimization

problems characterized by nonlinear functions in constraints and/or objective

and integer variables. MINLPs are used to model a wide range of applications in

science, engineering, economics, etc. Yet, MINLPs are difficult to solve. We study

shared-memory parallel algorithms for MINLPs. These algorithms exploit paral-

lel processing capabilities of modern shared-memory computing architectures.

First, we focus on a specific class of MINLPs called convex MINLPs. We

implement shared-memory parallel versions of two well known convex MINLP

algorithms: the NLP based branch-and-bound and the LP/NLP based branch-

and-bound. These parallel algorithms are implemented within an open-source

MINLP toolkit, Minotaur. Our implementations solve different nodes of the

branch-and-bound tree concurrently. We analyze the performance of our algo-

rithms using convex instances from the MINLPLib benchmarking library. Our

computational results show about 40% improvement in the solution times and an

increase in the number of instances solved by using up to 16 cores. These paral-

lelization methods are compared to alternate approaches that exploit parallelism

in existing commercial integer linear programming solvers.

Furthermore, we study conditions that may cause a parallel tree-search al-

gorithm to sometimes run slower than its sequential counterpart. Such a phe-

nomenon is called a detrimental anomaly. In the context of convex MINLP algo-

rithms, we present nondetrimental parallel extensions of the NLP based branch-

and-bound and the LP/NLP based branch-and-bound algorithms. We recom-

mend settings for our implementations in Minotaur which yield deterministic

runs for the proposed parallel algorithms.

We also present a heuristic for nonconvex MINLPs based on a branch-and-

bound framework. At each node in the search tree, we solve a continuous non-

linear relaxation multiple times. Since the relaxation we create is in general not

convex, this method does not guarantee finding an optimal solution. In order to

ix

x Abstract

obtain good solutions, we solve the relaxation multiple times in parallel starting

from different initial points. Our computational experiments show that this ap-

proach yields optimal or near-optimal solutions on benchmark MINLP problems,

and that the method benefits well from parallelism.

Finally, we study another specific class of discrete optimization problems,

called Mixed-Integer Derivative-Free Optimization (MIDFO) problems, in which

the mathematical form of the nonlinear functions and their derivatives are not

available. We address the problem of minimizing a convex function on a

nonempty, finite subset of the integer lattice when the function cannot be eval-

uated at noninteger points. We propose a new underestimator that does not

require access to (sub)gradients of the objective function - such information is

unavailable when the objective is a blackbox function. Rather, our underestima-

tor uses secant linear functions that interpolate the objective function at previ-

ously evaluated points. These linear mappings are shown to underestimate the

objective function in disconnected portions of its domain. Therefore, the union

of these ‘conditional cuts’ provides a nonconvex underestimator of the objective.

We propose an algorithm that alternates between updating the underestimator

and evaluating the objective function. We prove that the algorithm converges to

a global minimum of the objective function on the feasible set. We present two ap-

proaches for representing the underestimator and compare their computational

effectiveness. In the first approach, we model the underestimator as an MILP that

seems difficult for the application we consider. This MILP can be solved in par-

allel by existing MILP solvers. The second, numerically more robust, approach

explicitly maintains lower bounds at integer points and involves a lot of indepen-

dent computations. Hence, we exploit parallelism within this algorithm too. We

also compare implementations of our algorithm with existing MIDFO methods.

We discuss the noticeable difficulty of this problem class and provide insights

into why a computational proof of optimality is challenging even for moderate

problem sizes.

Contents

Abstract ix

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1 Introduction 1

1.1 MINLP and Related Problems . 2

1.1.1 Nonlinear Programs . 4

1.1.2 Mixed-Integer Linear Programs 5

1.1.3 Linear Programs . 5

1.2 Algorithms for Convex MINLP . 6

1.2.1 Nonlinear Branch-and-Bound (NLP-BB) 6

1.2.2 Outer Approximation (OA) 9

1.2.3 LP/NLP Based Branch-and-Bound (QG) 11

1.3 Methods for Nonconvex MINLP . 12

1.3.1 Relaxations Using Factorable Functions 12

1.3.2 Spatial Branch-and-Bound (SBB) 14

1.4 Heuristic Approaches . 14

1.5 Mixed-Integer Derivative-Free Optimization 15

1.5.1 Direct Search Methods . 16

1.5.2 Model Based Methods . 16

1.6 Shared-Memory Parallelism . 17

1.7 Solvers for MINLP and Minotaur . 18

1.8 Motivation for the Thesis and Outline 19

2 Parallel Algorithms for Convex MINLP 23

2.1 Background . 23

xi

xii Contents

2.2 Experimental Setup . 24

2.3 Shared-Memory Parallel Search . 25

2.3.1 Parallel Extension of NLP-BB 27

2.3.2 Sharing Pseudocosts in Branching 29

2.3.3 Parallel Extension of QG . 32

2.4 Combined Effect of Linearization and Parallelization Schemes . . . 34

2.5 Outer Approximation . 36

2.5.1 Multitree OA with Parallel MILP 36

2.5.2 QG Using MILP Solvers with Lazy Cuts Callback 37

2.6 Comparison of Methods and Conclusions 40

3 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP 45

3.1 Opportunistic Parallel Branch-and-Bound in Minotaur 49

3.1.1 Parallel NLP-BB . 49

3.1.2 Parallel QG . 50

3.2 Parallel NLP-BB with No Detrimental Anomalies 52

3.2.1 Unambiguous Branching Functions 53

3.2.2 Unambiguous Reliability Branching Scheme 53

3.2.3 Unambiguous Node Selection 57

3.2.4 Nondetrimental NLP-BB . 58

3.3 Parallel QG with No Detrimental Anomalies 59

3.4 Reproducibility in Parallel NLP-BB and Parallel QG 60

3.5 Computational Results . 60

3.6 Conclusion and Future Research . 65

4 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP 71

4.1 The Branch-and-Estimate Heuristic 72

4.2 Initial Point Generation Schemes . 74

4.2.1 Scheme-1 . 76

4.2.2 Scheme-2 . 76

4.2.3 Scheme-3 . 76

4.2.4 Scheme-4 . 77

4.2.5 Scheme-5 . 77

4.3 Computational Results . 78

4.3.1 Experimental Setup . 79

4.3.2 Inferences . 79

4.4 Conclusions and Future Research . 81

Contents xiii

5 Mixed-Integer Derivative-Free Optimization 87

5.1 Background . 90

5.2 Underestimator of Convex Functions on Integer Lattice 92

5.2.1 Secant Functions and Conditional Cuts 92

5.2.2 Lower Bound for Objective Function 95

5.2.3 Covering Entire Domain with Conditional Cuts 97

5.3 Proposed Algorithm and Convergence Analysis 100

5.4 Formulating (PILP) as an MILP Problem 103

5.4.1 MILP Formulation . 103

5.4.2 Issues with MILP Formulation 104

5.5 Enumerative Approach . 109

5.5.1 Other Implementation Details 110

5.5.2 The SUCIL Method . 114

5.6 Numerical Experiments . 116

5.7 Discussion . 119

6 Conclusions and Future Work 127

Appendix A Test Problems and Numerical Results for MIDFO 133

List of Publications, Posters and Talks 139

References 139

Acknowledgements 141

List of Figures

1.1 Feasible region of a convex MINLP 4

1.2 Feasible region of an NLP relaxation of a convex MINLP 7

1.3 Illustration of NLP-based branch-and-bound 7

1.4 Geometrical depiction of variable branching 8

1.5 Feasible region of an MILP relaxation of a convex MINLP 10

1.6 Feasible region of an LP relaxation of a convex MINLP 12

2.1 Parallel tree-search in Minotaur . 28

2.2 Scalability graphs of wall clock times taken by mcbnb 30

2.3 Scalability graphs of wall clock times taken by mcbnbSRel 30

2.4 Illustration of pseudocosts-sharing by two threads 31

2.5 Scalability graphs of wall clock times for multithreaded mcqg . . . 34

2.6 Effect of providing multiple threads to CPLEX in oa 38

2.7 Performance profiles for lstoaO with multiple threads 40

3.1 Sequential branch-and-bound tree 47

3.2 Anomaly in a parallel tree-search with two threads 47

3.3 Depiction of unambiguous reliability branching using two threads 57

3.4 Scalability graphs of wall clock times taken by opportunistic mcbnb 63

3.5 Scalability graphs of wall clock times taken by deterministic mcbnb 63

3.6 Scalability graphs of number of iterations for deterministic mcbnb 64

3.7 Scalability graphs of number of iterations for deterministic mcqg . 64

3.8 Scalability graphs of wall clock times taken by deterministic mcbnb 64

3.9 Scalability graphs of number of iterations for deterministic mcbnb 64

3.10 Scalability graphs of wall clock times taken by opportunistic mcqg 66

3.11 Scalability graphs of wall clock times taken by deterministic mcqg 66

4.1 Performance profiles based on wall clock time for msbnb (gap 0.05%) 81

4.2 Performance profiles based on wall clock time for msbnb (gap 1%) 81

xv

xvi List of Figures

4.3 Performance profiles based on wall clock time for msbnb (gap 10%) 82

4.4 Performance profiles based on wall clock time for msbnb 82

4.5 Performance profiles based on number of nodes for msbnb 82

5.1 Primitive directions emanating from a point 91

5.2 Regions in R2 where conditional cuts are valid 96

5.3 Illustration of Algorithm 5.1 minimizing f (x) = x2 on [−4, 4] ∩ Z. . . 102

5.4 An example of false termination of Algorithm 5.1 due to ελ 105

5.5 Performance of MILP based approach 108

5.6 Fraction of affinely independent combinations of points 113

5.7 Performance profiles for variants of SUCILs 116

5.8 Performance profiles of different DFO solvers 118

5.9 Data profiles of different DFO solvers 120

5.10 Number of total and affinely independent combinations 122

5.11 Wall clock time and number of secants per iteration of SUCIL . . . 123

5.12 Sufficient sets of points as proof of optimality 124

A.1 Cost of optimality in terms of function evaluations 136

List of Tables

2.1 Comparison of mcbnb1 with multithreaded mcbnb 30

2.2 Comparison of mcbnbSRel1 with multithreaded mcbnbSRel 32

2.3 Comparison of mcqg1 to mcqg using multiple threads 35

2.4 Performance of qgHyb and mcqgHyb16 35

2.5 Performance of oa with multiple threads 38

2.6 Performance of oaSol with multiple threads 39

2.7 Performance of lstoaD with multiple threads 40

2.8 Performance of lstoaO with multiple threads 41

2.9 Comparison of algorithms of different solvers 43

3.1 Anomaly in number of iterations using two threads 47

3.2 Comparison of multithreaded variants of opportunistic mcbnb . . 62

3.3 Scalability of mcbnbOppor . 62

3.4 Comparison of multithreaded variants of deterministic mcbnb . . . 63

3.5 Anomalous behaviour in mcbnbDeter with guided diving. 64

3.6 Comparison of multithreaded variants of deterministic mcbnb . . . 65

3.7 Anomalous behaviour in mcbnbDeter without guided diving. . . . 65

3.8 Scalability of mcbnbDeter without guided diving 67

3.9 Comparison of multithreaded variants of opportunistic mcqg . . . 68

3.10 Scalability of mcqgOppor . 69

3.11 Comparison of multithreaded variants of deterministic mcqg . . . 70

3.12 Anomalous behaviour in mcqgDeter 70

4.1 Performance of schemes and solvers on MINLPLib instances (I) . . 83

4.2 Performance of schemes and solvers on MINLPLib instances (II) . . 84

4.3 Performance of schemes and solvers on MINLPLib instances (III) . 85

5.1 Number of primitive directions in a discrete 1-neighborhood 91

5.1 Performance of MILP based approach 109

xvii

xviii List of Tables

5.2 Performance of SUCIL using different approximations of X 116

A.1 Performance of different DFO solvers (part I) 134

A.2 Performance of different DFO solvers (part II) 135

A.3 Performance of different DFO solvers (part III) 136

A.4 Description of test problems for MIDFO 137

List of Algorithms

2.1 Parallel QG in Minotaur . 33

2.2 Routine for getting an open node in Minotaur 34

2.3 Exploiting solution pool of MILP solver in multitree OA 37

3.1 Parallel branch-and-bound scheme in Minotaur 50

3.2 Routine for getting an open subproblem 51

3.3 Opportunistic parallel NLP-BB in Minotaur 51

3.4 Opportunistic parallel QG in Minotaur 52

3.5 Branching candidate selection in ancestRel branching 56

4.1 A Branch-and-Estimate heuristic for nonconvex MINLP 74

4.2 Scheme-1 for initial point generation 76

4.3 Scheme-2 for initial point generation for j ∈ {2, . . . ,M} 76

4.4 Scheme-2 for initial point generation for j = 1 77

4.5 Scheme-5 for initial point generation 78

4.6 Generating a random box corner for Scheme-5 78

4.7 Generating farthest box corner for Scheme-5 79

5.1 Identifying a global minimizer of a convex objective on integer Ω. . . 100

5.2 Routine for updating lower bound for f at each point in Ω. 110

5.3 The SUCIL method for convex MIDFO. 115

xix

Chapter 1

Introduction

Mixed-Integer Nonlinear Optimization problems refer to a class of mathemati-

cal optimization problems that have a nonlinear objective function or constraints,

along with integer constrained variables. Since an optimization model is often

called a ‘program’, we refer to these models as MINLPs: Mixed-Integer Nonlin-

ear Programs. We use the term MINLP to also refer to Mixed-Integer Nonlinear

Programming.

MINLP provides a powerful framework to model and solve a wide range of

optimization problems in various applications. However, these problems fall in

the category of some of the most difficult optimization problems to solve prac-

tically. The reason why MINLPs are so challenging to solve is two-fold. The

first reason is the presence of decisions that are discrete in nature, for example,

a switch can either be on or off, or the number of vehicles can only be an inte-

ger value like 5 or 6, but not 5.5. For most practical cases, this discrete nature of

multiple decisions eventually results in a prohibitively large number of combi-

nations (of decisions) to be either evaluated, or ruled out in lieu of an available

good solution. Modelling such restrictions rules out many available mathemati-

cal frameworks like Linear Programming that boast of practically efficient solu-

tion methods. The other reason why MINLPs are difficult to solve is the presence

of nonlinearity in the constraints or the objective function. Only a few special

cases of a system of nonlinear inequalities are known to be solvable efficiently.

Even with the latest tools and techniques, finding even one solution to a

given numerical instance of a MINLP may require hours or days on the most so-

phisticated computer systems. Therefore, these problems have been the centre

of theoretical and computational research. On the computational front, recent

advances in computing systems, especially the parallel computing architectures,

1

2 Introduction

enable a user to execute multiple tasks simultaneously. Personal computers and

workstations that are commonly used today are equipped with technologies that

enable parallel processing. Most of them have multiple processors that share a

common memory space for performing their tasks; such systems are referred to

as shared-memory parallel systems. This thesis focusses on fast practical meth-

ods for solving MINLPs using multiple processors available on shared-memory

parallel computing environments.

1.1 MINLP and Related Problems

A MINLP can be mathematically expressed as:

minimize
x

f (x)

subject to g(x) ≤ b, (P)

x ∈ X,

x j ∈ Z, ∀ j ∈ I.

Here, x = (x1, . . . , xn)> represents the vector of decision variables, some of which

are restricted to take only integer values. The set of indices of integer-constrained

variables is denoted by I. The constraints on the decision variables are expressed

using inequalities, with a vector of real values b = (b1, b2, . . . , bm)> on the right

hand side and the functions g : Rn → Rm on the left hand side. We initially as-

sume that the functions g1, g2, . . . , gm are nonlinear and twice continuously differ-

entiable, and later consider problems where derivatives are not available. The re-

lation g(x) ≤ b represents a set of m nonlinear inequality constraints. An equality

constraint of the form ḡ(x) = b̄ can be rewritten as a pair of inequalities, ḡ(x) ≤ b̄

and −ḡ(x) ≤ −b̄. The set X represents the collection of linear constraints in the

problem. Precisely, X := {x : Cx ≤ c, Dx = d} where C, D are matrices and c, d

are vectors of appropriate dimensions. We assume that the set X is bounded.

f : Rn → R represents the objective function of the optimization problem (P)

that one wants to minimize while satisfying all the constraints on the decision

variables x.

The MINLP framework is used in modeling optimization problems arising

in various scientific, engineering, economic and managerial applications. Appli-

cations include portfolio optimization, facility location problems, process design,

unit commitment, water and gas networks design, cutting stock problem, pro-

tein folding, etc. Other more recent ones include brachytherapy, cyber security,

1.1 MINLP and Related Problems 3

energy management, cloud computing, supercomputing, environment, weapons

target assignment, etc. The details on these applications and the references in-

volving the respective MINLP formulations can be found in the surveys by ?, ?, ?,

?, ?, etc. MINLPs have also been used as subproblems within more general opti-

mization frameworks like in derivative-free optimization (??), partial differential

equation constrained optimization (?), bilevel optimization (?), etc. A nice review

of such domains and their intersection with MINLP can be found in the surveys

by ? and ?.

An important classification of MINLP is based on the ‘convexity’ of the non-

linear functions g and f in (P). A convex function is formally defined as follows.

Definition 1.1.1 (Convex function). (?) Let C ⊆ Rn be a nonempty convex set. A

function f : C → R is called a convex function if and only if f
(
λx1 + (1 − λ)x2

)
≤

λ f (x1) + (1 − λ) f (x2) for all x1, x2 ∈ C and some scalar λ ∈ [0, 1].

Another definition of convex functions when they are differentiable is as follows.

Definition 1.1.2 (Convex function). (?) Let C ⊆ Rn be a nonempty open convex set.

Suppose that a function f : C → R is differentiable, that is, its gradient ∇ f exists at all

points in C. Then, f is convex if and only if,

f (x2) ≥ f (x1) + ∇ f (x1)>(x2 − x1), (1.1)

for any x1, x2 ∈ C.

The affine function on the right hand side in (1.1) is the first order Taylor’s

approximation of f near the point x1. This property of convex functions enables

one to use local information about a convex function (its value and derivative at

a given point, x1) to derive a global underestimator, a linear function in this case

(over the entire domain, C).

In the context of MINLP, if the functions g1, g2, . . . , gm and f are convex, then

we call (P) a convex MINLP. MINLPs that are convex are less difficult than the

ones those are not convex (also referred to as nonconvex MINLPs). The set of

feasible points of a convex MINLP is shown in Figure 1.1. Property 1.1 is widely

exploited in algorithms for convex MINLP.

There are some well studied classes of optimization problems that can be

considered as special cases of MINLPs. We describe three of them: Nonlinear

Programs (NLPs), Mixed-Integer Linear Programs (MILPs) and Linear Programs

(LPs). Algorithms for MINLP solve a sequence of related NLPs, MILPs and LPs.

4 Introduction

x1

x2

Figure 1.1: A convex mixed-integer nonlinear programming problem in two dimensions.

The red lines indicate the points that satisfy all the constraints of (P), called the feasible

region of this MINLP, and the (convex) nonlinear constraints are shown using the curved

lines. One can note that the variable x2 is integer constrained.

1.1.1 Nonlinear Programs

If the integer restrictions on decision variables x are relaxed in (P), then we

obtain an NLP of the form:

minimize
x

f (x)

subject to g(x) ≤ b, (R)

x ∈ X.

In the absence of constraints g and the case when X = Rn, the problem would be

called an ‘unconstrained’ minimization problem (that is, there are no constraints

on the decision variables x). Otherwise, we call the problem (R) a ‘constrained’

NLP. If g and f are convex differentiable functions, then we call (R) a convex NLP.

Convex NLPs are considered ‘tractable’, which means that there are methods that

can solve such problems in a reasonable amount of time. Formally, most of these

problems fall under the so called complexity class P (?) of problems solvable in

polynomial time. Informally, this means that there exists a method that can solve

all numerical instances of this problem in a reasonable amount of time. In the

absence of nice properties like convexity on f and g, (R) is also difficult to solve.

Next, we differentiate a ‘local’ and a ‘global’ optimal solution of (R). A fea-

sible solution, say x̄, of an optimization problem is a point that satisfies all the

constraints in the problem. Let us denote the set of feasible solutions of (R) by

F(R). An optimal solution, say x∗, is a feasible solution that yields the best possible

value of the objective function f . Formally,

1.1 MINLP and Related Problems 5

Definition 1.1.3 (Global minimizer). A point x∗ ∈ F(R) is called a global minimizer of

(R) if f (x∗) ≤ f (x̄) for all x̄ ∈ F(R).

For a general NLP of the form (R), it is difficult to find or verify a global

minimum. Hence, the notions of ‘neighbourhood’ and local minimum are used.

A neighbourhood of a point x̄ is the set of the points in a radius ε of x̄, defined as,

N(x̄, ε) := {x : ||x − x̄|| < ε} for a given small scalar ε.

Definition 1.1.4 (Local minimizer). A point x∗ is called a local minimizer of (R) if there

exists a scalar ε > 0 such that f (x∗) ≤ f (x̄) for all x̄ ∈ F(R) ∩ N(x̄, ε).

A local minimizer is a global minimizer for convex problems.

Theorem 1.1.5. (?, Section 4.2.2) Let (R) be a convex optimization problem. If x∗ is a

local minimum of (R), then it is also a global minimum of (R).

1.1.2 Mixed-Integer Linear Programs

Another important subclass of MINLPs is the Mixed-Integer Linear Pro-

grams (MILPs), mathematically represented as

minimize
x

f (x)

subject to Cx ≤ c, (M)

Dx = d,

x j ∈ Z, ∀ j ∈ I,

where f is a linear function. It may be noted that due to the presence of integer

constrained decision variables, the feasible region of (M) is not convex. MILPs

are known to be generally difficult to solve and in fact belong to the class of NP-

hard problems (?). It means that the computational effort to solve these problems

increases exponentially in the size of the input (of problem instance).

1.1.3 Linear Programs

A closely related class of problems to MILPs is the Linear Programs (LPs),

mathematically represented as

minimize
x

f (x)

subject to Cx ≤ c, (LP)

Dx = d,

6 Introduction

where f is again a linear function. Amongst the problems described so far, LPs

are the easiest to solve. Formally, they belong to the complexity class P, the class

of problems for which efficient algorithms that run in time polynomial in the size

of the input, are known (?).

We next explain the importance of the above three classes of problems in the

context of convex MINLP.

1.2 Algorithms for Convex MINLP

MINLP isNP−hard, because MILP, which is a special case of MINLP isNP−hard.

In this section, we describe deterministic algorithms for solving convex MINLPs,

all of which are based on a ‘branch-and-bound’ framework. First, we present an

important notion of a relaxation that is used in these algorithms.

Definition 1.2.1 (Relaxation). (?) A relaxation of the problem (P) is another problem

that either has a (bigger) feasible region enclosing the feasible region of (P), or has an

objective function that underestimates the objective function f of (P) at all points in the

feasible region of (P), or both.

It is easy to see that the optimal objective function value of a relaxation

would always be less than or equal to that of the original problem, say z∗. Thus,

the optimal value of a relaxation provides a ‘lower bound’ on z∗. A relaxation is

considered ‘tight’ when its feasible region closely approximates that of the orig-

inal problem or when its objective function value is not too far from the original

objective function at (points near) an optimal solution. Methods for solving con-

vex MINLPs primarily differ in the way they create a relaxation of the MINLP.

For practical purposes, generally one wants to construct tight relaxations that are

also easier to solve compared to the original problem.

1.2.1 Nonlinear Branch-and-Bound (NLP-BB)

The nonlinear branch-and-bound method (?) for convex MINLP is based

on the branch-and-bound framework, just like the one for MILP. A branch-and-

bound method starts by solving a relaxation of (P), that has a larger feasible re-

gion enclosing (P), but is easier to solve to global optimality. A solution of this

relaxation provides a valid lower bound on the optimal value z∗ of (P). Then one

divides the search-space by ‘branching’ to create smaller subproblems. A relax-

ation of each subproblem is then solved. Each subproblem, a smaller relaxation

1.2 Algorithms for Convex MINLP 7

than its parent, has a lower bound no less than its parent. If a solution to any of

the subproblems is feasible for (P), its objective value provides an upper bound

on z∗. The algorithm stops when the lower and the upper bounds on z∗ converge.

This setup is easily viewed and analyzed as a tree-search where the nodes denote

the subproblems and the edges denote the branches that divide a subproblem.

The NLP-BB algorithm for convex MINLP creates an initial relaxation of (P)

obtained by simply removing the integrality constraints on decision variables.

This relaxation is a convex NLP of the form (R). A pictorial depiction of (R) is

shown in Figure 1.2. Also, an illustration of the tree representation of the branch-

x1

x2

Figure 1.2: A nonlinear programming relaxation (the shaded region) of the convex

MINLP shown in Figure 1.1, obtained by relaxing the integer restrictions on decision

variables.

and-bound is shown in Figure 1.3. We elaborate more on two critical concepts,

0root 100

1105 2 106

3

5 6

7125 8 inf

4 10

11 12

13 14 ub=120

9

Figure 1.3: A tree-based depiction of nonlinear programming relaxations based branch-

and-bound (NLP-BB) algorithm for convex MINLP.

‘branching’ and ‘pruning’, in the branch-and-bound algorithm. Branching refers

to partitioning the search space (or a given part of the feasible region) in such

8 Introduction

a way that no feasible solution in that region is excluded. In problems with in-

teger constrained variables, this can simply be done by branching on an integer

variable x j ∈ I, one that has assumed a nonintegral value, say x∗j < Z in the solu-

tion of a relaxation, to create two subproblems (children nodes in the search tree)

using the two inequalities, x j ≤ bx∗jc and x j ≥ dx∗j + 1e. This process is depicted

geometrically in Figure 1.4.

x1

x2

x1

x2

x1

x2

Figure 1.4: Geometrical illustration of variable-based branching of a region in NLP-BB

algorithm. Here, x2 is the integer constrained variable and is used to divide the search

space, shown on the left, into two parts, shown in the centre and on the right.

Pruning makes the branch-and-bound algorithm practically faster than a

complete enumeration (of all possible combinations of integer constrained vari-

ables) to find an optimal solution. Implicitly, NLP-BB (like other convex MINLP

algorithms) tries to avoid parts of feasible region of the relaxation that have no so-

lution, or no better solution than the one already at hand. The former is referred

to as pruning by infeasibility, and the latter is termed as pruning by bound. As

shown in Figure 1.3, if the relaxation at a tree-node becomes infeasible (node 8),

this region can be pruned by infeasibility and need not be explored further. Sim-

ilarly, if the optimal solution at a relaxation turns out integer feasible (node 14),

then this solution is a feasible solution to (P) and its objective value is an upper

bound on z∗ (here, we have z∗ ≤ 120). This node also can be pruned because we

already have the best possible solution of this part of the feasible region. Another

possibility is that the lower bound at a node becomes equal to or exceeds the best

known upper bound (node 7), in which case, we need not explore this part of

the feasible region because it does not contain any solution better than the one at

hand, hence, can be pruned by bound.

The NLP-BB algorithm starts working with the NLP relaxation. If relax-

ation (R) of (P) is infeasible, then so is (P). If the solution, say x0, of the NLP

relaxation satisfies integer restrictions of (P), then it is an optimal solution to (P)

1.2 Algorithms for Convex MINLP 9

as well. If, on the other hand, x0 does not satisfy the integrality restrictions, we

get a lower bound on the optimal value of (P). The traditional nonlinear branch-

and-bound ? method proceeds by dividing the search-space into two or more

subproblems in a way that every solution of (P) lies in at least one of the sub-

problems while x0 does not lie in any of them. Each subproblem thus created is a

smaller MINLP, and this process is continued recursively.

1.2.2 Outer Approximation (OA)

Creating good relaxations that provide a lower bound closer to z∗ in a reason-

able amount of time is important for fast convergence of the branch-and-bound

based algorithms. Rather than starting with a tight relaxation, which may be dif-

ficult to obtain or solve, one can first solve a weaker relaxation and then tighten

it iteratively by adding ‘valid inequalities’. A valid inequality is an inequality

constraint that is satisfied by all the feasible points of (P). Combining this scheme

with branch-and-bound leads to what is called a branch-and-cut method which

most solvers deploy for solving MILPs and MINLPs. A commonly used tech-

nique for creating linear relaxations of convex nonlinear constraints is through a

gradient based linearization. As mentioned in Definition 1.1.2, given a convex

differentiable nonlinear function ĝ : Rn → R and a point x′ ∈ Rn, the following

gradient inequality (?)

∇ĝ(x′)>(x − x′) + ĝ(x′) ≤ ĝ(x)

holds for all x ∈ Rn. One can thus create a relaxation of (P) by replacing all of its

(convex) nonlinear constraints by

∇g(x′)>(x − x′) + g(x′) ≤ b. (Grad-I)

Such a relaxation can then be tightened by adding linearization inequalities ob-

tained using multiple points. Two algorithms are based on such linearizations-

based relaxations: outer-approximation and the LP/NLP based branch-and-

bound algorithm (discussed in Subsection 1.2.3).

The outer-approximation (OA) algorithm proposed by ? solves an alternat-

ing sequence of MILPs and NLPs. It is initialized by solving (R). If a solution x0

of (R) is not integer feasible, the nonlinear functions are replaced by linearization

inequalities (Grad-I) obtained at x0, and the integer restrictions are re-introduced

to obtain the following MILP relaxation. If the objective function is also nonlinear,

the problem is reformulated by replacing the objective with an auxiliary variable,

10 Introduction

η, and adding the constraint f (x) ≤ η. This new constraint is also replaced by its

linearization inequality at x0 in the MILP relaxation:

minimize
x,η

η

subject to ∇ f (x0)>(x − x0) + f (x0) ≤ η, (RM)

∇g(x0)>(x − x0) + g(x0) ≤ b,

x ∈ X,

x j ∈ Z, ∀ j ∈ I.

A pictorial illustration of (RM) is shown in Figure 1.5. The MILP relaxation (RM)

x1

x2

Figure 1.5: A mixed-integer linear programming relaxation (the horizontal lines) of the

convex MINLP shown in Figure 1.1, obtained by linearizing the nonlinear constraints in

(P).

is solved using an MILP solver. If the MILP relaxation is infeasible, then so is (P).

If the MILP solution (say, x̂) satisfies all nonlinear constraints, then it is optimal

to (P). Otherwise, the MILP optimal value (say, ẑ) provides a lower bound on z∗.

Next, a ‘fixed’ NLP of the following form is solved.

minimize
x

f (x)

subject to g(x) ≤ b, (F-NLP)

x ∈ X,

x j = x̂ j, ∀ j ∈ I.

We denote this NLP as F-NLP(x̂) to indicate that the integer variables are fixed

to the values in x̂. An optimal solution to F-NLP(x̂) provides an upper bound

on z∗. The optimal solution is then used to generate more linearization con-

straints (Grad-I) that are added to the MILP relaxation. The updated MILP re-

laxation is solved again and the process is repeated. The new inequalities ensure

1.3 Methods for Nonconvex MINLP 11

that all solutions of MILP with x j = x̂ j, j ∈ I have objective value no less than ẑ.

If the ‘fixed’ NLP is infeasible, the point returned by the NLP solvers can still be

used to generate valid underestimators and linear constraints (?). These lineariza-

tion inequalities forbid the integer combination x̂ j, j ∈ I in the future MILP solu-

tions. Another related algorithm, the Generalized Benders Decomposition (GBD)

algorithm given by ?, generates a single inequality at the NLP solution which is

then added to the MILP. Both OA and GBD do not require any implementation of

tree-search unlike the NLP based branch-and-bound. They naturally exploit the

advances that have been made in the MILP technology over the decades, includ-

ing presolving (??), cutting planes (??), heuristic search (??), conflict analysis (??)

and parallel search (???) etc.

1.2.3 LP/NLP Based Branch-and-Bound (QG)

The LP/NLP based branch-and-cut algorithm of ?, which is also referred to

as the QG algorithm, tries to overcome the difficulty of solving similar MILPs

repeatedly as in OA method. It creates and maintains a single branch-and-cut

tree. Like OA, it starts by solving the NLP relaxation (R), and creates a linear

relaxation of (P) by relaxing integrality from (RM), expressed as follows.

minimize
x,η

η

subject to ∇ f (x0)>(x − x0) + f (x0) ≤ η, (RL)

∇g(x0)>(x − x0) + g(x0) ≤ b,

x ∈ X.

A graphical illustration of the feasible region of (RL) is shown in Figure 1.6.

QG method then initiates the single-tree by solving this root LP relaxation

of (P), and proceeds like the LP based branch-and-cut method. When a node in

the search-tree yields an integer optimal solution (x̂), F-NLP(x̂) is solved. If the

NLP is feasible, its optimal solution provides an upper bound on z∗. Linearization

inequalities obtained at the point returned by solving F-NLP(x̂), say x̌, are added

to all the open nodes of the tree to tighten the relaxations, and branch-and-cut is

resumed.

1.3 Methods for Nonconvex MINLP

Solving nonconvex MINLPs is sometimes referred to as ‘global optimization’.

Nonconvex MINLP is theoretically ‘undecidable’ (?) but one can find solu-

12 Introduction

x1

x2

Figure 1.6: A linear programming relaxation (the shaded region) of the convex MINLP

shown in Figure 1.1, obtained by linearizing the nonlinear constraints and relaxing the

integer restrictions on decision variables in (P).

tions when the set X is bounded. The major difficulty in addressing nonconvex

MINLPs is that their continuous relaxations obtained by relaxing integrality con-

straints, are not tractable (unlike the case of convex MINLPs). Relaxations of non-

convex constraints can be obtained by exploiting special structures in the corre-

sponding nonconvex functions. One way to achieve this is by forming piecewise-

linear underestimators of all the nonlinear constraints over the feasible region to

obtain an MILP or an LP relaxation. Piecewise linear approximations (?) can

capture nonconvex functions using a set of breakpoints but practically, this ap-

proach is limited to functions with few arguments otherwise the number of pieces

needed to get an acceptable approximation can be large.

1.3.1 Relaxations Using Factorable Functions

Another way of obtaining tractable relaxations to nonconvex MINLPs is

‘convexification’ (??), that is, to form convex underestimator functions, say

gcnvx
i (x), such that gcnvx

i (x) ≤ gi(x), ∀x ∈ X) , for each nonconvex function

gi(x), i = 1, . . . ,m. Replacing each nonconvex constraint then with its convex

underestimator yields a convex relaxation. To tighten the relaxation, one can

also add concave overestimators of nonconvex constraints, say gcncv
i (x), such that

−gcncv
i (x) ≤ −gi(x), ∀x ∈ X.

Convex underestimators of multivariate nonconvex functions are not easy to

obtain though. One way is to first reformulate the original nonconvex constraints

using simple univariate functions that are simpler to analyze and relax. Using

the structure and form of the involved functions in such cases is important. One

such reformulation is based on the ‘separability’ of the functions. A function ḡ(x)

1.3 Methods for Nonconvex MINLP 13

is termed separable if there exist univariate functions h j(x j) such that

ḡ(x) =

n∑
j=1

h j(x j).

Separable functions are quite effective when convex underestimators for the func-

tions h(x j) are known, because an overall underestimator of ḡ(x) is easy to obtain.

This is because the sum of underestimators itself is an underestimator of ḡ(x). In

the absence of properties like separability, one attempts to dissect the nonlinear

functions as the sums and products of finitely many univariate functions. Such

functions are called ‘factorable’ functions. These functions can be expressed us-

ing operators +,−, ∗, /, sin, cos, log, exp, etc., with variables or constants as their

arguments. One reformulation of such problems can be done by introducing

‘auxilliary’ variables and related sets of constraints that involve only univariate

functions. As an example, consider the constraint

x1x3 + x2
2 + sin(x3) ≤ 5,

where 1 ≤ x1 ≤ 3,−2 ≤ x2 ≤ 4 and 0 ≤ x3 ≤ 5. A reformulation of this constraint

using new auxilliary variables y1, y2 and y3 would be the set of constraints:

y1 + y1 + y3 ≤ 5,

y1 = x1x3,

y2 = x2
2,

y3 = sin(x3),

0 ≤ y1 ≤ 15, 0 ≤ y2 ≤ 16, 0 ≤ y3 ≤ 1.

The bounds on the auxilliary variables have been derived based on the related

function and the bounds of original variables. After such a reformulated prob-

lem is obtained, the sets representing the nonconvex equality constraints, each

involving a simple univariate or bivariate function, are replaced by their corre-

sponding convex or polyhedral ‘envelops’. Finding tight envelops even for sim-

ple sets is a difficult task, although a few sets that appear commonly in many

formulations have been studied. For example, a polyhedral relaxation of bilinear

sets (like those of the form y1 = x1x3) is given by ?. A polyhedral LP relaxation or

a convex NLP relaxation is then finally obtained when the integer restrictions are

also relaxed.

One can also use other techniques to obtain tractable relaxations like α-

convexification (used in α-BB algorithm by ?) or semidefinite relaxations (?).

14 Introduction

1.3.2 Spatial Branch-and-Bound (SBB)

Once a tractable relaxation is obtained for a nonconvex MINLP, one can get

a valid lower bound on its optimal objective function value. It can then be used

in a branch-and-bound framework along with a mechanism for branching, in a

way similar to the NLP-BB algorithm explained in Section 1.2. Standard branch-

ing (on integer variables) can be done when a subproblem node does not yield

an integer feasible solution. However, branching on continuous variables (called

‘spatial branching’) may be necessary if a nonlinear constraint is violated by the

optimal solution (say x̂) of the relaxation. Spatial branch-and-bound is a widely

used algorithm for solving nonconvex MINLPs: a branch-and-bound algorithm

that uses spatial branching. As in standard branching, choice of the branching

variable is important in spatial branching too in the sense that the subproblems

generated must be as tight as possible and must exclude the solution of the pre-

vious relaxation solved. Also, unlike convex MINLPs, the convergence of SBB

does not follow from the finite number of the integer feasible points. For SBB to

converge, finiteness of the bounding operation is required.

1.4 Heuristic Approaches

Finding an optimal solution to a MINLP may often be difficult and time consum-

ing. Exact approaches may sometimes fail to find even one feasible solution in a

reasonable amount of time. One can use specialized algorithms called heuristics

that are designed to provide a feasible solution quickly. Finding a good solution

early in a branch-and-bound framework can prove beneficial in accelerating the

convergence, especially by pruning inferior nodes in the search tree.

Many heuristics from MILPs have been extended to MINLPs. Some notable

ones are Feasibility Pump (??), Diving heuristics (?), Undercover (?), etc. For an

extensive survey of MINLP heuristics, we refer the interested readers to ? and ?.

Exact algorithms for convex MINLPs can also be used as heuristics for nonconvex

MINLP as algorithms for convex MINLP usually terminate faster than the exact

algorithms for nonconvex MINLPs.

1.5 Mixed-Integer Derivative-Free Optimization

If the functions f and g in (P) are not available in a ‘compact’ mathematical form,

and their derivatives are also not available, we refer to such a problem as a Mixed-

1.5 Mixed-Integer Derivative-Free Optimization 15

Integer Derivative-free Optimization (MIDFO) problem. Many real-world prob-

lems from science, engineering and economics applications result in optimiza-

tion problems that involve the so-called ‘black-box’ functions. These functions

are characterized by the fact that a single function evaluation is often computa-

tionally expensive, for example, requiring to run a complex simulation. Also,

derivatives of these functions can not be computed or estimated using finite dif-

ferences, etc., efficiently. Such problems are called Derivative-free Optimization

(DFO) problems. When such problems also involve integer constrained variables,

then they are referred to as MIDFO problems.

Exact methods like those for MINLPs can rarely be applied to MIDFO prob-

lems, due to the absence of derivative information. Also, simple explorative

methods such as local search (?), variable neighbourhood search (?), etc., that

look for better points in a local neighbourhood of a given point, or (stochastic)

metaheuristics like genetic algorithms, particle swarm algorithms or simulated

annealing, etc. (?), that generate an improved set of iterates from the previous

ones, are not suitable for MIDFO problems, because they require a lot of func-

tion evaluations. Therefore, algorithms for MIDFO are designed to minimize the

objective function f by exploring the integer feasible points effectively, while lim-

iting the number of function evaluations within a given budget.

A detailed description of the concepts of DFO can be found in the textbooks

by ? and ?. A review of applications of MIDFO problems, algorithms and soft-

ware can be found in the surveys by ?, ? and ?.

In a derivative-free setting with discrete sets, it is difficult to certify opti-

mality of a given integer point (as complete enumeration is prohibitive). There-

fore, algorithms for MIDFO are designed to terminate at some ‘stationary’ points,

those that satisfy some notion of local optimality in some well defined discrete

neighbourhood on the integer lattice. For example, a ‘mesh-isolated minimizer’

is a point that yields the lowest function value among its neighbouring integer

points. A description of different such local optima is given by ?. Most algo-

rithms for MIDFO are adaptations of (continuous) DFO algorithms to cater to

integer constrained variables, for example, using rounding, sets of discrete or

integer search directions, branch-and-estimate, etc. Deterministic algorithms for

DFO can be classified into two main categories: direct search methods and model-

based methods. These methods are briefly described next. Methods for MIDFO

are described in Chapter 5.

16 Introduction

1.5.1 Direct Search Methods

Direct search methods are simple sampling methods that decide upon the

next trial iterate or a set of iterates based on a predefined strategy. The classical

algorithm by ? samples a set of points that form a ‘simplex’ in each iteration. For

example, in R2, a set of three affinely independent points form a triangular sim-

plex. The algorithm starts by sampling such a set. It then proceeds by attempting

to replace the point with the worst function value by another point (chosen us-

ing some geometric operations like reflection, expansion or contraction, etc.) that

yields a new simplex. Another direct search method is the generalized pattern

search (?) that works using a pattern of points and constitutes mainly two steps:

the ‘search step’ and the ‘poll step’. The search step searches among a finite set of

directions to find an improved iterate. If the search fails, a ‘poll step’ is executed

that generates a set of ‘positive spanning’ set of directions, that is, a set of direc-

tions that is assumed to contain at least one descent direction for the objective

function under certain assumptions. Another popular direct search algorithm is

the mesh adaptive direct search by (?) which basically is similar to pattern search,

but uses a poll size parameter and a mesh size parameter, to carefully restrict the

region from where the poll points are selected. These algorithms eventually con-

verge when a termination criterion is met, for example, the line search parameter

like the mesh size, step size or the simplex diameter is below a certain threshold

parameter.

1.5.2 Model Based Methods

These methods exploit the available sampling information to initially fit and

then improve a surrogate model that approximates the behaviour and properties

of the function, and then optimize it to obtain iterates in an intelligent way. The

surrogate approximation model is optimized using traditional derivative based

methods depending upon the choice of the model. The two key decisions in

model based methods are the selection of the appropriate surrogate model and

choice of the next sample point or set of points. Some popular models are re-

sponse surface metamodels that include interpolation methods like krigging (?)

and radial basis functions (??). The models used in these algorithms usually get

better with more function evaluations. Model based methods terminate when

some convergence criteria like limited improvement in consecutive iterations of

the algorithm, etc. are satisfied.

1.6 Shared-Memory Parallelism 17

1.6 Shared-Memory Parallelism

Since many discrete optimization algorithms like branch-and-bound, particularly

for MILPs and MINLPs, break down the overall problem into several indepen-

dent small subproblems, such algorithms are attractive for parallel computing.

Parallel computing architectures comprise multiple processors or CPUs and can

be broadly classified into ‘shared-memory’ or ‘distributed-memory’ systems. As

the name suggests, each processor (or node) in a distributed-memory system has

its private memory and typically requires dedicated hardware and networking

interfaces to exchange data. Typical distributed memory systems are built to ad-

dress large-scale problems and have thousands of processors (or more). Super-

computers are a specific example of distributed memory systems. For instance,

the fastest supercomputer in India, ?, has about 84000 GB of memory distributed

over 41664 processors.

On the other hand, in a shared-memory architecture, a standard block of

memory is available for multiple processing units (also called cores), typically

placed on a single integrated circuit. Desktop computers, laptops, mobile phones,

etc., very commonly deploy multiprocessing CPUs nowadays. While the Moore’s

Law and the Dennard scaling law (?) predicted a continuing increase in clock

speeds of CPUs, the breakdown of the latter in the late 2000s gave impetus to

the manufacturing of multicore processors. Many hybrid systems have come up

recently, but typical shared-memory systems have a limited number of processing

cores per CPU, say 96, for example. However, each processor has access to the

memory. Hence the data access times are faster compared to distributed-memory

systems.

From the viewpoint of algorithm design, both architectures require a pro-

grammer to identify tasks (data) that can be executed (stored) independently,

along with those that are inherently sequential and minimize duplicate or un-

necessary computing. Shared-memory systems are often easier to program as

compared to distributed-memory systems because in distributed-memory sys-

tems, one needs to explicitly specify the type and schedule of data exchange be-

tween processors (using message passing), whereas in shared-memory systems,

all memory is accessible either uniformly or non-uniformly to all the processors.

In shared-memory systems, two or more processors may attempt to read/write a

shared memory location simultaneously (called memory contention) which may

18 Introduction

cause a program to crash or yield faulty performance. Thus, memory-access has

to be dealt with carefully.

In this thesis, we will focus on designing algorithms for MINLPs on shared-

memory computers. Since shared-memory systems are almost a norm now, par-

allel algorithms that efficiently exploit such systems would be convenient. Also,

with increasing usage of hybrid architectures that combine distributed-memory

and shared-memory systems, multi-level parallelization models appear promis-

ing (see ?), where some lower level parallelism would be on shared-memory sys-

tems/nodes. In the context of MINLP, branch-and-bound based methods may

seem easy to parallelize, as the dynamic generation of subproblems and their

processing can be done independently.

1.7 Solvers for MINLP and Minotaur

Most solvers can read mathematical models through various file formats pro-

duced by popular mathematical modeling software like AMPL (?), GAMS (?),

OPL (?), AIMMS (?), Pyomo (?), Optimization Toolbox in ?, etc. Optimization

solvers cater to the difficult task of deploying the most appropriate data struc-

tures, classes, and the most efficient logic that results in robust and fast optimiza-

tion algorithms. Typically, both commercial and open-source packages provide

the users either with the flexibility to customize and experiment with various

algorithmic components within existing algorithms or provide frameworks that

can be used to implement novel algorithms by plugging in (or out) key algo-

rithmic features. Some of the key algorithmic components in MINLP solvers are

presolving, heuristics, branching, cutting planes and node-processing subsolvers

(subroutines for solving the subproblems: LPs, NLPs and MILPs).

Since most state-of-the-art algorithms for both MILPs and MINLPs are based

on branch-and-bound, many software traditionally developed for MILPs are ca-

pable of solving MINLPs like SCIP (?), AIMMS (?), ?, etc. Solvers designed ba-

sically for MINLPs are categorized into either convex MINLP solvers, for exam-

ple, BONMIN (?), ?, Minotaur (?), or nonconvex MINLP solvers like BARON

(?), Couenne (?), ANTIGONE (?), etc. SCIP can solve nonconvex MINLPs, while

AIMMS and Gurobi are largely convex MINLP solvers.

Most of the algorithms we present in this thesis in the subsequent chapters

have been implemented within the open-source solver Minotaur. We briefly de-

scribe the salient features of Minotaur later in Chapter 2.

1.8 Motivation for the Thesis and Outline 19

1.8 Motivation for the Thesis and Outline

Parallel approaches have been used mostly to solve continuous problems or

MILPs (??????).

A few parallel approaches for MINLP have been proposed earlier. ? pro-

posed running QG and the ‘Tabu Search’ metaheuristic concurrently using two

threads. ? present NLP-BB on a ‘computational grid’ (a cluster of geographi-

cally distributed computing resources with heterogeneous capabilities) to solve

nonconvex MINLPs in a distributed-memory setting. ? provide a general frame-

work for parallel branch-and-bound, called Parallel Enumeration and Branch-

and-Bound Library (PEBBL (?)) that is extended to global optimization of non-

convex NLPs and MINLPs. Parallel versions of NLP-BB (?) and OA (?) are also

available in some MINLP solvers, with the latter exploiting parallelism in the

MILP solvers to solve the relaxations.

In this thesis, we study and develop shared-memory parallel extensions

of multiple algorithms for MINLP, within a common and open-source MINLP

framework, Minotaur. There are no other readily available software that pro-

vide all these together. We also study anomalies in these algorithms, not done

before in the context of MINLP to the best of our knowledge. We also develop

and test novel approaches to solve nonconvex MINLPs (heuristically) and convex

MIDFO. The contributions in this thesis are organized into four chapters.

In Chapter 2, we present parallel versions of the existing sequential algo-

rithms for convex MINLP. In particular,

• we develop shared-memory parallel versions of three algorithms for con-

vex MINLP: (i) NLP-BB, (ii) two variants of QG (iii) MILP based outer-

approximation (OA), within the Minotaur toolkit.

• we study the effects of different algorithmic components: sharing of infor-

mation like branching scores amongst different threads, and scalability with

the number of threads, on the performance of these algorithms in terms of

solution time and tree size.

Parallel approaches could sometimes generate useless (data) tasks, and

spend time in (analyzing) executing them. For example, a parallel branch-and-

bound algorithm could generate nodes that do not yield a feasible solution and

spend a large fraction of time in processing them. For example, a parallel algo-

rithm might choose to solve a node (say n1) and create its children which other-

wise could have been pruned by solving another node (say n2) first. This could

20 Introduction

result in the parallel algorithm being slower than its sequential counterpart (if

it finds an optimal solution earlier). This phenomenon occurs often with paral-

lel extensions of (sequential base) algorithms due to opportunistic (or greedy) or

‘ambiguous’ decisions within the algorithm. This means that the parallel algo-

rithm may have been designed to deviate too much from its sequential counter-

part, yielding unpredictable performance. Such varied behaviour of a parallel

algorithm is called an ‘anomaly’ (?). Eliminating anomalies that might worsen

the performance of a parallel algorithm and allowing those that enhance their

speed are therefore important.

Chapter 3 studies these anomalies in parallel MINLP algorithms. Depend-

ing upon how the parallelism is exploited, tree-search algorithms many a times

exhibit anomalies, which includes degradation or disproportionate acceleration

in running times. This is mainly due to ‘ambiguity’ of different algorithmic com-

ponents and we present some unambiguous components in Chapter 3. Overall,

on this front,

• we present a parallelization mechanism that solves nodes of the branch-

and-bound/cut tree simultaneously in an opportunistic way. Since each

processor continuously keeps solving nodes until all the nodes are pro-

cessed without much synchronization with the other processors, this

scheme does not allow reproducibility of runs.

• we implement unambiguous node selection and branching schemes and

demonstrate through our experiments that these schemes guarantee no

degradation in performance when more than one processors are used in

parallel.

• we achieve similar guarantees when an unambiguous cut generation

scheme is deployed (in addition to the above) in an LP/NLP based branch-

and-bound framework and compare it with the opportunistic version.

• our deterministic algorithms also preserve reproducibility of runs, a highly

desirable feature while developing parallel algorithms.

Next, we address nonconvex MINLPs using a parallel branch-and-estimate

heuristic. Exact methods for nonconvex MINLP tend to require significant com-

putational time. We focus on obtaining good quality solutions for nonconvex

MINLPs within reasonable time. We present a multi-start heuristic to obtain

good solutions to nonconvex NLP relaxations by using local NLP solvers and

1.8 Motivation for the Thesis and Outline 21

different initial points. To accelerate the algorithm, we incorporate parallel NLP

solving. Multi-start heuristics for continuous NLPs have been proposed earlier

(????), however, our study focusses on exploiting parallelism in a branch-and-

bound framework in the context of MINLP. Chapter 4 presents this heuristic for

nonconvex MINLP. In particular,

• we propose a branch-and-bound based heuristic for nonconvex MINLP,

where each node in the branch-and-bound tree is a nonconvex NLP and

multiple processors are deployed simultaneously to approximately solve

each node.

• we deploy a multi-start method to find solutions and bounds to each non-

convex NLP (node) using different sets of initial points.

• we present five different randomized schemes for selecting the initial point.

The work presented in Chapter 5 is an amalgamation of insights from mixed-

integer programming and derivative-free optimization (MIDFO). We study

MIDFO problems, with integer variables and with an ‘integer-convex’ objective

function (we formally define this notion in Chapter 5). Although a proof of

convexity of such a function that has no compact mathematical form or whose

derivatives are unavailable is difficult to imagine, however, our assumption rests

on the knowledge/physics of the overall system. One of the applications in-

volves optimal design of concentrating solar power plants where one intends

to find the number and location of panels on the power plant receiver (?). This

is a derivative-free setting because each function evaluation requires a complex,

computationally expensive simulation (mathematical description of the function

and its derivatives is unavailable). Also, some decision variables are integer con-

strained, and ‘unrelaxable’, which means that the objective function can not be

evaluated at noninteger points. Another application is tuning of codes on high-

performance computers, where certain decisions correspond to a set of integer

values (?), and can not take noninteger values. The optimal material design prob-

lem presented by ? also involves unrelaxable integer constraints. We model and

address this difficult class of problems using an algorithm very similar to outer-

approximation for MINLPs, although by using only the first-order information

on the objective function, that is, only the function values (and no derivative in-

formation). In particular,

22 Introduction

• we propose a nonconvex piecewise linear underestimator MILP model of

the objective function over the feasible region, and prove that it provides a

valid lower bound on the optimal objective value.

• we propose an algorithm (similar to outer-approximation) for optimizing

such a computationally expensive objective function over a bounded inte-

ger lattice and provide a proof that our method converges to a global opti-

mum.

• we propose two computational approaches to construct and tighten the un-

derestimator. In the first approach, we solve a sequence of MILPs. In the

second approach, we maintain the values of the lower bounds at the lattice

points. Upper bounds on the optimal objective value are obtained using

function evaluations and are used to tighten the underestimator

• we present computational results to benchmark our algorithm with state-

of-art DFO solvers that can handle integer variables

• we seek insights into why this class of problems is difficult, even for mod-

erate instance sizes, with emphasis on the proof of optimality.

Finally, we present the conclusions and a few research directions based on

this thesis in Chapter 6.

Chapter 2

Parallel Algorithms for Convex

MINLP

This chapter discusses shared-memory parallel implementation of three classical

algorithms for convex MINLP: (i) NLP based branch-and-bound, (ii) two variants

of LP/NLP based branch-and-bound and (iii) Outer-approximation. We study (a)

the effects of different algorithmic components such as sharing of information like

branching scores among different threads, and (b) scalability with the number of

threads. The proposed parallel algorithms have been implemented within the

open-source Minotaur framework (?) and tested on benchmark instances from

MINLPLib (?).

2.1 Background

Algorithms for convex MINLP have been implemented in several convex MINLP

solvers including AIMMS (?), BONMIN (?), FilMINT (?), Muriqui (?), and SHOT

(?). Global solvers like Antigone (?), BARON (?), Couenne (?), LINDO (?) and

SCIP (?) can also be used to solve convex MINLPs. Global solvers implement

heuristics to detect convexity automatically and resort to slower methods for non-

convex problems if they fail to detect it. All the stated solvers except SCIP rely

on a separate MILP solver for implementing branch-and-cut and related routines.

The open-source Minotaur toolkit (?) is used to implement the methods proposed

in this chapter. Minotaur includes two solvers for convex MINLP: NLP-BB and

QG against which we compare the effects of the proposed schemes. While, Mino-

taur implements its own branch-and-bound tree, it also has the ability to interface

23

24 Parallel Algorithms for Convex MINLP

with MILP solvers to use their implementation of tree-search. The latter is used

to implement OA and a variant of QG.

Use of shared-memory parallel computing for MILPs has received attention

recently, see for example ???. Most open-source (??) and proprietary MILP solvers

(?????) exploit multiple processors for branch-and-bound/cut framework. Some

of the frameworks that exploit shared-memory parallelization are Ubiquity Gen-

erator (UG) (??), ChiPPS (?) and PEBBL (?). The UG framework has been used

as a parallelization wrapper over many MILP base solvers (?????). It explicitly

controls the base solver as a callable library by parallelizing the tree-search from

outside. FiberSCIP (FSCIP) is the shared-memory parallel algorithm that uses

SCIP underneath UG. The frameworks ChiPPS and PEBBL use a master-hub-

worker and a hub-worker hierarchy, respectively. The MILP solver ? implements

a multithreaded scheme to parallelize its sequential solver. Nodes are assigned

by a master thread to workers sequentially as some of the global data is stored

centrally. It also has a deterministic parallelization mode which distributes sub-

trees to workers instead of nodes. Proprietary software like CPLEX and GUROBI

provide LP solvers that can be used as subroutines for solving MINLPs. They

also provide MILP solvers that can run in a parallel mode. CPLEX LP and MILP

solvers are extensively used in our computational experiments.

2.2 Experimental Setup

We have carried out our computational experiments on a server with two 64-

bit Intel(R) Xeon(R) E5-2670 v2, 2.50GHz CPUs with 10 cores each and sharing

128GB RAM. Hyperthreading is disabled. Our schemes are implemented in the

MINLP toolkit Minotaur1. All codes are written in C++, and complied with GCC-

4.9.2 compiler. For compiling parallel algorithms, OpenMP-4.0 provided by GCC

is used. IPOPT-3.12 with MA97 linear-systems solver is deployed for solving

NLPs. For solving the LPs and the MILPs, we use CPLEX-12.8. For this study, out

of 374 convex instances in MINLPLib (?), we excluded 40 instances that neither

have any nonlinearity (in constraints and objective) nor any integer variables after

presolving in Minotaur. We used the remaining 334 instances and refer to them

as the TS test set in our experiments. Description of these instances and the list

of excluded instances can be found in Appendix A of ?. The wall clock time limit

1Available at http://github.com/minotaur-solver/minotaur

http://github.com/minotaur-solver/minotaur

2.3 Shared-Memory Parallel Search 25

is set to one hour for all our experiments and we report all the solution times in

seconds.

2.3 Shared-Memory Parallel Search

We deploy a parallel tree-search algorithm for solving different nodes of the

branch-and-bound tree concurrently using different processors that share a com-

mon memory. All ‘open’ subproblems (associated with nodes) of the branch-

and-bound tree, those that are yet to be solved, are stored in a collection called

the node-pool. Different nodes are solved in parallel using the fork-join model,

a commonly used multiprocessing model in shared-memory architectures. The

main program is run as a single process which creates multiple ‘threads’ (??) de-

pending on the number of CPUs available and user settings. Threads are capa-

ble of doing mutually independent computations like processing different nodes

concurrently.

The fork-join model can be thought of as an alternating sequence of forks

where various tasks are performed concurrently by multiple threads, and joins,

where a single thread performs some serial tasks and synchronization for shar-

ing information between the threads. In our implementation, the main process

first reads the MINLP instance, performs some preprocessing and sets up the

environment and other required data structures. The main process also creates

the threads and starts branch-and-bound. Branch-and-bound then proceeds in

rounds. One by one, every thread selects an open node and removes it from the

node-pool. Only one thread is allowed to access the node-pool at a time and other

threads wait for their turn. This access is on first-come-first serve basis. If there

are no nodes available for a thread, it waits until the next round of assignment.

Once this selection process is completed, all threads concurrently start solving

their respective nodes. When all the threads finish solving their respective nodes,

a new round of assignment of open nodes and solving is executed. This process

continues until all the open nodes are either processed or pruned and the node-

pool becomes empty. We use this fork-join node-level parallelism for the two

algorithms: NLP-BB and QG.

We have implemented our fork-join model using the OpenMP directives (see

?). OpenMP directives provide a simple way of specifying concurrency, synchro-

nization and data handling - without the need to explicitly create threads, allo-

cate memory, delete memory, etc. While this approach provides fewer features

26 Parallel Algorithms for Convex MINLP

and lesser flexibility than POSIX threads (popularly called Pthreads) or standard

threads provided by C++11, it simplifies multithreaded programming to a great

extent. Unlike Pthreads, OpenMP provides higher level constructs called ‘di-

rectives’ which can be used directly without specifying thread level details. An

OpenMP directive has the following form.

#pragma omp <directive> [clause list]

The beginning of a parallel region in the code is marked by a directive called

parallel. We use the following common clauses with the parallel directive

in our algorithms.

• for: This clause is for assigning tasks (individual iterations of the for loop)

to different threads. These tasks (for example, create or update a relaxation,

solve a relaxation, etc.) are executed in parallel.

• critical (<name>): This clause is used for synchronization, which pro-

hibits two or more threads from executing blocks of the same name.

• single: This clause is used within parallel regions where execution by any

one thread suffices (for example, to check stopping conditions).

• omp_set_num_threads(<natural number>): This clause is used for

specifying the degree of concurrence (the number of desired parallel

threads). It is typically set equal to the number of available processors.

An in-depth description of OpenMP programming can be found in the book

by ?.

While a more detailed description of Minotaur design and its C++ classes

is available in ?, we briefly describe the important classes that are used in our

parallel implementation. The program starts by reading the problem, and then

presolves it using the Presolver class. The presolved problem is then passed to

the NodeRelaxer class which creates a relaxation. A node is processed using

the NodeProcessor class, that deploys an appropriate LP or NLP solver called

through the LPEngine or NLPEngine class, respectively. If an optimal solution

of the relaxation is found, and if this solution is not feasible to the MINLP, the

NodeProcessor calls a Brancher class to find a suitable branching candidate. The

class TreeManager handles all the tree-related information like nodes, upper and

lower bounds, etc. Using the branches found by the Brancher, two new child

nodes are created by the TreeManager.

2.3 Shared-Memory Parallel Search 27

We preserve the basic design of the sequential branch-and-bound in Mino-

taur and utilize the existing classes, which makes our implementation light-

weight. As in the serial version, we maintain a single, central TreeManager which

stores and maintains all node descriptions. Each thread individually maintains a

private copy of all the necessary class objects, like NodeRelaxer, NodeProcessor,

Brancher, etc., and acts as an independent unit that synchronizes with other

threads at the end of each round. The first thread starts solving the root relax-

ation while the other threads wait. If branching is required, the thread creates

two child nodes. In the next round of node selection, one of the other idle threads

obtains a node. Each thread that has a node now processes its respective node

in the next round and the process continues. When sufficient number of open

nodes are available, all threads become busy. If T number of threads are used,

the ramp-up time before all threads are busy is at least dlog2(T)e times the av-

erage node solving time. When the node-selection strategy is based on diving

(?), each thread retains one of the children of the node it solved in the previous

round for quick warm-starting of LPs or NLPs. Each thread maintains a private

copy of the original MINLP to create relaxations of the nodes that it receives and

to check whether a relaxation yields a feasible solution to the MINLP. After each

round of solving, stopping conditions are checked by any one of the threads. The

search terminates when all open nodes are exhausted (solved, pruned by bound

or pruned by infeasibility) or some other stopping condition (time limit, node

limit, etc.) is met. The schematics of the parallel tree-search and the Process block

are shown in Figure 2.1. Process block refers to the sets of tasks involved in pro-

cessing a subproblem.

2.3.1 Parallel Extension of NLP-BB

The scheme shown in Figure 2.1 can be viewed as the parallel NLP-BB algo-

rithm, where the nodes in the tree are NLP relaxations and an NLPEngine (NLP

subroutine) is used to solve them. We denote this parallel solver in Minotaur as

mcbnb and study its performance when using different number of threads. The

hardware and software setup mentioned in Section 2.2 has been used in these

experiments as well. The NLP solver IPOPT (?) (version 3.12) with MA97 linear-

systems solver is thread-safe, hence suitable for our parallel algorithm.

The scalability of our implementation with the number of threads is depicted

by what we call ‘Scalability Graph’. We use Shifted Geometric Mean (SGM) for

reporting the performance measures. Due to its robustness, SGM is often used in

28 Parallel Algorithms for Convex MINLP

Read problem

Presolve

Initialize
threads and

data structures

Get a node
from TM

Get a node
from TM

Get a node
from TM

Process 1 Process TProcess 0

Is TM
empty?

Stop

yes

no

Create/update
node relaxation

Node presolve

Solve relaxation

Should
prune?

Solution
integer
feasible?

Update upper
bound in TM

Remove node
from TM

Branch

Create and
add child

nodes to TM

no

yes

yes

no

Figure 2.1: Schematics of the parallel tree-search (left) in Minotaur and the Process block

(right). Gray-colored blocks involving the TreeManager (denoted TM) are critical. The

block where stopping condition is checked is executed by any one of the threads.

computational studies (see for example, ?). While SGM gives the mean improve-

ment over all instances, this graph shows the distribution of performance over

the test set. It is a line plot with each line corresponding to an algorithm with

fixed thread-count. Each line plots the fraction of instances that can be solved

within a w-factor of time taken by the single-thread run. Given a set of instances,

TS, the graph is plotted as a non-decreasing line graph. For each value w, it plots∣∣∣{i ∈ TS : ti,T ≤ wti,1}
∣∣∣

|TS|
,

where ti,T is the time taken by the solver when running T threads on instance

i. If the solver does not finish solving within the time limit, ti,T is set to infinity.

The ratios we use are different from the ones used in performance profiles by ?,

where the ratios are calculated with respect to the time taken by the fastest solver

for each instance.

2.3 Shared-Memory Parallel Search 29

Figure 2.2 shows the scalability graphs for mcbnb . The X-axis represents

the factor w. The plot for mcbnb1 (mcbnb with one thread), the reference solver,

is a step function by definition. Its height (about 0.7 in this case) is the fraction

of instances that could be solved within the time limit by the single-thread run.

The plot for mcbnb2 shows that it could solve about 5% (the value at 2−1) of the

instances faster by a factor of two or more as compared to mcbnb1 . Similarly,

mcbnb4 and mcbnb16 could solve about 20% and 30% respectively for the same.

The rightmost value on the plot shows the fraction of instances that could be

solved within the time limit.

SGM values for wall clock time and nodes processed are reported in Ta-

ble 2.1. The first column (‘# threads (T)’) in the top table in Table 2.1 indicates

the number of threads used. A ‘T’ at the end of the solver name indicates the

number of threads used by it. Also, ‘wall time’ denotes the wall clock time (not

the CPU time) taken by the multithreaded code. Each row of the top table in Ta-

ble 2.1 corresponds to the solver with T threads. The column ‘# solved by’ lists

the number of instances solved by the corresponding solver and by both the ref-

erence solver (mcbnb1 in this case) as well as the multithreaded solver (under

the column ‘both’). The first column under the headings ‘wall time’ and ‘nodes’

shows the shifted geometric mean (SGM) of these measures reported by the ref-

erence solver for the instances in the column ‘both’. The second column under

these headings shows the relative SGM (‘rel.’) of the proposed method for the

same set of instances. We used a shift of 10 for calculating SGM of time and 100

for the number of nodes processed.

Using 16 threads, mcbnb could solve 17 additional instances compared to

mcbnb1 , and achieved a speed-up of about two on average. The growth in tree-

size with increasing number of threads is well below linear, which ultimately

leads to gains in parallelism. The bottom table in Table 2.1 shows the statistics

for the best solver (mcbnb16 in this case) when instances are categorized based

on difficulty level. The improvements due to parallelism are more prominent for

difficult instances (row corresponding to time > 100).

2.3.2 Sharing Pseudocosts in Branching

The implementations of NLP-BB and QG algorithms in Minotaur use the

well known reliability branching scheme by ?. Reliability branching uses strong

branching (??) initially to find the score of branching candidates. As strong

branching is expensive, the scheme uses previously computed scores after a cer-

30 Parallel Algorithms for Convex MINLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Sequential Algorithm

mcbnb1
mcbnb2
mcbnb4
mcbnb8

mcbnb16

Figure 2.2: Scalability graphs of wall clock

times taken by mcbnb using different num-

ber of threads on test set TS .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o
n

 o
f

In
s
ta

n
c
e

s

Ratio to Sequential Algorithm

mcbnbSRel1
mcbnbSRel2
mcbnbSRel4
mcbnbSRel8

mcbnbSRel16

Figure 2.3: Scalability graphs of wall clock

times taken by multithreaded variants of

mcbnbSRel on test set TS .

Table 2.1: (Top) Comparison of mcbnb1 with mcbnb using multiple threads on test set

TS . mcbnb1 could solve 239 instances. (Bottom) Break-up of performance of mcbnb16

over instances of varying difficulty.

threads # solved by wall time nodes

(T) mcbnbT both mcbnb1 rel. mcbnb1 rel.

2 242 238 32.73 0.80 3.1e2 1.05

4 247 239 33.53 0.69 3.2e2 1.16

8 254 239 33.53 0.60 3.2e2 1.28

16 256 239 33.53 0.56 3.2e2 1.54

solved wall time nodes

time by both mcbnb1 rel. mcbnb1 rel.

> 0 239 33.53 0.56 3.2e2 1.54

> 10 132 113.58 0.41 9.6e2 1.57

> 100 63 428.05 0.28 2.6e3 1.40

> 500 25 1153.12 0.30 5.3e3 1.60

tain number of strong-branching trials. In a parallel setting, the scores obtained at

a node by a thread may be useful at nodes processed by other threads. However,

sharing this information comes at the cost of querying additional information

(from other threads), which means that each thread has to spend additional time

in gathering and processing this information.

We implemented reliability branching for a parallel setting in two differ-

ent ways. In the first way which we call privateRel, each thread does reliability

branching independent of other threads using information from only the nodes

2.3 Shared-Memory Parallel Search 31

it has processed earlier. In the second way which is referred to as sharedRel, each

thread uses information from the nodes solved by other threads also. This as-

pect is illustrated in Figure 2.4. Suppose, for instance, we have two threads, then

the first thread, thread0, solves the root node indexed 0 in the first round and

then one red-colored node in each subsequent round. Simultaneously, the other

thread, thread1, starts solving the hatched nodes, starting from the node in-

dexed 2. In privateRel, both thread0 and thread1 use the information gener-

ated only at the nodes they solve. The other brancher, sharedRel, queries the node-

solve information from the other threads at the end of each round and uses the

cumulative information (from yellow-colored, red-colored and hatched nodes) to

decide the branching variable at a node. The accumulation of information like

pseudocosts (?), number of times branched, etc., from other threads to calculate

scores requires an additional query by each thread. However, these queries turn

out to be beneficial overall as they do not consume much time and are typically

executed in parallel, independently at each thread.

0

1 00 2 00

3 0,1,20,1

5 6 0,1,2,3,100,1,3

7 8 0,1,2,3,10,6,120,1,3,6

4 10 0,1,20,2

11 12 0,1,2,3,100,2,10

13 14 0,1,2,3,10,6,120,2,10,12

9

Figure 2.4: Illustration of using pseudocosts by two threads for branching. The root

node indexed 0 and then the red-colored nodes are solved by thread0 and the hatched

nodes are solved by thread1. In privateRel, thread0 uses pseudocosts only from the

yellow and the red-colored nodes while thread1 uses pseudocosts from only the yellow-

colored and the hatched nodes (indices shown on the left of each node). In sharedRel,

information from all the processed nodes is used by both the threads (indices shown on

the right of each node).

Figure 2.3 shows the effect of sharing pseudocosts in mcbnb when using

multiple threads. This version is referred to as mcbnbSRel . We see that sharing

pseudocosts after each round is beneficial, and the benefits grow with the num-

ber of threads. As shown in Table 2.2, sharing pseudocosts enabled mcbnbSRel16

to solve 4 more instances than mcbnb16 (21 more compared to mcbnb1). Also,

32 Parallel Algorithms for Convex MINLP

the mean wall clock time is reduced to a fourth for difficult instances (row corre-

sponding to time > 500) using mcbnbSRel16 .

Table 2.2: (Top) Comparison of mcbnbSRel1 with mcbnbSRel using multiple threads on

test set TS . mcbnbSRel1 could solve 237 instances. (Bottom) Break-up of performance of

mcbnbSRel16 over instances of varying difficulty.

threads # solved by wall time nodes

(T) mcbnbSRelT both mcbnbSRel1 rel. mcbnbSRel1 rel.

2 241 236 30.71 0.86 3.0e2 1.11

4 247 236 30.73 0.69 3.0e2 1.24

8 255 237 30.23 0.56 3.1e2 1.40

16 260 237 30.23 0.50 3.1e2 1.59

solved wall time nodes

time by both mcbnbSRel1 rel. mcbnbSRel1 rel.

> 0 237 31.23 0.50 3.1e2 1.59

> 10 130 104.24 0.37 9.0e2 1.64

> 100 63 364.46 0.27 2.1e3 1.61

> 500 23 1008.44 0.25 4.8e3 1.65

2.3.3 Parallel Extension of QG

The implementation of parallel QG algorithm in Minotaur differs from

mcbnb in two ways. First, an LP solver is used to solve the (LP) relaxation at

each node. Second is the generation and sharing of globally valid linearization

cuts that are generated at certain nodes either after solving an NLP or by lin-

earization methods like those described by ?. Recall that linearization cuts are

added in QG when integer feasible points are encountered in the branch-and-

bound tree. To strengthen the relaxations at the root node and other nodes of

the tree, ? propose linearization schemes. The first set of schemes tighten the

LP relaxation at the root node and the second set of schemes are for adding new

linearizations down in the branch-and-bound tree. These strategies are based on

change in the lower bound, depth of the nodes, some appropriate measures of

constraint violation, problem structure, etc.

In order to store and share these cuts, first we add them to a local CutPool

of a thread. A CutManager class is used by each individual thread to store all

the linearizations generated while processing the nodes assigned to it. A thread

2.3 Shared-Memory Parallel Search 33

queries the CutManager of all other threads while creating the relaxation of the

node assigned to it, and all cuts that are new for this thread are added to this

relaxation. The cuts from CutManagers of different threads that have been added

to the relaxation at a given thread are maintained and updated using a unique cut

id. We denote this parallel QG algorithm as mcqg . Algorithm 2.1 demonstrates

the mcqg algorithm implemented within Minotaur, and Algorithm 2.2 describes

the function GetNode() used in Algorithm 2.1.

Algorithm 2.1: Parallel QG (LP/NLP based branch-and-bound) algo-

rithm in Minotaur.

1 Initialize upper bound, U = ∞, state of thread, S t = idle, cut pool,

Ct = ∅, ∀ t ∈ 1 . . . T .

2 Add root LP relaxation to the pool of open nodes,H .

3 while H , ∅ do

4 for t in 1 . . . T do

5 if S t = idle then

6 GetNode().

7 if S t = assigned then

8 Add new cuts from Ct, ∀t in 1 . . . T , to LPt.

9 Solve LPt at thread t.

10 if LPt is optimal and (x̂t)i ∈ Z, ∀ i ∈ I then

11 Solve F-NLP(x̂t), let the point returned be x̌t.

12 if F-NLP(x̂t) is optimal then

13 Update U ← min{U, f (x̌t)}.

14 Generate linearizations of all nonlinear constraints

violated by x̂t, at x̌t, and add to Ct and LPt.

15 Go to step 9.

16 else if LPt is infeasible then

17 Prune this node.

18 GetNode().

19 else

20 Branch: generate two LP subproblems and add toH .

21 GetNode().

34 Parallel Algorithms for Convex MINLP

Algorithm 2.2: Get an open node fromH for a thread t ∈ {1, . . . ,T }

1 ifH , ∅ then

2 Remove an LP fromH as per the search strategy and set LPt ← LP

and S t = assigned.
3 else

4 Set S t = idle.

Table 2.3 summarizes the performance of multithreaded variants of mcqg

relative to mcqg1 . All threads share linearizations (at integer solutions) and pseu-

docosts according to sharedRel scheme. We observed improvements with all the

variants of mcqg over mcqg1 . About 44% improvement in wall clock time is ob-

tained when using 16 threads and 9 more instances were solved. The scalability

graphs for mcqg are shown in Figure 2.5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Ratio to Sequential Algorithm

mcqg1
mcqg2
mcqg4
mcqg8

mcqg16

Figure 2.5: Scalability graphs of wall clock times for mcqg variants on test set TS .

2.4 Combined Effect of Linearization and

Parallelization Schemes

Our numerical experiments show that parallelism in tree-search enhances the

performance of qg with the hybrid linearization scheme Hyb proposed by ?. This

linearization scheme entails conditions using which additional gradient inequali-

ties can be added at different nodes in the search tree. We refer to the combination

of mcqg with Hyb as mcqgHyb . Table 2.4 shows the performance of mcqgHyb16

2.4 Combined Effect of Linearization and Parallelization Schemes 35

Table 2.3: (Top) Comparison of mcqg1 to mcqg using multiple threads on test set TS .

mcqg1 could solve 285 instances. (Bottom) Break-up of performance of mcqg16 over

instances of varying difficulty.

threads # solved by wall time nodes

(T) mcqgT both mcqg1 rel. mcqg1 rel.

2 283 279 19.44 0.86 2.1e3 1.08

4 291 282 19.50 0.75 2.1e3 1.17

8 291 280 19.62 0.64 2.1e3 1.20

16 294 284 20.08 0.56 2.2e3 1.29

solved wall time nodes

time by both mcqg1 rel. mcqg1 rel.

> 0 284 20.08 0.56 2.2e3 1.29

> 10 120 100.52 0.39 3.3e4 1.32

> 100 56 331.22 0.27 1.2e5 1.30

> 500 19 1199.84 0.24 4.1e5 1.19

(mcqgHyb with 16 threads) and qgHyb (qg with Hyb) in comparison to qg on

test set TS . Note that the wall clock time taken by the sequential algorithm qg is

the same as the CPU time. Using mcqgHyb16 on TS , we observed a significant

improvement of about 44% in the solution times and solved 6 instances more than

qg and 5 more than qgHyb .

Table 2.4: (Top) Comparison of qgHyb and mcqgHyb16 to qg on test set TS . qg could

solve 291 instances. (Bottom) Break-up of results of mcqgHyb16 over instances of vary-

ing difficulty.

method # solved by wall time nodes

(M) M both qg rel. qg rel.

qgHyb 292 288 18.09 0.88 2.2e3 0.83

mcqgHyb16 297 288 18.09 0.56 2.2e3 1.14

solved wall time nodes

time by both qg rel. qg rel.

> 0 288 18.09 0.56 2247.04 1.14

> 10 117 93.35 0.40 38730.08 1.08

> 100 45 485.08 0.29 204398.59 0.92

> 500 22 1178.97 0.30 474288.37 1.07

36 Parallel Algorithms for Convex MINLP

2.5 Outer-Approximation with Parallelism in MILP

As briefly explained in Section 2.1, the underlying strategy in outer-

approximation based algorithms is to solve an alternating sequence of MILPs (of

the form (RM)) and NLPs (of the form F-NLP). This section describes two variants

of OA that exploit parallelism of the MILP solver.

2.5.1 Multitree OA with Parallel MILP

As OA is an iterative scheme in which an MILP and a fixed-NLP are solved

alternatingly, a natural way of parallelizing it is to use a parallel MILP solver.

We have implemented the default OA scheme in Minotaur and also enhanced it

in the following way. We solve MILP relaxation at any iteration using an MILP

solver. The MILP solver can utilize all the available processors. MILP solvers

also have the capability of returning a pool of solutions which we use to gen-

erate additional linearizations. For each solution xt in the pool returned by the

MILP solver, we solve the corresponding fixed-NLP F-NLP(xt) and generate the

linearizations. These NLPs can in turn be solved in parallel if the NLP solver

is thread-safe. All the generated linearizations are added to the MILP. When all

NLPs have been solved and linearizations added, the MILP solver is called again

and the process continues. Algorithm 2.3 describes the steps of the enhanced OA.

We also solve multiple F-NLPs, each corresponding to a distinct MILP solution,

in parallel (indicated by the for loop in Algorithm 2.3).

In order to further accelerate the MILP solver, we use the MIP starts func-

tionality (also called advanced starts or warm starts) provided by the MILP

solver, CPLEX in our case. The solutions obtained by it are written to a file and are

read in the subsequent MILP call. In our experiments, we observed that CPLEX

was able to repair some of the solutions from the MIP starts and obtain upper

bounds, mainly because the MILPs in consecutive iterations differ only by a few

linear constraints. Additionally, we provide the best known upper bound of (P)

to the MILP solver in each iteration to be used as a cut-off value. In Minotaur, we

interact with the CPLEX solver using a C++ wrapper that passes information to

and from CPLEX through its C interface.

We compare the performance of our two implementations of multitree OA.

In the first implementation, linearizations are added only at the point obtained

from the optimal solution of MILP. The second one uses all solutions of the so-

lution pool of MILP, and solves fixed-NLPs in parallel using multiple threads.

2.5 Outer Approximation 37

Algorithm 2.3: Exploiting solution pool of MILP solver in multitree

OA
1 Initialize bounds, U = ∞, L = −∞, iteration counter k = 0.

2 Solve the NLP relaxation (R). If (R) is infeasible, then so is (P) and we

STOP. If the optimal solution of (R), x0, is feasible for (P), then set

U = f (x0) = L and STOP.

3 Create and solve the MILP relaxation (RM). If (RM) is infeasible, then so

is (P) and we STOP. Otherwise, let X̂k be the set of available feasible

solutions of (RM), ẑk be its optimal value, and set L = ẑk.

4 while U > L do

5 for xt ∈ X̂k do

6 Solve F-NLP(xt), let the point returned be x̌t. If F-NLP(xt) is

optimal, update U ← min{U, f (x̌t)}.

7 Add linearizations to nonlinear constraints violated by xt, at x̌t, to

(RM).

8 Set k ← k + 1, solve (RM), and update L← ẑk.

We denote these implementations of OA as oa and oaSol , respectively. Table 2.5

and Table 2.6 provide a summary of performance of these algorithms. Here, we

present the SGM for the number of iterations taken by oa . We observe that the

use of solution pool enables us to solve more instances. One can also solve fixed-

NLPs one by one if a thread-safe NLP solver is not available. In our experiments,

we find that using the solution pool and solving fixed-NLPs in parallel is the most

effective strategy. Compared to the traditional OA (oa1), we could solve up to 13

more instances and improve the wall clock time by more than 50%.

2.5.2 QG Using MILP Solvers with Lazy Cuts Callback

This version of QG is also known as the Single-tree OA because it explores

a single tree, but uses an MILP solver for creating the tree. MILP solvers like

CPLEX and GUROBI provide the users with callback functions which can be in-

voked in specific contexts, for example, when an integer feasible solution is found

in the MILP tree. In such contexts, the MILP solving is paused and the control

is transferred (temporarily) to a predeclared user-callback function. The user can

access MILP solving information, for example, the best solution, upper and lower

bounds, etc., generated within the MILP solver so far. This information can then

38 Parallel Algorithms for Convex MINLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Ratio to Sequential Algorithm

oa1
oa2
oa4
oa8

oa16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Ratio to Sequential Algorithm

oaSol1
oaSol2
oaSol4
oaSol8

oaSol16

Figure 2.6: (Left) Effect of providing multiple threads to CPLEX in oa on test set TS .

(Right) Performance of oaSol that uses the solution pool of CPLEX and solves fixed-NLPs

in parallel.

Table 2.5: (Top) Comparison of oa using multiple threads. oa1 could solve 296 instances.

(Bottom) Break-up of oa16 results over instances of varying difficulty.

threads # solved by wall time iterations

(T) oaT both oa1 rel. oa1 rel.

2 299 295 11.44 0.80 12.44 1.00

4 301 295 11.44 0.68 12.44 1.01

8 302 295 11.44 0.62 12.44 1.01

16 302 295 11.44 0.84 12.44 1.01

solved wall time iterations

time by both oa1 rel. oa1 rel.

> 0 295 11.44 0.84 12.44 1.01

> 10 109 54.18 0.67 37.47 1.02

> 100 36 335.70 0.31 48.23 0.98

> 500 12 1161.57 0.22 73.49 0.94

be utilized in the callback to generate new cuts, feasible solutions, etc. that are

passed back to the MILP solver through predefined functions. When solving con-

vex MINLPs, the MILP solver is not aware of the nonlinear constraints. When an

integer feasible solution to the MILP is obtained, it has to be checked for nonlin-

ear constraints. If the obtained solution violates any of them, linearization cuts

generated using this point are added to the MILP as ‘lazy’ cuts, which cut this

solution off. In this way, the MILP tree is guided towards an optimal solution of

the original problem (P). In this algorithm, the MILP solver maintains the MILP

2.5 Outer Approximation 39

Table 2.6: (Top) Comparison of oaSol using multiple threads. oaSol1 could solve 290

instances. (Bottom) Results of oaSol16 over instances of varying difficulty.

threads # solved by wall time iterations

(T) oaSolT both oaSol1 rel. oaSol1 rel.

2 297 288 13.92 0.63 16.75 0.66

4 302 288 13.81 0.50 16.79 0.54

8 304 290 14.17 0.45 16.52 0.60

16 309 290 13.94 0.43 16.69 0.58

solved wall time iterations

time by both oaSol1 rel. oaSol1 rel.

> 0 290 13.94 0.43 16.69 0.58

> 10 108 67.46 0.27 40.24 0.51

> 100 35 401.20 0.16 62.52 0.58

> 500 14 1255.97 0.09 98.26 0.36

tree, along with most of its advanced MILP solving features like presolving, im-

plications, heuristics, etc., that help accelerate the overall tree-search.

This implementation is similar to the multitree OA. First, the root MILP re-

laxation is passed to the MILP solver. Before solving the MILP, we activate the

lazy constraints callback function in the MILP solver. Whenever the MILP solver

finds an integer feasible solution, say xt, it returns the control back to Minotaur

through a predefined callback. We solve F-NLP(xt) in the callback, generate lin-

earization cuts for all nonlinear constraints active at the solution and pass them

to the MILP solver which then resumes the MILP tree-search. All the available

processors are utilized by the MILP solver within its algorithm. We observed that

CPLEX sets the parallel tree-search mode to deterministic when using the lazy cuts

callback, and only one thread is allowed to access the callback at a time. We con-

ducted two sets of experiments: one with the deterministic mode and the other

by explicitly setting the parallel mode of CPLEX to opportunistic. The latter mode

does not guarantee reproducibility of results, so we performed 5 replications. For

each instance in test set TS , its solution time is computed as the arithmetic mean

of the 5 replications. Table 2.7, Table 2.8 and Figure 2.7 present the performance of

deterministic (lstoaD) and opportunistic (lstoaO) modes. We observed

good scalability with lstoaO . Using 16 threads, both solution time and tree-size

improved by more than 60%. On the other hand, lstoaD did not show scalability,

40 Parallel Algorithms for Convex MINLP

probably due to the sequential NLP solving. Although, both qg and lstoa are

implementations of QG, use of advanced MILP solving techniques within lstoa

leads to better performance when compared to qg . We discuss it next.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Ratio to Sequential Algorithm

lstoaD1
lstoaD2
lstoaD4
lstoaD8

lstoaD16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-4

2
-3

2
-2

2
-1

2
0

2
1

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s
Ratio to Sequential Algorithm

lstoaO1
lstoaO2
lstoaO4
lstoaO8

lstoaO16

Figure 2.7: Effect of providing multiple threads to lstoaD and lstoaO (qg implemented

using CPLEX with lazy cuts callback functionality using deterministic (left) and oppor-

tunistic parallel mode) on test set TS .

Table 2.7: (Top) Comparison of lstoaD using multiple threads. lstoaD1 could solve 307

instances. (Bottom) Break-up of results of lstoaD16 over instances of varying difficulty.

threads # solved by wall time nodes

(T) lstoaDT both lstoaD1 rel. lstoaD1 rel.

2 308 306 9.86 0.93 8.6e2 1.05

4 309 306 9.86 0.83 8.6e2 1.07

8 309 306 9.86 0.80 8.6e2 1.09

16 309 306 9.86 0.92 8.6e2 1.17

solved wall time nodes

time by both lstoaD1 rel. lstoaD1 rel.

> 0 306 9.86 0.92 8.6e2 1.17

> 10 111 42.74 0.79 1.2e4 1.23

> 100 32 299.94 0.41 6.7e4 1.01

> 500 13 871.90 0.25 1.4e5 0.94

2.6 Comparison of Methods and Conclusions

In the final part of our study, we compare these enhanced routines to each other

and also to other MINLP solvers. The goal of this comparison is not to bench-

mark these solvers, but rather to understand the broad effects of the choice of

2.6 Comparison of Methods and Conclusions 41

Table 2.8: (Top) Comparison of lstoaO using multiple threads. lstoaO1 could solve 307

instances. (Bottom) Break-up of results of lstoaO16 over instances of varying difficulty.

threads # solved by wall time nodes

(T) lstoaOT both lstoaO1 rel. lstoaO1 rel.

2 317 307 12.32 0.74 8.6e2 0.07

4 318 305 12.35 0.57 8.6e2 0.06

8 323 307 12.32 0.44 8.6e2 0.08

16 325 307 12.32 0.37 8.6e2 0.07

solved wall time nodes

time by both lstoaO1 rel. lstoaO1 rel.

> 0 307 12.32 0.37 8.6e2 0.07

> 10 109 57.27 0.22 1.3e4 0.01

> 100 28 453.24 0.10 9.3e4 0.00

> 500 13 1024.61 0.08 8.8e4 0.01

algorithms and implementation details on their performance. We consider the

serial and parallel versions of four algorithms described in this chapter.

1. NLP-BB with sharing of branching information between threads (mcbnb-

SRel).

2. QG with extra linearizations and parallelization using our own branch-and-

cut implementation (mcqgHyb).

3. QG with branch-and-cut implementation of CPLEX MILP solver running in

opportunistic mode (lstoaO).

4. OA with CPLEX MILP solver using all solutions from the solution pool of

CPLEX (oaSol).

We also include two other MINLP solvers that support parallelization: FSCIP (?)

and SHOT (?). FSCIP is a shared-memory variant of the MILP and MINLP solver

SCIP (?). SCIP was initially developed for MILPs and was later extended by ? to

global optimization. Developed in C language, it has several plugins that exploit

problem structure for branching, presolving, heuristic search, cutting planes, con-

flict analysis, etc. SCIP can call several LP solvers including CPLEX and also the

NLP solver IPOPT for solving relaxations. As mentioned in Section 2.1, FSCIP

uses the UG framework to call separate SCIP instances at each thread. Open sub-

problems are distributed to each thread which then solve the respective subtrees.

42 Parallel Algorithms for Convex MINLP

UG also dynamically controls and manages the load at each thread. SHOT was

developed recently for solving convex MINLPs. It implements ESH and ECP

based algorithms (similar to outer-approximation) that solve a sequence of MILP

subproblems. SHOT also has a lazy cuts based QG algorithm. SHOT depends

on parallelism that the MILP solver exploits in both these algorithms. For our ex-

periments, we use the default ESH and lazy cuts based QG algorithm (also called

single-tree polyhedral outer-approximation by SHOT (?)).

We compiled SCIP, SHOT and Minotaur using the same versions of CPLEX

(LP and MILP) and IPOPT (NLP) subsolvers. Also, we maintained all the default

settings of these solvers except in FSCIP, where we disabled convexity detection

routines by setting constraints/nonlinear/assumeconvex to True. Ta-

ble 2.9 summarizes the key differences in the basic algorithms, implementation

of branch-and-cut routines and the performance of these solvers on the test set

TS . Unlike earlier tables, the SGM of the wall clock times is computed over the

instances solved by the particular solver and does not depend on any other solver.

We see that all solvers benefit from parallelization, although without good scal-

ability. We also see that OA with a state-of-the-art branch-and-cut MILP solver

performs better than the QG algorithm with one’s own branch-and-cut imple-

mentation that may lack several key MILP features. Implementing QG using

callbacks to a fast commercial MILP solver seems to be the best option. This op-

tion is, however, encumbered by the availability and licensing of the MILP solver.

QG with enhanced linearization schemes with one’s own branch-and-cut is seen

to be the next best option.

To conclude, parallel extensions of the algorithms NLP-BB and QG can ac-

celerate their sequential versions by about 40-50% using 16 threads. The speedup

is higher for difficult instances. We see some scope of improvement here as the

number of nodes processed increased by only about 60% when using 16 threads.

Lastly, improvements in the techniques for MILP seem to have a big impact on

the methods. MINLP solvers will gain a lot if the underneath MILP solver or the

branch-and-cut implementation is improved. The scope for improvement seems

especially high for the academic and open-source solvers currently available.

2.6 Comparison of Methods and Conclusions 43

Table 2.9: Comparison of algorithms deployed by different solvers along with the SGM

of wall clock times and number of instances solved from set TS .

one thread 16 threads

solver algo-

rithm

relax-

ation

branch-and-

cut\bound

implementation

#

solved

wall

time

#

solved

wall

time

mcbnbSRel NLP-

BB

NLP own 237 31.23 260 25.24

fscip QG LP own 276 14.99 273 5.93

shot QG LP MILP solver 309 8.75 309 6.40

mcqgHyb QG LP own 295 17.52 300 12.66

lstoaO QG LP MILP solver 307 12.32 325 6.66

oaSol OA MILP MILP solver 295 11.63 309 8.19

Chapter 3

Anomalies in Parallel

Branch-and-Bound Based Algorithms

for MINLP

In this chapter, we study the so called ‘anomalies’ in parallel tree-search algo-

rithms. Anomalies refer to the unpredictable performance of parallel algorithms

with respect to the number of processors used. This includes the case when paral-

lel algorithms run disproportionately slower or faster than their sequential coun-

terparts. We particularly study conditions when a parallel algorithm is theoret-

ically guaranteed to be at least as fast as the sequential algorithm. Our study

concentrates on NLP-BB and QG algorithms for convex MINLP.

A formal analysis of parallel tree-search based algorithms is attributed to ?,

who introduced anomalies in branch-and-bound algorithms. Their results were

improved by ? and later by ?, who proposed conditions to avoid anomalies. We

extend these results for avoiding anomalies in NLP-BB and QG.

Let k denote the number of processors used by the algorithm and ε be the

optimality gap tolerance (the deviation from an optimal solution within which

a feasible solution is acceptable as optimal). We consider the following assump-

tions, similar to those presented by ? and ? to simplify our analysis.

Assumption 3.1. The processors operate ‘synchronously’, that is, in each iteration, at

most k open nodes are selected based on a heuristic function h(.) and solved simultane-

ously.

Note that Assumption 3.1 is equivalent to assuming that the time for solv-

ing a node and inserting a subproblem in the memory are same for all processors

45

46 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

at every iteration. While the solving times for nodes can vary in practice, this

assumption helps establish the notion of an iteration. We refer to an iteration as

one cycle of all operations executed by a processor including presolving, node

processing, branching, adding cuts, checking stopping conditions, inserting new

subproblems in the memory, etc. This assumption helps in analyzing the perfor-

mance of parallel branch-and-bound algorithms using the number of iterations

taken by the algorithm (?), instead of the wall clock time taken (which may vary

depending on the hardware, load on the system and other factors). We denote

the number of iterations by T (k, ε).

Assumption 3.2. All idle processors are used only to solve subproblems.

Assumption 3.2 encapsulates that processors are not allowed to remain idle,

unless there are no open subproblems to be solved. Also, processors are not used

to run other algorithmic tasks such as running primal heuristics, presolving, etc.

when idle.

Assumption 3.3. All the subsolvers used within the algorithm (for solving subproblems)

are deterministic.

Assumption 3.3 ensures that results are replicable if same initial conditions

are provided to the subsolver (for example, an LP or an NLP solver) used within

the algorithm. This assumption is not unrealistic, subject to the use of sufficiently

small tolerance values, as observed in our numerical results.

Now, we present the definitions of anomalies and other results from ?.

Definition 3.0.1. (?) A behaviour exhibited by a parallel tree-search algorithm using k

processors is an:

• acceleration anomaly, if, T (k, ε) < T (1,ε)
k ,

• deceleration anomaly, if, T (1,ε)
k < T (k, ε) < T (1, ε),

• detrimental anomaly, if, T (k, ε) > T (1, ε).

A detrimental anomaly is depicted in Figure 3.1 and Figure 3.2. The number

of iterations required are more when two threads are used (5 iterations) compared

to the sequential version (3 iterations). As mentioned by ?, one of the main rea-

sons for such anomalies is the ambiguous selection of nodes in the sequential and

the parallel versions. However, anomalies can also arise due to the ambiguity in

other components of branch-and-bound algorithms. In fact, the tree might evolve

47

0root 105

1105 2

3 4 ub=105

Figure 3.1: A sequential branch-and-bound

tree (T = 1). The algorithm processes nodes

0, 1, 4 respectively and then terminates.

Iteration Node (id) processed

T=1 T=2

thread0 thread0 thread1

1 0 0 –

2 1 1 2

3 4 9 10

4 – 11 12

5 – 13 14

Table 3.1: Node solved at each iteration of

a sequential tree-search (shown under the

column T=1), and another tree solved using

two threads (column T=2).

0root 105

1105 2 105

3 4 10 105

11ub=106 12 105

13 14 ub=105

9inf

Figure 3.2: A branch-and-bound tree explored using two threads (T = 2). Two nodes are

solved in parallel in each iteration except the first iteration. thread0 solves the yellow

coloured nodes and thread1 solves the red coloured nodes. The algorithm terminates

after node 14 is processed.

differently in case of ambiguous algorithmic components, hence, they must be

appropriately addressed to avoid anomalies.

Sufficient conditions to avoid detrimental anomalies and necessary condi-

tions to allow acceleration anomalies were proposed by ?. The following defini-

tions follow in relation to the former.

Definition 3.0.2. (?) Given a set of open nodes, P, a heuristic node selection function

h(.) is referred to as unambiguous if it satisfies the following two properties.

1. h(Pi) , h(P j), for all Pi, P j ∈ P,

2. h(Pi) ≤ h(P j), for all ‘descendant’ nodes P j of Pi.

All nodes that are encountered when moving down the tree along the edges

starting from a node are referred to as the descendants of this node. Similarly, the

48 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

nodes encountered while moving up the tree are called the ‘ancestor’ nodes. A

node with a lower heuristic function value has a higher priority.

Definition 3.0.3. (?) A basic node is one with the minimum heuristic node selection

function value at an iteration.

If h is unambiguous, then there can be only one basic node at an iteration.

The following theorem states that if the node selection function is unambiguous,

then detrimental anomalies are avoided.

Theorem 3.0.4. (?) If h is unambiguous, then T (k, 0) ≤ T (1, 0).

The proof of Theorem 3.0.4 is based on the following facts.

• At least one node from the sequential search tree is processed in the parallel

search.

• The parallel search terminates in the same or less number of iterations as

the serial search.

• If Pi is a basic node, then for any node P j such that h(P j) ≤ h(Pi), P j must be

either solved or terminated when Pi is solved.

While ? do not consider unambiguity explicitly in branching, ? mention in

their Assumption (A1) that the branching scheme applied at a node Pi depends

only on the information obtained along the path from Pi to the root node P0. How-

ever, the analysis presented by ? focusses on best-first node selection rules, not on

the branching functions. In this work, we explicitly address the unambiguity of

node selection and branching functions at an iteration of the branch-and-bound

algorithm. We also present a simple tie-breaking rule for both the node selection

and branching variable selection.

Parallel Branch-and-Bound Framework in Minotaur

We first discuss the parallel branch-and-bound framework, implemented

within Minotaur (?), a generic framework for implementing MILP and MINLP

algorithms. As mentioned briefly in Section 2.3, Minotaur has various algorith-

mic components like NodeRelaxer, NodeProcessor, NLPEngine, etc., as classes.

The parallel branch-and-bound framework is flexible and can be customized to

obtain a parallel MILP or a global solver based on branch-and-bound. We focus

on solving convex MINLPs using parallel branch-and-bound based algorithms.

3.1 Opportunistic Parallel Branch-and-Bound in Minotaur 49

Although the branch-and-bound framework seems fairly simple, practically,

the performance of a sequential or parallel versions of these algorithms depend

on the way they have been implemented on a software platform. Different MILP

and MINLP solvers use distinctive data structures, classes, subsolvers, etc., which

make each implementation/solver unique in its own way. The parallel imple-

mentation of NLP-BB in Minotaur uses available classes in Minotaur and with

minimum deviations from the sequential versions of the algorithm. As already

described in Section 2.3.1, a single pool of open nodes is maintained by the class

TreeManager and a prespecified number of threads solve different nodes simul-

taneously until the node pool is empty. Algorithm 3.1 shows the pseudocode

of the parallel branch-and-bound scheme in Minotaur. Algorithm 3.2 describes

the function GetProblem() used in Algorithm 3.1. Parallel extensions of NLP-BB

and QG are already implemented in Minotaur, as explained in Section 2.3.1 and

Section 2.3.3.

3.1 Opportunistic Parallel Branch-and-Bound in

Minotaur

In this section, we describe new parallel extensions of the NLP-BB and the QG

algorithms where we solve tree-nodes in parallel, though in a bit more compact

way compared to the algorithms presented recently by ?. Both these extensions

are more ‘opportunistic’ than the ones of the same algorithms presented in Sec-

tion 2.3.1 and Section 2.3.3. We use the term opportunistic in two respects: first,

the threads attempt to take a new open node as soon as they solve a node, without

waiting for the other threads; second, to label the algorithm as ‘not deterministic’

in terms of reproducibility of results.

3.1.1 Parallel NLP-BB

Algorithm 3.3 shows the pseudocode for the opportunistic parallel exten-

sion of NLP-BB in Minotaur. This algorithm is referred to as parallel opportunis-

tic mcbnb . The minor but subtle change compared to the version presented by ?

is that this algorithm does not use the OpenMP for loops, thus avoiding the im-

plicit synchronization of the threads at the end of these loops. This implies that if

a thread finishes processing a node earlier than the other threads, it will not have

to wait for other threads to finish processing their nodes. We note that checking

the stopping conditions is easier when using for loops than the while loops

50 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

Algorithm 3.1: Parallel NLP-BB algorithm for convex MINLP

1 Set the upper bound, U = ∞ and initialize the list of open problems with

the root NLP,H = {NLP0}.

2 Set the state of a thread, S t = idle, ∀ t ∈ 1 . . . T .

3 Set shouldRun = true.

4 while H , ∅ AND shouldRun == true do

5 for t from 1 to T do

6 if S t = idle then

7 GetProblem().

8 if S t == assigned then

9 Solve NLPt at thread t.

10 if NLPt is optimal and the optimal value f (x̂t) > U then

11 NLPt can be pruned on the basis of bound.

12 else if x̂t ∈ Z, ∀ i ∈ I then

13 Update U ← min{U, f (x̂t)}.

14 GetProblem().

15 else if NLPt is infeasible then

16 Prune the node.

17 GetProblem().

18 else

19 Use a branching rule to generate NLPt1 and NLPt2 .

20 Update the list: H = H ∪ {NLPt1 ,NLPt2}.

21 GetProblem().

22 if stopping conditions met then

23 Set shouldRun = f alse.

due to the implicit synchronization at the end of one solving cycle or iteration.

In the current algorithm, we adjust the stopping conditions by also counting the

number of nodes assigned to the threads (that have been removed from the node

pool) in addition to the size of node pool.

3.1.2 Parallel QG

The parallel schematic for the opportunistic parallel extension of QG is sim-

ilar to that of NLP-BB. Algorithm 3.4 presents a pseudocode for this algorithm.

3.1 Opportunistic Parallel Branch-and-Bound in Minotaur 51

Algorithm 3.2: Getting a problem from the list of problems for a given

t ∈ {1, . . . ,T }.

1 ifH , ∅ then

2 Remove an NLP fromH as per the search strategy.

3 Assign NLP to thread t, NLPt ← NLP and set S t = assigned.

4 else

5 Set the status of thread, S t = idle.

Algorithm 3.3: Opportunistic parallel NLP-BB algorithm in Minotaur.

1 Initialize upper bound, U = ∞, state of thread, S t = idle, parameter to

indicate if a node is assigned to a thread t, Kt = 0, t = 1, 2 . . . ,T .

2 Add the root NLP relaxation to the pool of open nodes,H .

3 while H , ∅ or
∑>

t=1 Kt > 0 do

4 Kt ← 0.

5 if S t = idle andH , ∅ then

6 GetNode().

7 Kt ← 1.

8 if S t = assigned then

9 Solve NLPt at thread t.

10 if NLPt is optimal and (x̂t)i ∈ Z, ∀ i ∈ I then

11 Update U ← min{U, f (x̌t)}.

12 else if NLPt is infeasible then

13 Prune this node.

14 GetNode().

15 Kt ← 1.

16 else

17 Branch: generate two NLP subproblems and add toH .

18 GetNode().

19 Kt ← 1.

It has two main differences from the opportunistic mcbnb . First, LPs (instead of

NLPs) are solved as nodes and second, additional linearization cuts are added at

nodes that yield integer solutions. The function GetProblem() for this algorithm

52 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

is similar to that shown in Algorithm 3.2, except that the node pool contains LPs

instead of NLPs.

Algorithm 3.4: Opportunistic parallel QG (LP/NLP based branch-

and-bound) algorithm in Minotaur.

1 Initialize upper bound, U = ∞, state of thread, S t = idle, cut pool for

each thread, Ct = ∅, ∀ t ∈ 1 . . . T , parameter to indicate if a node is

assigned to a thread t, Kt = 0.

2 Add root LP relaxation to the pool of open nodesH .

3 while H , ∅ or
∑>

t=1 Kt > 0 do

4 Kt ← 0.

5 if S t = idle andH , ∅ then

6 GetNode().

7 Kt ← 1.

8 if S t = assigned then

9 Add new cuts from Ct, ∀t in 1 . . . T , to LPt.

10 Solve LPt at thread t.

11 if LPt is optimal and (x̂t)i ∈ Z, ∀ i ∈ I then

12 Solve F-NLP(x̂t), let the point returned be x̌t.

13 if F-NLP(x̂t) is optimal then

14 Update U ← min{U, f (x̌t)}.

15 Generate linearizations of all nonlinear constraints violated

by x̂t, at x̌t, and add to Ct and LPt.

16 Go to step 10.

17 else if LPt is infeasible then

18 Prune this node.

19 GetNode().

20 Kt ← 1.

21 else

22 Branch: generate two LP subproblems and add toH .

23 GetNode().

24 Kt ← 1.

3.2 Parallel NLP-BB with No Detrimental Anomalies 53

3.2 Parallel NLP-BB with No Detrimental Anomalies

We extend Theorem 3.0.4 in the context of MINLP algorithms in this section.

State-of-the-art MINLP algorithms like NLP-BB comprise various important com-

ponents in addition to node-selection heuristic functions that have to be unam-

biguous for the MINLP algorithm to be nondetrimental. Branching is one of the

most important components that need to be addressed. We focus on unambigu-

ous branching functions to derive a nondetrimental parallel NLP-BB algorithm.

3.2.1 Unambiguous Branching Functions

Since a node (subproblem) is constructed by explicitly adding a set of

branching constraints to its parent, the notion of unambiguity must also include

branching in addition to unambiguous node selection heuristic functions. We

first extend the notion of unambiguity defined in Definition 3.0.2 by formally

defining unambiguous branching functions, based on widely used simple vari-

able disjunctions. These disjunctions are expected to umambiguously select a

branching candidate from a subset of I (the set of all integer constrained vari-

ables). This definition can be easily extended to cover more general branching

functions.

Definition 3.2.1. Consider an open node Pi ∈ P that has not been pruned after pro-

cessing. Let x∗ denote the optimal solution of Pi and the set of branching candidates be

IC := { j ∈ I : x∗j < Z}. A branching variable selection function ν(.) over IC at Pi is

referred to as unambiguous, if

• ν is deterministic and depends only on the information obtained along the path from

Pi to the root node P0,

• ν(j) , ν(k) for all j, k ∈ IC, j , k.

It can be easily verified that the simple lexicographic branching rule satis-

fies Definition 3.2.1. Strong branching involves partly or fully solving an NLP

subproblem, and if a deterministic subproblem solving algorithm is used, strong

branching also satisfies Definition 3.2.1. An unambiguous branching function is

essential for unambiguous node creation in the tree.

Next, we present an unambiguous branching scheme, a variant of the relia-

bility branching scheme, that is presumably more effective than the lexicographic

branching and less expensive than full strong branching. We also discuss some

implementation related issues.

54 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

3.2.2 Unambiguous Reliability Branching Scheme

We propose a simple reliability branching based scheme, termed as ancestRel

branching, to unambiguously select a branching candidate at a node.

Reliability Branching First, we briefly explain reliability branching, a hybrid

scheme that balances strong branching and pseudocost branching; see ? for a

detailed description of each of these. Let x∗ be the optimal solution of the node

in consideration. Strong branching scheme estimates the potential dual bound

improvement if some x j ∈ IC is selected as the branching candidate, by fully or

partially solving two subproblems; one with the down-branch (x j ≤ bx∗jc) and

the other with the up-branch (x j ≥ dx∗je) applied to this node, and selects the

most promising candidate. Typically, strong branching at each node is deemed

expensive because for each branching candidate, one has to (fully or partly) solve

two subproblems for each branching candidate.

Pseudocost branching is another scheme that evaluates different candidates

based on a score corresponding to each integer variable. This score is updated

based on the dual bound improvement corresponding to each x j ∈ IC, per unit

change in the value of x j. Let δup := dx∗je− x∗j, ∆
up
j := f up

j − f ∗ and ζup
j :=

∆
up
j

δ
up
j

represent

this change along the up-branch where f ∗ is the optimal objective function value

at the node. Let σup denote the sum of ζup
j over a number of nodes, nup

j , where

j is chosen as the branching variable and the subproblem with the up-branch is

feasible. Then, the up-pseudocost at a node is given by ψup := σup

nup
j

. The down-

pseudocost is calculated in a similar way. The best candidate is decided based on

a score,

s j := αmin{ψup
j δ

up
j , ψ

down
j δdown

j } + (1 − α) max{ψup
j δ

up
j , ψ

down
j δdown

j }, (3.1)

where α ∈ (0, 1) is a parameter, typically set to 1
6 . The drawback with this scheme

is that the scores do not provide good estimates of the possible dual bound im-

provement near the root of the tree, when less nodes have been solved.

The reliability branching scheme is a hybrid combination of the strong

branching and the pseudocost branching schemes, and attempts to overcome the

drawbacks of both of them. It does limited (and dynamic) strong branching in the

tree, and more so near the root node to obtain a reasonable initialization of pseu-

docosts, and then keeps updating the scores along the tree using the node-solve

information.

3.2 Parallel NLP-BB with No Detrimental Anomalies 55

ancestRel Branching This branching uses pseudocosts from only the ancestors

of the node in consideration for calculating scores of different branching can-

didates. It is not difficult to comprehend that such a scheme would preserve

the unambiguity property, because the same child nodes would be generated by

branching at a node, irrespective of the number of processors used by the algo-

rithm. Also, this scheme uses a part of node solving information generated in

the tree, which might yield a better branching candidate compared to other sim-

ple unambiguous branching schemes like lexicographic branching. Figure 3.3

illustrates ancestRel branching scheme in a pictorial form. Detailed steps of the

ancestRel branching function are shown in Algorithm 3.5. Dmax represents a depth

level after which pseudocosts are used and strong branching is avoided. dmin is

the threshold (node) distance used to compare against the number of iterations

passed since last strong branching on a candidate. lstr
j denotes the latest itera-

tion number at which a variable x j was strong branched and N represents the

total number of nodes solved till the current iteration. nrel represents a reliabil-

ity threshold: if a variable is branched (up and down) more than nrel number of

times, it is considered a reliable candidate, that is, its pseudocosts are trusted in

lieu of strong branching on it.

A similar branching scheme, the privateRel brancher has been presented by

?, but it uses pseudocosts from all the nodes processed by a thread in the tree and

could result in different scores at a node when using different number of threads.

Hence, one can not claim that the same node is created when different number of

threads are used. On the other hand, the scores computed by ancestRel brancher

at a node remain unaffected by the number of threads used in the algorithm.

Proposition 3.2.2. The ancestRel branching variable selection strategy with the lexico-

graphic tie-breaking rule is unambiguous.

Proof. If a node does not get created when using a particular number of proces-

sors, then there is no branching required. Otherwise, since the pseudocosts from

only the ancestor nodes are used to calculate scores, the selected branching can-

didate at a node is independent of other nodes in the tree, and the number of

processors used to generate this tree. Also, the set of branching candidates, IC,

is unambiguous because the (NLP) subsolver used is deterministic, and a lexi-

cographic tie-breaking rule is sufficient to select a unique branching candidate

each time such a node is created and branched upon. Hence, the conditions of

Definition 3.2.1 are satisfied by this branching scheme.

56 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

Algorithm 3.5: Selecting a branching candidate at a node using the

ancestRel brancher
Input : A set of branching candidates IC ⊆ I, parameters

dmin,N, nrel, dmax, nstr, ws, wi.

1 for j ∈ IC do

2 if dmin > |N| − lstr
j OR nup

j >= nrel AND ndown
j >= nrel then

3 Add j to Irel
C (the set of reliable candidates in IC).

4 else

5 Set s j = nup
j + ndown

j − ws(ψ
up
j + ψdown

j) − wi max{∆up
j ,∆

down
j } Add j to

Iunrel
C (set of unreliable candidates in IC).

6 Find xrel = arg maxxr∈I
rel
C

sr, where

sr = αmin{ψup
r δ

up
r , ψ

down
r δdown

r } + (1 − α) max{ψup
r δ

up
r , ψ

down
r δdown

r }.

7 Find nunrel := nstr if Dnode ≤ Dmax, otherwise 0.

8 Pick a maximum of nunrel candidates from Iunrel
C in the order of

decreasing s j values and form the set Īunrel
C .

9 for u ∈ Īunrel
C do

10 Strong branch on xu, and update ψup
u = 1

nup
u +1 (ψup

u ∗ nup
u +

∆
up
u
δ

up
u

) and

ψdown
u = 1

ndown
u +1

(ψdown
u ∗ ndown

u +
∆down

u

δdown
u

).

11 Update lstr
u , n

up
u , ndown

u .

12 Find xunrel = arg maxxu∈I
unrel
C

su, and return xbest = arg maxxunrel,xrel

(
sxrel , sxunrel

)
.

From the implementation perspective, ancestRel branching incurs a small

storage and operations overhead because one needs to store the pseudocosts and

other related information at a node along with the description of that node in the

tree. The following two ways can be used to implement this scheme.

1. One can store branching candidates and the respective pseudocosts, times

branched and ‘last_strong_branched’ information along with each node.

Whenever branching is required at node, consolidate and pass all the in-

formation to the children and delete the same from this node. In this way,

all open nodes will have aggregated scores for a subset of integer variables

stored with them, but there would be additional delete operations after each

branching.

2. Instead of consolidating all the ancestral pseudocost information, store only

the local information at each node. While branching at a node, query all

ancestor nodes up to the root node and then compute the aggregated scores.

3.2 Parallel NLP-BB with No Detrimental Anomalies 57

In this implementation, all nodes will have local information stored with

them.

We have chosen the former option in our implementation. At present, we do

not delete any information from the parent nodes and have not encountered any

memory related issues in our computational experiments, but we plan to accom-

plish this feature, as well as the node local information based branching in future

releases of Minotaur.

0

10 20

30,1

5 60,1,3

7 80,1,3,6

4 100,2

11 120,2,10

13 140,2,10,12

9

Figure 3.3: Illustration of unambiguous reliability branching when using two threads.

The root node indexed 0 and then the gray-colored nodes are solved by thread0 and

the hatched nodes (except 0) are solved by thread1. Both the threads use pseudocosts

from their ancestor nodes: thread0 uses pseudocosts only from the gray-colored nodes

and thread1 from only the hatched nodes (indices are shown on the left of each node).

3.2.3 Unambiguous Node Selection

While searches like depth-first, width-first or best-first have been discussed

in the past (??), we show that a practically effective node selection strategy called

the best-then-dive strategy, coupled with a simple tie-breaking rule is unambigu-

ous and can avoid detrimental anomalies. The best-then-dive strategy first selects

a node with the best lower bound, and then keeps diving (processing one of the

two immediate child nodes) until a node is pruned. At this stage, it looks for a

node with the best known lower bound to be processed next. If there are mul-

tiple nodes with the same bound value, then a tie-breaking score can be used as

a secondary key for prioritizing the candidate nodes. Let Pi be a node that has

just been processed and branched, and has an optimal value ẑ. Assuming that

58 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

the diving preference is towards the left node, we define the primary heuristic

function value for the child nodes of Pi as follows.

h(P j) =

 −∞, if P j is the left child of Pi,

ẑ, otherwise.
(bTd)

In case a node gets pruned, an open node with the best lower bound value ẑ is

selected. Very often, multiple such nodes exist, for which an unambiguous tie-

breaking mechanism is required. Consider a node Pi with a score s and that two

child nodes have to be created using a branching variable disjunction. A score 2s

is assigned to the left child of Pi (generated using the ≤ disjunction) and 2s + 1 to

the right. We will refer to this scoring mechanism as the 2s_2s + 1 rule. The root

node is assigned a score 1.

Proposition 3.2.3. The best-then-dive node selection strategy with the 2s_2s + 1 tie-

breaking rule is unambiguous.

Proof. We require to show that both the conditions of Definition 3.0.2 are al-

ways satisfied by the mentioned scheme. At any iteration, if a processed node

is branched, the left child node clearly has the unique lowest primary func-

tion value, so does its child until a node is pruned which complies with Defi-

nition 3.0.2. Again, suppose that a node is pruned and another node has to be

selected. Either there exits a single node with a lowest lower bound value, or by

construction, the tie-breaking rule serves as the secondary key, which is distinct

for any two nodes in the tree. In both the cases, conditions of Definition 3.0.2 are

satisfied.

3.2.4 Nondetrimental NLP-BB

We denote by mcbnbDeter , the parallel extension of NLP-BB in Minotaur

that uses the following unambiguous components.

• best-then-dive node selection strategy with the 2s_2s + 1 tie-breaking rule

• ancestRel branching strategy with the lexicographic tie-breaking rule

• a deterministic NLP solver.

In addition, we require synchronization of threads at various points in the al-

gorithm, for example to pass (unambiguous) initial conditions to the subsolvers,

3.3 Parallel QG with No Detrimental Anomalies 59

as well as unambiguity on other algorithmic components. For example, the pre-

solving of nodes in Minotaur (by default) is done based on a user defined pre-

solve frequency, where the ‘id’ of a node is used to check if this particular node

must be presolved or not. But the id of a node in the tree might vary when num-

ber of processors deployed is varied. Hence, we adjusted it to be dependent on

the 2s_2s + 1 tie-breaking score of the nodes (which is a tree- invariant identifier

for a node). Additionally, we disabled features such as ’guided diving’, which

determines when to create branches based on the best solution so far and could

cause ambiguity when creating branches during an iteration.

Theorem 3.2.4. The algorithm mcbnbDeter satisfies T (k) ≤ T (1) for k > 1.

Proof. The result follows by extending Theorem 3.0.4 to include the unambiguity

of all the involved components: the node selection function (Proposition 3.2.3),

the branching function (Proposition 3.2.2) and the NLP solver (Assumption 3.3).

3.3 Parallel QG with No Detrimental Anomalies

In this section, we formally define the notion of unambiguity for an integral com-

ponent of branch-and-cut based algorithms, the cutting planes.

Definition 3.3.1. A vector valued cut generating function π(.) at a node Pi is referred to

as unambiguous if π is deterministic and depends only on the information obtained along

the path from Pi to the root node P0.

We consider the case when a cut generating function uses only a point x̂ ∈ Rn

obtained at an LP node, Pi, by solving a fixed NLP, as is done in QG. The point

x̂ is either an integer feasible solution to (P) or a point from a feasibility problem

that minimizes some measure of constraint violation at this node. We refer to the

strategy that uses this cut generating function as cutGenQG.

Proposition 3.3.2. The cut generation strategy cutGenQG is unambiguous.

Proof. Since cutGenQG uses only a point returned from a deterministic LP or an

NLP solver at a node, this information depends only on the node in consideration.

Hence, conditions of Definition 3.3.1 are satisfied by cutGenQG.

Next, we denote by mcqgDeter , the parallel extension of QG in Minotaur

that uses the following unambiguous components.

60 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

• best-then-dive node selection strategy with the 2s_2s + 1 tie-breaking rule

• ancestRel branching strategy with the lexicographic tie-breaking rule

• cutGenQG cutting plane strategy

• a deterministic NLP solver

• a deterministic LP solver

Theorem 3.3.3. The algorithm mcqgDeter satisfies T (k) ≤ T (1) for k > 1.

Proof. The result follows by extending Theorem 3.0.4 to include the unambigu-

ity of all the involved functions in algorithmic components: the node selection

function (Proposition 3.2.3), the branching function (Proposition 3.2.2), the cut

generating function (Proposition 3.3.2), and the LP and NLP solvers (Assump-

tion 3.3).

3.4 Reproducibility in Parallel NLP-BB and Parallel

QG

The use of unambiguous algorithmic components in parallel variants of NLP-BB

and QG automatically results in deterministic behaviour of these algorithms. Re-

producibility in parallel algorithms is a desired feature due to various reasons

including performance analysis, debugging during code development, etc. In

Minotaur, we implement a function that synchronizes the operations of various

classes used by the branch-and-bound algorithms, and uses appropriate solver

options that ensure unambiguity of all algorithmic components. It might be noted

that unambiguity is sufficient for ensuring repeatability of results but not neces-

sary.

3.5 Computational Results

We have used the same computational setup mentioned in Section 2.2 including

the hardware, software, compilers, etc. Since our experiments intend to highlight

the effect of parallelism on algorithms, hyperthreading is disabled. The code for

all our algorithms is available in the development version of Minotaur1. We have

used 374 instances from MINLPLib (?) that are known to be convex. A hard limit
1http://github.com/minotaur-solver/minotaur

http://github.com/minotaur-solver/minotaur

3.5 Computational Results 61

of one hour on the wall clock time has been used for all our experiments, and all

the solution times are reported in seconds.

First, we show the performance of the opportunistic parallel extension of

mcbnb compared to its single-threaded version in Table 3.2. Each row of the top

table in Table 3.2 corresponds to a different number of threads, T = 2, 4, 8, 16. The

column ‘# solved by’ lists the number of instances solved to optimality within

the time limit by the proposed method and by both the reference solver, single-

threaded mcbnb , (denoted mcbnb1) as well as the proposed method (under the

column ‘both’). The first column with the headings ‘time’ and ‘nodes’ shows the

shifted geometric mean (SGM) of these measures reported by the reference solver

for the number of instances shown in the column ‘both’. The second column

shows the relative SGM (denoted ‘rel.’) of the multithreaded variants. We have

used a shift of 10 for SGM of time and 100 for the number of nodes processed.

The table at the bottom shows the performance of algorithms over instances of

varying difficulty.

As indicated in Table 3.2, mcbnb16 could solve 29 additional instances com-

pared to mcbnb1 . Also, the time taken is reduced by more than 60%. This per-

formance is better compared to the opportunistic schemes reported earlier by ?.

Also, performance gets better when instances of higher difficulty level are con-

sidered.

Similarly, we show the scalability graphs (explained in Section 2.3.1) in Fig-

ure 3.4 that demonstrate the performance of mcbnb . The plot for mcbnb1 is a step

function for which the peak value (about 0.71 in this case) indicates the fraction of

instances that were solved using mcbnb1 . The ordinate corresponding to a value

at, say 2−1, indicates the fraction of instances that could be solved by a multi-

threaded variant by a factor of two or more as compared to mcbnb1 . For instance,

mcbnb16 solves 40% of the instances at least two times faster than mcbnb1 . Sim-

ilarly, mcbnb4 and Also, the rightmost values on the plots show the fraction of

instances that could be solved within the time limit.

For the instances shown in Table 3.3, at least one multithreaded variant takes

more time compared to mcbnb1 demonstrating a detrimental anomaly in terms

of wall clock time. However, the instances of the jbearing class require solving

only one node, hence the time taken by the multithreaded variants is mostly the

initial setup time. Table 3.3

For the deterministic mcbnb , the performance is shown in Table 3.4. These

results are obtained using the following options in Minotaur: –brancher ancestRel

62 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

Table 3.2: (Top) Comparison of opportunistic mcbnb1 with opportunistic mcbnb using

multiple threads. mcbnb1 could solve 268 instances. (Bottom) Break-up of performance

of mcbnb16 over instances of varying difficulty.

threads # solved by wall time nodes

(T) mcbnbT both mcbnb1 rel. mcbnb1 rel.

2 273 268 27.93 0.77 247.43 1.16

4 275 268 27.93 0.56 247.43 1.19

8 287 268 27.93 0.45 247.43 1.26

16 297 268 27.93 0.36 247.43 1.34

solved wall time nodes

time by both mcbnb1 rel. mcbnb1 rel.

> 0 268 27.93 0.36 247.43 1.34

> 10 131 117.71 0.23 883.07 1.46

> 100 66 397.13 0.17 2001.69 1.61

> 500 27 981.54 0.14 5160.02 1.83

Table 3.3: Instances for which the wall clock time taken by mcbnbOppor does not always

improve when using more processors.

name mcbnbOppor1 mcbnbOppor2 mcbnbOppor4 mcbnbOppor8 mcbnbOppor16

jbearing100 4.68 6.34 9.62 15.92 25.11

jbearing25 0.71 0.94 1.51 2.6 3.96

jbearing50 1.8 2.39 3.7 6.19 9.49

jbearing75 3.18 4.22 6.51 11.49 16.67

slay08m 16.12 47.35 36.89 22.7 18.62

slay09h 69.7 285.41 346.38 235.7 259.8

slay09m 29.37 109.38 111.55 48.64 54.11

slay10h 572.52 1817.39 2046.0 2008.42 557.54

slay10m 215.87 581.38 939.65 762.47 743.05

–tb_rule 2s_2s + 1 –mcbnb_deter_mode 1. ‘Guided diving’ was not disabled in these

runs. A couple of columns at the end in Table 3.4 under the title “iters" show the

number of iterations taken by each multithreaded variant. The scalability graphs

in terms of wall clock time are shown in Figure 3.5. As evident from Table 3.4 and

Figure 3.5, the performance of mcbnbOppor is better than mcbnbDeter in terms

of wall clock time because the former exploits parallelism in an opportunistic

way. However, multithreaded mcbnbDeter variants can provide a guaranteed to

not be worse than mcbnbDeter1 and also be reproducible.

3.5 Computational Results 63

Table 3.4: (Top) Comparison of deterministic mcbnb1 with deterministic mcbnb using

multiple threads. mcbnb1 could solve 245 instances. (Bottom) Break-up of performance

of mcbnb16 over instances of varying difficulty.

threads # solved by wall time nodes iters

(T) mcbnbT both mcbnb1 rel. mcbnb1 rel. mcbnb1 rel.

2 252 245 27.02 0.82 224.68 1.02 224.79 0.64

4 260 245 27.02 0.72 224.68 1.06 224.79 0.43

8 260 245 27.02 0.72 224.68 1.15 224.79 0.30

16 267 245 27.02 0.49 224.68 1.33 224.79 0.22

solved wall time nodes iters

time by both mcbnb1 rel. mcbnb1 rel. mcbnb1 rel.

> 0 245 27.02 0.49 224.68 1.33 224.79 0.64

> 10 117 120.17 0.33 791.42 1.33 791.55 0.15

> 100 55 544.35 0.22 2039.41 1.24 2039.56 0.12

> 500 30 1327.29 0.16 4194.64 1.17 4195.10 0.10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Sequential Algorithm

mcbnbOppor1
mcbnbOppor2
mcbnbOppor4
mcbnbOppor8

mcbnbOppor16

Figure 3.4: Scalability graphs of wall clock

times taken by opportunistic mcbnb using

different number of threads on 374 convex

MINLPLib instances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e
s

Ratio to Sequential Algorithm

mcbnbDeter1
mcbnbDeter2
mcbnbDeter4
mcbnbDeter8

mcbnbDeter16

Figure 3.5: Scalability graphs of wall clock

times taken by deterministic mcbnb (with

guided diving enabled) on 374 convex

MINLPLib instances.

We are able to completely eliminate detrimental anomalies in mcbnb using

the above mentioned options in Minotaur in terms of the number of iterations

taken by the algorithms, except the instances shown in Table 3.5. Disabling guid-

ing diving (using -guided_dive 0) in Minotaur eliminates detrimental anoma-

lies in the instances enpro48pb, ex4 and slay07m also. The remaining few in-

stances exhibit anomalies presumably due to various tolerances used in Minotaur

and the subsolvers.

64 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Sequential Algorithm

mcbnbDeter1
mcbnbDeter2
mcbnbDeter4
mcbnbDeter8

mcbnbDeter16

Figure 3.6: Scalability graphs of number of

iterations taken by deterministic mcbnb us-

ing different number of threads on 374 con-

vex MINLPLib instances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

F
ra

c
ti
o
n

 o
f

In
s
ta

n
c
e

s

Ratio to Sequential Algorithm

mcqgDeter1
mcqgDeter2
mcqgDeter4
mcqgDeter8

mcqgDeter16

Figure 3.7: Scalability graphs of number of

iterations taken by deterministic mcqg us-

ing different number of threads on 374 con-

vex MINLPLib instances.

Table 3.5: mcbnbDeter showing anomalous behaviour in terms of the number of itera-

tions when guided diving is not disabled.

name mcbnbDeter1 mcbnbDeter2 mcbnbDeter4 mcbnbDeter8 mcbnbDeter16

enpro48pb 261 292 113 71 49

ex4 43 62 39 26 22

portfol_roundlot 1093 154 2108 75 900

rsyn0805m04h 94 97 84 39 30

rsyn0840m02h 159 273 118 69 32

slay07m 210 136 100 219 141

syn40m 16606 71335 48749 20827 9477

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Sequential Algorithm

mcbnbDeter1
mcbnbDeter2
mcbnbDeter4
mcbnbDeter8

mcbnbDeter16

Figure 3.8: Scalability graphs of wall clock

times taken by deterministic mcbnb with

guided diving disabled on 374 convex

MINLPLib instances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e
s

Ratio to Sequential Algorithm

mcbnbDeter1
mcbnbDeter2
mcbnbDeter4
mcbnbDeter8

mcbnbDeter16

Figure 3.9: Scalability graphs of number

of iterations taken by deterministic mcbnb

with guided diving disabled on 374 convex

MINLPLib instances.

In terms of wall clock time taken, Table 3.8 lists the instances which do not

always benefit when the number of processors is increased.

3.5 Computational Results 65

Table 3.6: (Top) Comparison of deterministic mcbnb1 with deterministic mcbnb using

multiple threads when guided diving is disabled. mcbnb1 could solve 248 instances.

(Bottom) Break-up of performance of mcbnb16 over instances of varying difficulty.

threads # solved by wall time nodes iters

(T) mcbnbT both mcbnb1 rel. mcbnb1 rel. mcbnb1 rel.

2 253 248 25.32 0.86 221.56 1.02 221.56 0.65

4 256 248 25.32 0.87 221.56 1.12 221.56 0.45

8 261 248 25.32 0.76 221.56 1.19 221.56 0.31

16 264 248 25.32 0.88 221.56 1.34 221.56 0.22

solved wall time nodes iters

time by both mcbnb1 rel. mcbnb1 rel. mcbnb1 rel.

> 0 248 25.32 0.88 221.56 1.34 221.56 0.22

> 10 132 87.66 0.78 647.97 1.37 647.97 0.15

> 100 57 484.00 0.55 1751.29 1.29 1751.29 0.13

> 500 34 1042.37 0.51 3196.84 1.35 3196.84 0.12

Table 3.7: Instances for which mcbnbDeter shows anomalous behaviour in number of

iterations when guided diving is disabled.

name mcbnbDeter1 mcbnbDeter2 mcbnbDeter4 mcbnbDeter8 mcbnbDeter16

netmod_kar2 3159 310 6382 232 83

portfol_roundlot 1093 1541 296 100 68

rsyn0805m02h 220 370 167 39 32

rsyn0805m04h 66 109 63 32 35

rsyn0840m02h 131 239 87 57 31

slay07h 192 331 99 95 109

syn40m 17628 71505 49203 21155 9746

Now, we present the results for opportunistic and deterministic variants of

mcqg . Figure 3.10 shows the scalability graphs, which illustrate that mcqgOp-

por16 could solve about 40% of the instances in half the time compared to mcq-

gOppor1 . Table 3.9 shows the SGM of wall time taken and the number of nodes.

For the most difficult instances (time > 500), improvement up to 88% was ob-

tained, and overall, 16 additional instances could be solved. Again, these results

are better compared to the opportunistic version presented in ?.

Table 3.10 shows the instances where mcqgOppor exhibits anomalous be-

haviour in terms of wall clock time. We note that this list is longer compared to

that of mcbnb .

66 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Sequential Algorithm

mcqgOppor1
mcqgOppor2
mcqgOppor4
mcqgOppor8

mcqgOppor16

Figure 3.10: Scalability graphs of wall clock

times taken by opportunistic mcqg on 374

convex MINLPLib instances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
-3

2
-2

2
-1

2
0

2
1

2
2

F
ra

c
ti
o
n

 o
f

In
s
ta

n
c
e

s

Ratio to Sequential Algorithm

mcqgDeter1
mcqgDeter2
mcqgDeter4
mcqgDeter8

mcqgDeter16

Figure 3.11: Scalability graphs of wall clock

times taken by deterministic mcqg on 374

convex MINLPLib instances.

3.6 Conclusion and Future Research

It is important to study anomalies in parallel branch-and-bound algorithms to

design better strategies in practice that can enhance scalability of parallel algo-

rithms. We addressed detrimental anomalies in two convex MINLP algorithms,

NLP-BB and QG. We extended the notion of unambiguity to variable branch-

ing functions and cut generating functions. We also showed that these theoret-

ical ideas can be extended to practically effective algorithmic components like

hybrid node selection strategies like best-then-dive (instead of pure strategies

like depth-first, best-first, etc.), branchers like ancestRel (instead of lexicographic

brancher), etc. Our computational experiments show that detrimental anoma-

lies can be eliminated to a great extent in practical algorithms. Opportunistic

versions perform better in terms of wall clock times than the deterministic ver-

sions on average, because deterministic versions tend to synchronize more and

incur some extra intervals of time during the tree search. However, deterministic

versions can avoid detrimental anomalies with guarantees, and can also provide

reproducible results.

The analysis presented so far depends on the number of iterations. In terms

of wall clock times, the opportunistic algorithms seem to perform better, hence it

remains to be explored how unambiguity and speed can be achieved simultane-

ously. Also, unambiguity can be extended to MILP based algorithms like OA.

Another immediate extension of our work is based on Section IV-C in ?,

where coping with general parallel-to-parallel anomalies is addressed. The main

reason of occurrence of these anomalies is the existence of ‘imperfect’ iterations,

those iterations in which sufficient number of open nodes are not available for

3.6 Conclusion and Future Research 67

the processors. The sufficient conditions provided by ? depend on parameters of

the fully developed branch-and-bound tree (for example, tree-width, etc.) which

are not known in advance. We plan to devise a branching strategy that ensures

existence of sufficient number of nodes in every iteration, and is unambiguous,

hence, ensures that T (k2) ≤ T (k1), k2 > k1 > 1.

68 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

Table 3.8: Instances for which mcbnbDeter does not always improve when using more

processors in terms of wall clock times when guided diving is disabled.

name mcbnbDeter1 mcbnbDeter2 mcbnbDeter4 mcbnbDeter8 mcbnbDeter16

batch0812 10.82 18.79 20.56 15.79 21.54

clay0203h 252.85 303.92 298.48 136.21 170.09

clay0303h 213.87 221.37 241.81 190.84 177.63

clay0304h 1284.48 782.48 2474.29 2717.52 2085.73

cvxnonsep_normcon40 13.83 8.51 7.88 8.25 15.37

cvxnonsep_normcon40r 6.48 4.05 4.27 3.93 8.53

cvxnonsep_pcon40r 5.07 4.1 3.47 3.11 5.71

du-opt5 7.29 6.8 7.74 11.12 16.02

du-opt 7.64 7.1 10.25 14.72 29.69

enpro48pb 23.17 25.31 26.34 34.81 71.29

netmod_kar2 676.65 376.77 954.1 359.25 536.67

portfol_roundlot 66.09 115.87 28.77 15.29 21.54

ravempb 7.53 7.35 11.31 8.99 11.08

rsyn0805m02h 73.09 176.17 252.18 205.77 385.07

rsyn0805m03h 304.05 318.51 356.52 534.59 791.87

rsyn0805m04h 257.64 441.85 756.56 490.87 1196.29

rsyn0810h 6.1 6.47 11.46 15.13 30.21

rsyn0810m03h 1341.81 1730.02 1535.02 1429.5 1557.24

rsyn0810m04h 801.26 921.04 716.32 994.85 1518.04

rsyn0815h 9.13 9.71 16.28 20.86 40.46

rsyn0815m02h 231.65 316.94 423.33 290.99 470.15

rsyn0815m04h 1434.36 1144.03 1112.83 1414.65 1951.18

rsyn0820h 10.62 10.95 17.9 21.95 43.32

rsyn0830h 9.02 9.63 15.71 21.14 37.76

rsyn0830m02h 328.46 425.25 534.07 522.54 820.07

rsyn0830m03h 1536.98 1058.36 1172.37 1234.5 1654.07

rsyn0840h 5.54 8.56 16.49 23.76 44.2

rsyn0840m02h 182.32 640.07 462.22 468.44 698.54

rsyn0840m03h 1873.45 2172.79 1532.92 1330.83 1983.27

slay05h 9.83 11.83 19.63 23.44 38.73

slay06h 41.39 36.6 46.08 54.77 87.15

slay06m 12.18 13.13 23.39 24.45 44.74

slay07h 22.55 46.74 72.82 93.4 151.03

slay07m 9.49 15.18 33.68 40.74 74.73

smallinvDAXr1b020-022 7.9 6.08 5.07 5.67 10.35

smallinvDAXr2b020-022 7.89 5.88 4.75 5.19 9.9

smallinvDAXr3b020-022 7.9 5.95 5.32 5.43 10.47

smallinvDAXr4b020-022 7.88 5.9 5.44 5.65 10.47

smallinvDAXr5b020-022 8.04 5.85 5.18 5.77 10.3

squfl010-040 5.46 4.7 5.99 4.96 5.17

syn15m02m 24.66 22.19 22.85 23.22 37.56

syn20m04h 8.41 14.12 16.28 17.91 19.41

syn30m03h 10.39 13.55 19.22 20.94 22.59

syn30m04h 26.6 37.34 56.11 64.61 72.83

syn30m 15.79 10.07 10.52 9.55 24.77

syn40m03h 28.05 37.71 69.68 74.78 124.58

syn40m04h 131.84 109.87 134.37 159.15 237.74

syn40m 513.39 2279.12 2045.22 769.8 508.7

watercontamination0202 30.7 24.99 31.5 24.38 25.87

3.6 Conclusion and Future Research 69

Table 3.9: (Top) Comparison of opportunistic mcqg1 with opportunistic mcqg using

multiple threads. mcqg1 could solve 320 instances. (Bottom) Break-up of performance of

mcqg16 over instances of varying difficulty.

threads # solved by wall time nodes

(T) mcqgT both mcqg1 rel. mcqg1 rel.

2 320 317 16.94 0.84 1556.07 1.16

4 331 319 17.75 0.58 1632.70 1.13

8 333 319 17.75 0.42 1632.70 1.18

16 336 317 17.35 0.35 1584.00 1.32

solved wall time nodes

time by both mcqg1 rel. mcqg1 rel.

> 0 317 17.35 0.35 1584.00 1.32

> 10 122 100.09 0.21 29631.78 1.37

> 100 49 430.60 0.15 108404.43 1.19

> 500 21 1342.86 0.12 197118.48 1.33

70 Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP

Table 3.10: Instances for which the wall clock time taken by mcqgOppor does not always

improve when more processors are used.

name mcqgOppor1 mcqgOppor2 mcqgOppor4 mcqgOppor8 mcqgOppor16

ball_mk4_05 5.69 9.65 43.47 24.73 409.35

ball_mk4_10 18.12 3600 3600 7200 7200

ball_mk4_15 3600 3600 696.64 15.74 7200

clay0203h 41.61 26.91 67.49 74.6 53.87

clay0205h 19.07 20.14 38.77 4.56 4.4

clay0304h 194.18 238.08 127.37 43.39 86.9

clay0305h 118.21 101.05 124.2 47.96 45.84

color_lab6b_4x20 641.89 625.97 777.15 749.55 833.04

cvxnonsep_pcon40 66.09 37.46 22.07 14.43 7200

cvxnonsep_psig20r 0.85 0.79 1.52 12.26 4.36

cvxnonsep_psig40r 1.93 1.47 0.98 0.8 12.42

fo7_ar2_1 76.75 84.91 32.81 21.78 15.42

fo7_ar4_1 60.51 86.87 33.77 14.33 8.91

fo8_ar3_1 110.22 230.94 68.32 17.43 9.51

fo8_ar4_1 127.54 208.77 40.95 37.82 27.21

fo8 2871.04 3600 521.47 355.3 215.84

fo9_ar3_1 435.79 883.13 80.68 64.77 69.9

fo9_ar4_1 609 1513.52 254.66 99.67 173.5

fo9_ar5_1 3118.45 3600 422.37 241.14 133.74

jbearing100 8.92 9.42 11.12 14.03 16.85

jbearing50 3.25 3.34 4.22 5.41 6.92

jbearing75 5.84 6.15 7.29 9.04 11.51

m7_ar5_1 14.31 26.08 8.79 3.21 4.94

netmod_dol2 1321.21 3435.2 359.61 392.7 111.03

netmod_kar1 24.61 144.48 13.34 4.97 5.4

netmod_kar2 24.72 123.96 12.94 6.01 3.73

o7_ar3_1 3091.33 3140.58 1250.44 532.52 280.45

rsyn0810m02m 18.99 19.68 7.71 4.56 4.52

rsyn0810m04h 6.37 6.5 5.36 5.26 5.9

rsyn0815m04m 587.61 306.54 1033.32 182.84 87.95

rsyn0820m04m 456.17 1241.64 414.35 210.35 152.04

rsyn0830m02m 20.53 126.52 10.8 10.32 6.84

rsyn0840m02m 70.62 430.8 59.64 10.15 7.67

rsyn0840m04h 24.26 27.73 10.72 9.52 9.01

slay08m 67 16.03 8.93 3.6 3.11

slay09h 258.65 306.46 218.16 77.39 79.93

slay09m 23.69 67.68 24.72 20.99 11.66

squfl020-050 3600 3600 3600 7200 3600

sssd15-06 512.44 619.87 230.69 125.75 72.3

sssd16-07 922.6 442.28 263.17 357.15 7200

watercontamination0202 22.1 20.14 23.01 17.98 14.57

3.6 Conclusion and Future Research 71

Table 3.11: (Top) Comparison of deterministic mcqg1 with deterministic mcqg using

multiple threads. mcqg1 could solve 221 instances. (Bottom) Break-up of performance of

mcqg16 over instances of varying difficulty.

threads # solved by wall time nodes iters

(T) mcqgT both mcqg1 rel. mcqg1 rel.

2 226 221 24.47 0.85 854.01 1.03 854.01 0.70

4 228 220 24.32 0.75 829.97 1.04 829.97 0.49

8 231 220 24.32 0.70 829.97 1.07 829.97 0.36

16 238 221 24.47 0.57 854.01 1.11 854.01 0.26

solved wall time nodes iters

time by both mcqg1 rel. mcqg1 rel. mcqg1 rel.

> 0 221 24.47 0.57 854.01 1.11 854.01 0.26

> 10 91 169.92 0.39 12194.71 1.17 12194.71 0.11

> 100 47 682.65 0.32 54414.81 1.22 54414.81 0.09

> 500 27 1503.56 0.36 125115.19 1.32 125115.19 0.10

Table 3.12: Instances for which mcqgDeter shows anomalous behaviour in number of

iterations.

name mcqgDeter1 mcqgDeter2 mcqgDeter4 mcqgDeter8 mcqgDeter16

color_lab2_4x0 97 162 80 84 80

rsyn0815m02h 1816 2116 1083 548 290

rsyn0820m04h 3808 17032 1151 642 369

rsyn0830m03h 1107 1346 684 355 187

rsyn0830m04h 3142 4552 1644 600 481

Chapter 4

A Parallel Branch-and-Estimate

Heuristic for Nonconvex MINLP

Most deterministic methods to solve nonconvex MINLPs are also based on

branch-and-bound framework. A good survey of algorithms for nonconvex

MINLP is given by ? and ?.

If (P) is a convex MINLP, we can obtain a tractable relaxation by merely ig-

noring the integrality constraints. The nonlinear programming (NLP) relaxation

obtained in this way can be solved using techniques of nonlinear optimization

(see, for instance, ???).

When (P) is not a convex MINLP, the above-mentioned NLP techniques do

not provide an optimal solution to the nonconvex NLP relaxation. Instead, they

converge to a Karush-Kuhn-Tucker (KKT) point which may or may not be an op-

timal solution to the relaxation. Furthermore, the KKT point to which a method

converges may depend on initial point from where the method commenced, and

on other steps of the method. Therefore, a different relaxation must be consid-

ered for nonconvex MINLPs. When the problem (P) is factorable, we can create

its linear relaxation (e.g. ???) by first adding auxiliary variables, rewriting the

constraints as a set of many more constraints each having elementary nonlinear

functions, and then creating their linear under and over estimators. We can also

create quadratic relaxations (?) and, sometimes, semidefinite relaxations (?) of

such a problem (P). However, a relaxation constructed using these ways is usu-

ally quite weak in the sense that its optimal solution value may be much lower

than that of (P), and one may have to explore many subproblems in a branch-

and-bound tree to find an optimal solution.

73

74 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP

Given a nonconvex problem (P), we propose a multi-start method to obtain

good bounds on its nonlinear continuous relaxation by repeatedly solving the re-

laxation using different initial points. In order to speed up the solving process, we

create several copies of the relaxation. These copies of the relaxation are solved

in parallel, each starting from a different starting point. The best solution from

these runs is chosen as an estimate for the optimal solution. Since it is difficult to

ascertain whether a KKT point is the global optimal solution of a relaxation, our

method is not guaranteed to reach the optimal solution. Its accuracy depends

on the choice of the initial points and the number of times a relaxation is solved.

We present five different schemes of selecting the initial point in Section 4.2. Our

computational experiments show that the method is much faster than the exact

methods and yields near-optimal solutions for most of the instances. Moreover,

the method can be used for MINLPs that are not factorable but have twice con-

tinuously differentiable functions.

While multi-start heuristics like ours have been proposed earlier for solv-

ing continuous NLPs (????), to the best of our knowledge, ours is the first that

exploits parallelism in a branch-and-bound framework while employing multi-

start heuristics for solving MINLPs. We present the results of our computational

experiments with benchmark problem instances in Section 4.3 and present our

conclusions in Section 4.4.

4.1 The Branch-and-Estimate Heuristic

The main motivation for our method, termed as the Branch-and-Estimate Heuris-

tic, comes from the NLP based branch-and-bound (NLP-BB) method for solving

MINLPs. The natural branching scheme in this algorithm is to branch on integer-

constrained variables, and we use the same branching scheme in our method. We

say that a variable xk is a branching candidate if k ∈ I, and x̂k < Z, where x̂ is the

optimal solution of the relaxation. For a given branching candidate xk for some

k ∈ I, we can create two subproblems based on the disjunction xk ≥ dx̂ke∨ xk ≤ bx̂kc.

Thus, a subproblem in the NLP-BB technique differs from the original problem

only in the bounds of its variables. A subproblem can be represented by NLP(l, u)

where l, u ∈ Rn denote the lower and upper bounds respectively on the variables

of a subproblem.

Our heuristic starts by presolving the given MINLP and then obtaining a re-

laxation of the presolved problem by removing the integer constraints on integer

4.1 The Branch-and-Estimate Heuristic 75

constrained variables xk,∀k ∈ I. Since the resulting relaxation is not convex in

general, an NLP solver may end up at a KKT point which may not be an optimal

solution to the relaxation. In an attempt to find an optimal solution, we gener-

ate multiple initial points and restart the NLP solver from each of these points.

This process can be readily performed in parallel since each solution process is

independent of the others. We invoke one NLP solver routine at each available

computational core or thread simultaneously, each solving the same NLP from

a different initial point. We try to pick initial points in disjoint regions within

the variables’ bounds and pass it to each thread so that the NLP solver may con-

verge to as many different KKT points as possible. Additionally, for each thread,

we restart the NLP solver a fixed number of times by updating the initial point

every time but within the same region allocated to that thread. From a thread,

we finally obtain a ‘thread-best’ solution if at least one of the calls to solve the

NLP returns a solution. We then take the best solution among those obtained

from all the threads and regard it as the global solution of the continuous non-

convex NLP (although there is no guarantee that this point would be the global

solution). Then, as in branch-and-bound method, this subproblem is pruned if no

thread finds a solution or if the best solution has a value greater than the available

upper bound. If the best solution satisfies integer constraints, the upper bound is

updated and the subproblem is discarded. Otherwise, we branch on an integer

variable and get two more subproblems. The algorithm continues until all the

subproblems are either pruned or solved.

A pseudocode of this method is provided in Algorithm 4.1. T denotes the

number of threads and M is the number of starts per thread. These parameters

are fixed according to the problem or user preferences. x̂(l,u)
t denotes the best solu-

tion obtained by thread t, t = 1, . . . ,T among those obtained from all M calls to the

NLP solver that it makes for a subproblem, and T BestValt is the corresponding

objective function value. x̂(l,u) denotes the overall best solution among those ob-

tained from all the threads, and BestVal, its objective function value. Lines 7 − 18

in the pseudocode are run in parallel on T different threads, while the remaining

lines are run on a single master thread. The initial point in Line 9 is obtained

using one of the schemes explained in Section 4.2.

76 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP

Algorithm 4.1: A Branch-and-Estimate heuristic for nonconvex

MINLP

1 Set U = ∞ and initialize the list of open problemsH = ∅.

2 Add NLP(−∞,∞) to the list: H ∪ NLP(−∞,∞).

3 while H , ∅ do

4 Remove a problem NLP(l, u) from the listH .

5 Initialize BestVal = ∞.

6 Initialize T BestValt = ∞, t = 1, . . . ,T .

7 for t from 1 to T do

8 for j from 1 to M do

9 Pick an initial point x(l,u)
t j .

10 Solve NLP(l, u) starting from x(l,u)
t j .

11 if solver returns a feasible x̄(l,u)
t j then

12 if f (x̄(l,u)
t j) < T BestValt then

13 T BestValt = f (x̄(l,u)
t j).

14 Set x̂(l,u)
t = x̄(l,u)

t j .

15 BestVal = mint{T BestValt, t = 1, . . . ,T }.

16 x̂(l,u) = argmint{ f (x̂(l,u)
t) | T BestValt < ∞}.

17 if BestVal = ∞ then

18 NLP(l, u) is assumed infeasible and pruned.

19 else if f (x̂(l,u)) > U then

20 NLP(l, u) can be pruned on the basis of bound.

21 else if x̂(l,u)
i ∈ Z, ∀ i ∈ I then

22 Update the incumbent solution:

23 U = f (x̂(l,u)), x∗ = x̂(l,u).

24 else

25 Use an appropriate branching rule to generate NLP(l−, u−) and

NLP(l+, u+).

26 Update the list: H = H ∪ {NLP(l−, u−),NLP(l+, u+)}.

4.2 Initial Point Generation Schemes

Selecting an initial point closer to a global optimal solution of a nonconvex non-

linear program may make the NLP solver converge to the global solution, as most

4.2 Initial Point Generation Schemes 77

of the NLP algorithms iteratively make use of information available about the lo-

cal neighborhood of an iterate. This property motivated the constraint consensus

(CC) method (???) which tries to obtain a near-feasible solution of a nonconvex

NLP.

The goal of our method is to solve the global optimization problem, hence,

we want to search the feasible space efficiently. By starting from different initial

points that are generated in disjoint regions of the variable space, we hope to

converge to distinct KKT points, some of which might be globally optimal or near

optimal. For generating potentially good initial points, we propose five different

‘randomized’ schemes. We call the schemes randomized because we use random

number generators within the schemes. Some of these schemes dynamically use

the information generated after an NLP solver runs, e.g. the previous optimal

point, the previous convergence direction, the distance of the optimal from the

initial point, etc., while others are more randomized so as to encourage diversity

of the KKT points found.

Before discussing the schemes, we introduce some common notation used

for all the schemes to make our presentation clearer. V is used to denote the set

of all variables of the problem, and ubi and lbi denote the upper and lower bound

on variable i, respectively. T denotes the number of parallel threads spawned on

the computing machine, and M the number of different starts per thread. The

number of restarts will therefore be M − 1. A subproblem (node) is solved from

different initial points T×M number of times, on T processors running in parallel.

We denote the ith coordinate of the initial point vector generated in the jth start

at thread t by x(l,u)
t ji and the most recent finite optimal objective function value

obtained by solving NLP(l, u), starting from some x(l,u)
t j , as z(l,u)

t where i ∈ V , j ∈

{1, . . . ,M} and t ∈ {1, . . . ,T }. We represent by B, the set of all indices i ∈ {1, . . . , n},

such that both lbi and ubi are finite.

Our schemes generate points randomly using a function denote by

RAND(a, b) to generate a uniformly distributed random variable in [a, b]. Fur-

ther, if a is −∞, the function generates a random number in the interval [b − K, b],

where the parameter K is a fixed large integer value. Similarly, if b is ∞, the

function generates a random number in the interval [a, a + K]. If a variable is

not bounded on either sides, it generates a random number in the interval [0,K].

The function RAND({a, b}) denotes a function to randomly pick either a or b with

equal probability.

78 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP

4.2.1 Scheme-1

In this simple scheme, an initial point is randomly generated such that each

of its coordinates lies within the the bounds of the corresponding variable. Algo-

rithm 4.2 presents a pseudocode for this scheme.

Algorithm 4.2: Scheme-1 for initial point generation for a given t ∈

{1, . . . ,T }.

1 for j from 1 to M do

2 Set x(l,u)
t ji = RAND(lbi, ubi).

4.2.2 Scheme-2

In this scheme, we first find a bounded variable xk, k ∈ {1, 2, . . . , n} whose

upper and lower bounds are the farthest apart but finite. Then we create T equal

partitions of the interval [lbk, ubk] and randomly generate the kth component of

the initial point vector in these partitions respectively for each thread. Rest of the

components are generated randomly as in Scheme-1. This logic gives us the first

initial point for each thread for each subproblem, as shown in Algorithm 4.4.

We generate the starting point for the subsequent NLP calls by taking a ran-

dom unit direction and finding a point outside a region of a fixed radius r, cen-

tered around the previous starting point. If consecutive starting points result in

the same objective function value, we scale the radius r with a parameter, s, for

generating the next starting point. Otherwise, the same radius is used in the next

round as well. A pseudocode for this scheme is shown in Algorithm 4.3.

Algorithm 4.3: Scheme-2 for initial point generation for a given t ∈

{1, . . . ,T } and j ∈ {2, . . . ,M}.

1 Generate a random unit vector at j of dimension n.

2 x(l,u)
t ji = max(min(x(l,u)

t(j−1)i + r · at ji, ubi), lbi),∀i ∈ V .

3 if NLP(l, u) returns the same value as in previous trial then

4 r = r · s.

4.2.3 Scheme-3

This scheme differs from Scheme-2 in the following two ways. First, instead

of using a fixed value of r, we change it on the basis of the distance between

4.2 Initial Point Generation Schemes 79

Algorithm 4.4: Initial point generation for j = 1 for a given t ∈ {1, . . . ,T }

in Scheme-2.

1 x(l,u)
t ji = RAND(lbi, ubi), ∀i ∈ V .

2 if B , ∅ then

3 Find a k ∈ B : ubk − lbk ≥ ubi − lbi,∀i ∈ B.

4 Set q = ubk − lbk.

5 x(l,u)
t jk = lbk + RAND((t − 1) q

T , t
q
T).

the previous starting point and the corresponding previous optimal solution ob-

tained. Second, instead of the previous starting point, we take the previous opti-

mal solution as the center. The scaling parameter, s, is used as in Scheme-2.

4.2.4 Scheme-4

This scheme is similar to Scheme-3 except that when we randomly generate

a unit vector for selecting the next starting point, we accept it only if it lies out-

side a cone of ‘unfavourable’ directions. We consider this cone as the set of all

directions which make a small angle with the line joining the previous starting

point and the previous optimal solution. A parameter for the threshold angle, θ,

is used. We keep generating random directions until we obtain one that points

outside this cone. We choose the radius in this scheme similar to Scheme-3, as a

scaled distance between the previous starting point and the corresponding pre-

vious optimal solution.

4.2.5 Scheme-5

Here, the first initial point for each thread is generated randomly within the

bounds of the variables in a separate thread-specific region in a different way

than the other schemes. If both bounds of a variable are available, then either the

upper bound or the lower bound is chosen randomly as the initial value for that

variable. Otherwise, a random value is generated within the available bounds.

We refer to such a point as a ‘box corner’. In the next iteration, we use the pre-

vious optimal solution and locate a box corner which is farthest from this point.

Then, along the direction of this farthest box corner starting from the previous

optimal solution, we take a radius as in Scheme-3 and locate a temporary point.

Finally, we take a random convex combination of this temporary point and the

80 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP

farthest box corner as the next initial point. A pseudocode for this scheme is

shown in Algorithm 4.5.

Algorithm 4.5: Scheme-5 for initial point generation for a given t ∈

{1, . . . ,T } and a j ∈ {1, . . . ,M}.

1 if no solution has been found yet in thread t then

2 Find a random box corner x(l,u)
t j as per Algorithm 4.6.

3 else

4 Find the farthest box corner w(l,u)
t j as per Algorithm 4.7.

5 Find a temporary point outside a radius r: let dt j be the unit vector

parallel to w(l,u)
t j − x̄(l,u)

t(j−1).

6 Set r = ||x̄(l,u)
t(j−1) − x(l,u)

t(j−1)||.

7 Set v(l,u)
t j = x̄(l,u)

t(j−1) + r · dt j.

8 Take a random convex combination of vt j and w(l,u)
t ji as the new initial

point.

Algorithm 4.6: Generating a random box corner for a given j ∈

{1, . . . ,M} and a t ∈ {1, . . . ,T } for Scheme-5.

1 if B , ∅ then

2 Find a k ∈ B : ubk − lbk ≥ ubi − lbi,∀i ∈ B Set q = ubk − lbk x(l,u)
t jk = lbk+

RAND({(t − 1) q
T , t

q
T }) x(l,u)

t ji = RAND({lbi, ubi}), ∀i ∈ B, i , k

x(l,u)
t ji = RAND(lbi, ubi), ∀i ∈ V, i < B

3 else

4 x(l,u)
t ji = RAND(lbi, ubi), ∀i ∈ V

4.3 Computational Results

We compare the results obtained from our multi-start heuristic using the above

schemes with the NLP-BB algorithm without restarts (which is also a heuristic

for nonconvex MINLP) and two global solvers SCIP (?) and Couenne (?). Both

these global solvers use linear underestimators and overestimators for obtaining

the convex relaxations.

4.3 Computational Results 81

Algorithm 4.7: Generating the farthest box corner from a given point

x̄(l,u)
t j , j ∈ {1, . . . ,M} and a t ∈ {1, . . . ,T } for Scheme-5.

1 if B , ∅ then

2 Find a k ∈ B : ubk − lbk ≥ ubi − lbi,∀i ∈ B.

3 Define q = ubk − lbk.

4 if (x̄(l,u)
t ji ≥ 0.5(lbi + ubi)) then

5 x(l,u)
t jk = lbk + (t − 1) q

T .

6 x(l,u)
t ji = lbi, ∀i ∈ B, i , k.

7 else

8 x(l,u)
t jk = lbk + t q

T .

9 x(l,u)
t ji = ubi, ∀i ∈ B, i , k.

10 x(l,u)
t ji = RAND(lbi, ubi), ∀i ∈ V , i < B.

11 else

12 x(l,u)
t ji = RAND(lbi, ubi), ∀i ∈ V .

4.3.1 Experimental Setup

We selected nonconvex problems from the benchmark set MINLPLib (?). We

ran all our tests on a system described in Section 2.2. The NLP-BB method (with-

out restarts), the multi-start heuristic and all the initial point generation schemes

were implemented within Minotaur (?). All codes were compiled with GCC4.7.2

and OpenMP3.1. IPOPT-3.11.9, with MA27 linear-systems solver was used as the

NLP solver. We set ‘presolve=true’ for all the test problems and used the ‘Max-

imum violation’ brancher in Minotaur. IPOPT was used as the sole NLP solver.

For the multi-start heuristic, we used 10 threads with 4 starts each. All other

algorithms were run on a single thread. The wall clock time limit for all the algo-

rithms was set to 1800 seconds. For Scheme-2, r was set to 0.8. Parameter s was

set to 1.5 in schemes 2, 3 and 4. For Scheme-4, we set the threshold angle, θ, to 30

degrees. K was set to 999 in all schemes.

4.3.2 Inferences

We denote the NLP-BB algorithm by bnb , our multi-start heuristic by ms-

bnb , SCIP by scip and Couenne by couenne in forthcoming text and tables. To

refer to different initial point generation schemes, an S followed by its identifier

number (1 − 5), is appended to msbnb . For comparing the performance of all

82 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP

schemes with bnb and the global solvers, we ran our heuristic on 101 problems.

Table 4.1 and Table 4.2 provide detailed results of our runs. The instance names

along with best known values of primal and dual bounds are shown. Except the

last 3 problems in Table 4.3, all others are of minimization type. The results for

bnb , scip and couenne are also shown. z∗ denotes the best objective function

value reached by an algorithm, and the column time gives the ‘wall clock time’ in

seconds. A ‘–’ or ‘inf’ indicates that a feasible solution could not be obtained, or

the solver stopped because of some error.

We observe that msbnb with any scheme for generating initial points gives

better solutions in most of the instances than bnb . In particular, msbnbS1 reports

a better solution for more than 85 instances as compared to bnb . There does

not seem to be much overall difference in the performance of different msbnb

schemes, but they tend to have significant differences on some instances. For

example, msbnbS5 and msbnbS4 both give same solutions for 45 problems, the

former performs better in 24 instances and the latter in 24 cases. Overall, the

average percentage gap between the best known primal bound and z∗ taken over

all the instances, for all msbnb schemes is less than 5%, with a maximum gap of

200%. It shows that on the whole, the msbnb is working reasonably well, even

though there are quite a few instances where the solution obtained is far from the

optimal.

We have used performance profiles (?) for benchmarking msbnb schemes

with bnb . The performance profiles in Figure 4.1 show that all the msbnb heuris-

tics solve about 50% of the instances within a gap of 0.05% of the best known

primal bound, while bnb solves just one (shiporig), showing that it can not be

the choice when reasonable solutions are desired. Figure 4.2 shows a similar plot

for 1% optimality gap, demonstrating that except about 20% of the instances, all

msbnb schemes could reach within a good proximity of the best known optimal

solution. In Figure 4.3, we show the performance profiles when 10% optimality

gap is acceptable. Here, bnb and msbnb schemes gave acceptable solutions for

about 50% and 80% of the instances respectively. In Figure 4.4, we omit the re-

striction on the quality of the solution reached by the algorithms and observe that

bnb is the fastest, which is not surprising because it solves the NLP relaxation at

each node just once, while all the msbnb heuristics solve them T × M number of

times. Figure 4.5 shows the performance profiles based on the number of nodes

created in the branch-and-bound tree. The number of nodes is roughly the same

for all msbnb variants and bnb for about 80% of the instances.

4.4 Conclusions and Future Research 83

As compared to scip , msbnbS5 heuristic gives better solutions in 57 cases

while they are at par for 30 cases. For most of the problems where msbnbS5

performed better, scip consumed its full quota of execution time (1800 seconds)

while the former always took less than half of this time. The corresponding num-

bers for couenne are 39 and 46. For the odd instance autocorr_bern50-13, the

heuristics msbnbS1 and msbnbS2 have hit a better solution than the best known

primal bound within 16 seconds, while scip and couenne reach the time limit and

report a solution with an inferior objective function value.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

bnb
msbnbS1
msbnbS2
mcbnbS3
msbnbS4
msbnbS5

Best possible

Figure 4.1: Performance profiles based on

wall clock time for 101 nonconvex instances

from MINLPLib (optimality gap 0.05%).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Ratio to Fastest

bnb
msbnbS1
msbnbS2
mcbnbS3
msbnbS4
msbnbS5

Best possible

Figure 4.2: Performance profiles based on

wall clock time for 101 nonconvex instances

from MINLPLib (optimality gap 1%).

4.4 Conclusions and Future Research

We have implemented and evaluated a heuristic for solving nonconvex MINLPs

in a branch-and-bound framework. We have also presented a few schemes that

explore disjoint regions in the variable space and provide a variety of starting

points to NLP solvers. Since solving relaxations is the most time taking step while

solving a MINLP, we use available multiple cores in parallel to obtain several

KKT points, and then select the best one among them.

Our computational experiments show that the proposed multi-start heuris-

tic gives better quality solutions compared to the NLP-BB algorithm (without

any restarts), which is fast but not accurate. Our heuristic has terminated before

reaching the time limit for almost all the instances. Thus, if we solve a nonconvex

problem using NLP restarts, much better solutions can be obtained.

84 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

2
4

F
ra

c
ti
o
n

 o
f

In
s
ta

n
c
e

s

Ratio to Fastest

bnb
msbnbS1
msbnbS2
msbnbS3
msbnbS4
msbnbS5

Figure 4.3: Performance profiles based on wall clock time for 101 nonconvex instances

from MINLPLib (optimality gap 10%).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

F
ra

c
ti
o
n
 o

f
In

s
ta

n
c
e
s

Ratio to Fastest

bnb
msbnbS1
msbnbS2
mcbnbS3
msbnbS4
msbnbS5

Best possible

Figure 4.4: Performance profiles based on

wall clock time for 101 nonconvex instances

(without checking solution quality).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

2
4

2
5

F
ra

c
ti
o

n
 o

f
In

s
ta

n
c
e

s

Ratio to Fastest

bnb
msbnbS1
msbnbS2
mcbnbS3
msbnbS4
msbnbS5

Best possible

Figure 4.5: Performance profiles based on

number of nodes created for 101 nonconvex

instances.

More sophisticated initial point generation schemes for exploiting problem

specific information of MINLPs can be developed for obtaining even better solu-

tions in lesser time. To speed up the heuristic, one can exploit more parallelism

and share more information among different threads and subproblems. It would

be interesting to study how other MINLP heuristics (????) compare with ours and

how one can incorporate their strengths into ours.

4.4 Conclusions and Future Research 85

Table 4.1: Performance of schemes and solvers on MINLPLib instances (I)
N

am
e

D
ua

lB
d

Pr
im

al
B

d
bn

b
m

sb
nb

S1
m

sb
nb

S2
m

sb
nb

S3
m

sb
nb

S4
m

sb
nb

S5
sc

ip
co

ue
nn

e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

ar
ki

00
04

-3
10

9.
97

32
3.

47
32

7.
73

3.
56

32
3.

47
36

.7
4

32
3.

47
94

.3
7

32
3.

47
84

.0
6

32
3.

47
36

.7
1

32
7.

73
39

1.
23

–
18

00
32

7.
73

18
00

au
to

co
rr

_b
er

n2
0-

05
-4

16
.0

0
-4

16
.0

0
-4

08
.0

0
0.

08
-4

12
.0

0
0.

89
-4

12
.0

0
1.

82
-4

16
.0

0
0.

44
-4

12
.0

0
2.

22
-4

12
.0

0
0.

75
-4

16
.0

0
18

00
-4

16
.0

0
87

.6
2

au
to

co
rr

_b
er

n2
0-

10
-2

93
6.

00
-2

93
6.

00
-2

91
2.

00
1.

2
-2

92
0.

00
2.

17
-2

92
0.

00
1.

57
-2

92
0.

00
1.

96
-2

92
0.

00
3.

44
-2

91
2.

00
1.

71
-2

90
4.

00
18

00
-2

93
6.

00
25

0.
62

au
to

co
rr

_b
er

n2
0-

15
-5

96
0.

00
-5

96
0.

00
-5

82
0.

00
1.

01
-5

94
4.

00
2.

09
-5

92
4.

00
2.

23
-5

91
6.

00
2.

28
-5

91
2.

00
2.

40
-5

94
4.

00
1.

8
-5

96
0.

00
18

00
-5

96
0.

00
75

5.
36

au
to

co
rr

_b
er

n2
5-

06
-9

60
.0

0
-9

60
.0

0
-9

28
.0

0
0.

78
-9

60
.0

0
0.

82
-9

60
.0

0
2.

00
-9

60
.0

0
4.

76
-9

60
.0

0
2.

55
-9

60
.0

0
3.

61
-9

44
.0

0
18

00
-9

60
.0

0
18

00

au
to

co
rr

_b
er

n2
5-

13
-8

88
8.

00
-8

14
8.

00
-7

91
2.

00
1.

34
-8

10
8.

00
12

.1
6

-8
06

0.
00

3.
93

-8
13

2.
00

4.
18

-8
13

6.
00

3.
85

-8
14

4.
00

8.
27

-8
04

0.
00

18
00

-8
14

8.
00

18
00

au
to

co
rr

_b
er

n2
5-

19
-2

55
02

.5
8

-1
46

44
.0

0
-1

44
12

.0
0

4.
4

-1
45

44
.0

0
4.

84
-1

45
96

.0
0

5.
87

-1
46

04
.0

0
5

-1
46

44
.0

0
5.

90
-1

46
04

.0
0

8.
86

-1
46

00
.0

0
18

00
-1

45
88

.0
0

18
00

au
to

co
rr

_b
er

n2
5-

25
-2

41
57

.4
8

-1
06

64
.0

0
-1

03
60

.0
0

6.
4

-1
06

44
.0

0
7.

14
-1

06
52

.0
0

6.
09

-1
06

44
.0

0
7.

44
-1

06
40

.0
0

6.
34

-1
06

24
.0

0
6.

73
-1

05
28

.0
0

18
00

-1
06

20
.0

0
18

00

au
to

co
rr

_b
er

n3
0-

08
-4

51
9.

33
-2

95
2.

00
-2

90
4.

00
1.

34
-2

94
8.

00
2.

08
-2

95
2.

00
2.

24
-2

95
2.

00
2.

65
-2

95
2.

00
1.

80
-2

95
2.

00
1.

86
-2

87
2.

00
18

00
-2

95
2.

00
18

00

au
to

co
rr

_b
er

n3
0-

15
-3

57
94

.6
5

-1
57

44
.0

0
-1

54
64

.0
0

3.
08

-1
55

96
.0

0
8.

57
-1

55
68

.0
0

9.
43

-1
56

52
.0

0
9.

82
-1

57
20

.0
0

7.
12

-1
56

52
.0

0
5.

81
-1

54
84

.0
0

18
00

-1
56

60
.0

0
18

00

au
to

co
rr

_b
er

n3
0-

23
-1

18
15

9.
66

-3
04

20
.0

0
-3

02
36

.0
0

14
.1

2
-3

03
72

.0
0

11
.5

2
-3

03
64

.0
0

15
.9

7
-3

04
16

.0
0

13
.4

5
-3

04
24

.0
0

13
.5

5
-3

02
92

.0
0

18
.0

2
-3

00
12

.0
0

18
00

-3
02

08
.0

0
18

00

au
to

co
rr

_b
er

n3
0-

30
-9

61
15

.4
5

-2
28

88
.0

0
-2

23
76

.0
0

17
.1

-2
27

84
.0

0
18

.7
8

-2
28

08
.0

0
17

.1
1

-2
28

16
.0

0
19

.3
8

-2
28

88
.0

0
15

.7
0

-2
27

84
.0

0
17

.9
5

-2
22

00
.0

0
18

00
-2

26
64

.0
0

18
00

au
to

co
rr

_b
er

n3
5-

09
-1

15
22

.1
6

-5
10

8.
00

-5
04

0.
00

1.
29

-5
08

4.
00

19
.1

9
-5

06
8.

00
3.

62
-5

07
6.

00
3.

73
-5

09
6.

00
3.

90
-5

08
0.

00
3.

16
-4

86
0.

00
18

00
-5

06
8.

00
18

00

au
to

co
rr

_b
er

n3
5-

18
-1

15
17

2.
32

-3
11

60
.0

0
-3

10
72

.0
0

15
.2

3
-3

11
52

.0
0

15
.7

0
-3

10
96

.0
0

16
.8

6
-3

11
04

.0
0

15
.7

5
-3

11
52

.0
0

15
.4

4
-3

11
28

.0
0

17
.0

1
-3

03
20

.0
0

18
00

-3
10

72
.0

0
18

00

au
to

co
rr

_b
er

n3
5-

26
-2

87
09

5.
39

-5
51

84
.0

0
-5

51
12

.0
0

53
.4

8
-5

50
80

.0
0

32
.2

4
-5

51
36

.0
0

34
.1

7
-5

51
12

.0
0

45
.0

8
-5

50
56

.0
0

34
.7

2
-5

52
64

.0
0

31
.2

7
-5

40
00

.0
0

18
00

-5
50

32
.0

0
18

00

au
to

co
rr

_b
er

n3
5-

35
-3

96
66

4.
00

-4
10

52
.0

0
-4

05
64

.0
0

68
.0

8
-4

10
40

.0
0

37
.4

2
-4

06
36

.0
0

33
.8

5
-4

10
00

.0
0

43
.9

4
-4

09
08

.0
0

39
.8

8
-4

08
24

.0
0

44
.9

2
-2

13
88

.0
0

18
00

-4
02

84
.0

0
18

00

au
to

co
rr

_b
er

n4
0-

05
-1

86
8.

00
-9

36
.0

0
-9

12
.0

0
0.

26
-9

28
.0

0
2.

02
-9

24
.0

0
3.

53
-9

20
.0

0
3.

19
-9

24
.0

0
2.

10
-9

24
.0

0
3.

64
-8

72
.0

0
18

00
-9

36
.0

0
18

00

au
to

co
rr

_b
er

n4
0-

10
-2

37
24

.0
0

-8
23

2.
00

-8
14

4.
00

1.
4

-8
17

6.
00

6.
01

-8
19

2.
00

5.
20

-8
18

4.
00

5.
56

-8
16

8.
00

17
.4

9
-8

18
4.

00
10

.6
4

-7
91

2.
00

18
00

-8
17

6.
00

18
00

au
to

co
rr

_b
er

n4
0-

20
-2

35
81

6.
80

-5
05

16
.0

0
-4

98
36

.0
0

18
.7

8
-5

03
84

.0
0

25
.5

5
-5

02
40

.0
0

28
.2

7
-5

04
04

.0
0

26
.4

1
-5

04
52

.0
0

24
.6

2
-5

04
88

.0
0

24
.9

-4
98

36
.0

0
18

00
-5

02
24

.0
0

18
00

au
to

co
rr

_b
er

n4
0-

30
-7

05
60

0.
00

-9
47

68
.0

0
-9

42
88

.0
0

83
.2

4
-9

46
72

.0
0

58
.2

7
-9

47
12

.0
0

63
.7

0
-9

48
48

.0
0

61
.8

2
-9

45
84

.0
0

12
1.

77
-9

47
60

.0
0

59
.0

3
-9

13
04

.0
0

18
00

-9
41

84
.0

0
18

00

au
to

co
rr

_b
er

n4
5-

05
-2

22
0.

00
-1

06
8.

00
-1

02
4.

00
2.

03
-1

04
4.

00
8.

31
-1

04
8.

00
5.

34
-1

04
8.

00
5.

76
-1

04
4.

00
3.

52
-1

06
0.

00
5.

27
-1

02
4.

00
18

00
-1

06
8.

00
18

00

au
to

co
rr

_b
er

n4
5-

11
-4

54
76

.0
0

-1
26

60
.0

0
-1

25
12

.0
0

1.
52

-1
26

28
.0

0
8.

19
-1

26
16

.0
0

8.
54

-1
26

48
.0

0
10

.0
3

-1
26

32
.0

0
9.

12
-1

25
68

.0
0

4.
46

-9
83

2.
00

18
00

-1
24

88
.0

0
18

00

au
to

co
rr

_b
er

n4
5-

23
-5

81
99

2.
57

-8
52

00
.0

0
-8

46
44

.0
0

54
.4

5
-8

52
16

.0
0

35
.5

6
-8

51
36

.0
0

39
.3

7
-8

51
88

.0
0

38
.8

3
-8

51
40

.0
0

33
.2

5
-8

52
76

.0
0

60
.0

9
-8

30
36

.0
0

18
00

-8
49

44
.0

0
18

00

au
to

co
rr

_b
er

n4
5-

34
-1

78
66

41
.4

0
-1

52
19

2.
00

-1
51

91
2.

00
16

8.
31

-1
51

91
2.

00
99

.0
7

-1
52

34
4.

00
10

3.
44

-1
52

12
8.

00
89

.2
-1

51
90

4.
00

11
8.

03
-1

51
96

8.
00

12
0.

72
-1

13
44

0.
00

18
00

-1
51

64
8.

00
18

00

au
to

co
rr

_b
er

n4
5-

45
-1

81
73

42
.2

0
-1

12
76

4.
00

-1
12

08
4.

00
14

4.
61

-1
12

90
8.

00
98

.5
7

-1
12

54
8.

00
13

2.
98

-1
12

45
6.

00
11

1.
97

-1
12

00
0.

00
11

7.
97

-1
12

91
2.

00
11

1.
79

-1
02

84
0.

00
18

00
-1

10
93

6.
00

18
00

au
to

co
rr

_b
er

n5
0-

06
-6

33
6.

00
-2

16
0.

00
-2

09
6.

00
3.

74
-2

16
0.

00
8.

77
-2

16
0.

00
18

.0
1

-2
14

4.
00

24
.0

6
-2

14
4.

00
42

.2
1

-2
11

2.
00

3.
6

-2
09

6.
00

18
00

-2
13

6.
00

18
00

au
to

co
rr

_b
er

n5
0-

13
-1

02
88

8.
00

-2
35

44
.0

0
-2

31
04

.0
0

5.
99

-2
35

76
.0

0
14

.6
8

-2
35

56
.0

0
15

.0
3

-2
33

92
.0

0
48

.2
2

-2
35

00
.0

0
74

.0
6

-2
35

24
.0

0
10

.8
-2

24
96

.0
0

18
00

-2
33

36
.0

0
18

00

au
to

co
rr

_b
er

n5
0-

25
-1

12
41

05
.4

7
-1

24
74

8.
00

-1
24

01
6.

00
46

.5
8

-1
24

47
2.

00
51

.0
5

-1
24

61
2.

00
64

.9
9

-1
24

64
8.

00
51

.6
6

-1
24

70
8.

00
52

.8
6

-1
24

55
2.

00
63

.1
-1

19
85

2.
00

18
00

-1
23

89
2.

00
18

00

au
to

co
rr

_b
er

n5
0-

38
-4

13
10

64
.0

0
-2

32
49

6.
00

-2
31

47
2.

00
27

9.
75

-2
32

56
8.

00
18

8.
10

in
f

31
8.

89
-2

32
49

6.
00

30
9.

92
-2

32
41

6.
00

52
2.

80
-2

32
44

0.
00

16
2

-1
74

46
4.

00
18

00
-2

31
15

2.
00

18
00

au
to

co
rr

_b
er

n5
5-

06
-8

14
4.

00
-2

40
0.

00
-2

33
6.

00
11

.7
6

-2
40

0.
00

6.
45

-2
36

8.
00

21
.8

0
-2

39
2.

00
43

.7
3

-2
36

8.
00

7.
69

-2
38

4.
00

15
.3

8
-2

30
4.

00
18

00
-2

38
4.

00
18

00

au
to

co
rr

_b
er

n5
5-

14
-1

81
61

6.
00

-3
31

44
.0

0
-3

24
32

.0
0

16
.1

3
-3

28
32

.0
0

11
9.

75
-3

28
40

.0
0

63
.6

8
-3

27
04

.0
0

24
.9

-3
30

16
.0

0
25

.5
3

-3
28

88
.0

0
77

.1
1

-3
08

72
.0

0
18

00
-3

26
40

.0
0

18
00

au
to

co
rr

_b
er

n5
5-

28
-2

11
88

83
.1

7
-1

90
42

0.
00

-1
89

72
0.

00
14

3.
83

-1
90

17
2.

00
10

0.
86

-1
90

22
8.

00
74

.2
0

-1
90

21
2.

00
94

.7
2

-1
90

01
2.

00
95

.0
5

-1
90

04
8.

00
13

5.
96

-1
86

19
6.

00
18

00
-1

89
08

4.
00

18
00

au
to

co
rr

_b
er

n5
5-

41
—

-3
37

37
0.

00
-3

35
87

2.
00

50
4.

92
-3

36
91

6.
00

27
5.

75
in

f
29

5.
45

-3
37

54
0.

00
28

2.
24

-3
36

80
0.

00
23

8.
61

-3
37

12
0.

00
40

7.
49

-2
99

54
4.

00
18

00
-3

23
32

18
.0

0
18

00

86 A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP

Table 4.2: Performance of schemes and solvers on MINLPLib instances (II)
N

am
e

D
ua

lB
d

Pr
im

al
B

d
bn

b
m

sb
nb

S1
m

sb
nb

S2
m

sb
nb

S3
m

sb
nb

S4
m

sb
nb

S5
sc

ip
co

ue
nn

e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

au
to

co
rr

_b
er

n5
5-

55
—

-2
41

91
2.

00
-2

39
10

8.
00

33
8.

83
-2

41
38

0.
00

40
8.

02
-2

41
95

2.
00

36
5.

99
-2

41
60

4.
00

30
5.

64
-2

42
09

2.
00

29
5.

88
-2

41
69

6.
00

30
1.

65
-1

89
16

0.
00

18
00

-2
50

15
35

.0
0

18
00

au
to

co
rr

_b
er

n6
0-

08
-2

81
32

.0
0

-6
79

2.
00

-6
64

8.
00

5.
18

-6
76

8.
00

6.
79

-6
76

8.
00

6.
08

-6
76

0.
00

6.
16

-6
76

8.
00

8.
04

-6
77

6.
00

5.
43

-6
45

2.
00

18
00

-6
74

4.
00

18
00

au
to

co
rr

_b
er

n6
0-

15
-3

06
77

8.
00

-4
48

96
.0

0
-4

41
44

.0
0

11
.4

3
-4

48
12

.0
0

35
.3

7
-4

46
40

.0
0

90
.5

1
-4

47
80

.0
0

29
.0

8
-4

47
28

.0
0

39
.6

3
-4

46
20

.0
0

17
.4

7
-4

25
84

.0
0

18
00

-4
44

08
.0

0
18

00

au
to

co
rr

_b
er

n6
0-

30
-4

48
64

16
.0

0
-2

61
04

6.
22

-2
58

75
2.

00
99

.9
4

-2
60

44
8.

00
13

2.
70

-2
60

41
6.

00
11

8.
63

-2
60

27
2.

00
93

.6
-2

60
52

8.
00

12
9.

61
-2

60
57

6.
00

21
4.

89
-2

03
40

8.
00

18
00

-2
59

48
0.

00
18

00

au
to

co
rr

_b
er

n6
0-

45
—

-4
78

52
8.

00
-4

77
30

4.
00

67
4.

77
-4

78
34

8.
00

45
5.

10
in

f
44

4.
75

-4
79

17
2.

00
28

3.
42

-4
79

00
0.

00
43

3.
22

-4
79

14
8.

00
42

9.
32

-3
45

46
8.

00
18

00
-4

62
07

26
.0

0
18

00

au
to

co
rr

_b
er

n6
0-

60
—

-3
50

31
2.

00
-3

42
92

4.
00

50
1.

16
-3

50
13

6.
00

54
1.

11
-3

50
51

6.
00

55
7.

68
-3

49
48

8.
00

48
6.

72
-3

48
70

0.
00

49
8.

18
-3

50
74

8.
00

44
8.

1
–

–
-3

64
13

70
.0

0
18

00

ba
ye

s2
_5

0
0.

00
0.

52
62

.4
1

0.
1

0.
52

0.
46

0.
52

0.
43

0.
52

0.
41

0.
52

0.
42

0.
52

0.
45

5.
67

18
00

0.
52

11
9.

29

ed
ge

cr
os

s1
0-

06
0

45
9.

00
45

9.
00

46
3.

00
0.

92
45

9.
00

1.
65

45
9.

00
1.

76
45

9.
00

1.
44

45
9.

00
3.

18
45

9.
00

1.
65

45
9.

00
86

.4
3

45
9.

00
17

3.
98

ed
ge

cr
os

s1
4-

03
9

10
9.

00
10

9.
00

11
0.

00
3.

2
10

9.
00

77
.9

1
10

9.
00

12
1.

18
10

9.
00

68
.9

2
10

9.
00

29
.1

6
10

9.
00

22
.3

9
10

9.
00

74
3.

24
10

9.
00

48
6.

06

eg
_i

nt
_s

-3
.4

1
6.

45
7.

46
80

.7
1

6.
45

11
7.

52
6.

45
10

5.
28

6.
45

11
1.

39
6.

45
13

1.
01

6.
45

13
9.

73
10

00
00

.0
0

18
00

8.
09

18
00

ex
14

_1
_6

0.
00

0.
00

1.
00

0.
01

0.
00

0.
24

0.
00

0.
19

0.
00

0.
15

0.
00

0.
21

0.
00

0.
17

0.
00

0.
06

0.
00

0.
01

ex
5_

2_
2_

ca
se

1
-4

00
.0

0
-4

00
.0

0
0.

00
0.

02
-4

00
.0

0
0.

19
-4

00
.0

0
0.

15
-4

00
.0

0
0.

14
-4

00
.0

0
0.

13
-4

00
.0

0
0.

15
-4

00
.0

0
0.

05
-4

00
.0

0
0.

13

ex
5_

2_
2_

ca
se

2
-6

00
.0

0
-6

00
.0

0
0.

00
0.

02
-6

00
.0

0
0.

10
-6

00
.0

0
0.

11
-6

00
.0

0
0.

11
-6

00
.0

0
0.

10
-6

00
.0

0
0.

11
-6

00
.0

0
0.

17
-6

00
.0

0
0.

12

ex
5_

2_
2_

ca
se

3
-7

50
.0

0
-7

50
.0

0
0.

00
0.

02
-7

50
.0

0
0.

09
-7

50
.0

0
0.

10
-7

50
.0

0
0.

11
-7

50
.0

0
0.

11
-7

50
.0

0
0.

12
-7

50
.0

0
0.

04
-7

50
.0

0
0.

05

ex
5_

3_
3

2.
23

3.
23

6.
51

0.
36

in
f

0.
65

in
f

0.
79

in
f

0.
98

in
f

0.
71

in
f

1.
14

–
18

00
3.

29
18

00

ex
5_

4_
3

48
45

.4
6

48
45

.4
6

59
37

.4
4

0.
02

48
45

.4
6

0.
14

48
45

.4
6

0.
10

48
45

.4
6

0.
13

48
45

.4
6

0.
12

48
45

.4
6

0.
19

48
45

.4
6

0.
01

48
45

.4
6

0.
17

ex
5_

4_
4

10
07

7.
78

10
07

7.
78

11
84

1.
61

0.
04

10
07

7.
78

0.
26

10
07

7.
78

0.
28

10
07

7.
78

0.
2

10
07

7.
78

0.
23

10
07

7.
78

0.
18

10
07

7.
78

20
.5

5
10

07
7.

73
6.

06

ex
7_

3_
4

6.
27

6.
27

10
.0

0
0.

03
8.

46
0.

70
in

f
0.

74
8.

46
1.

12
8.

46
0.

61
8.

46
0.

85
6.

27
18

00
6.

27
1.

55

ex
8_

3_
13

-1
00

.0
0

-4
3.

09
0.

00
0.

34
in

f
2.

23
-4

2.
65

2.
75

-4
1.

92
3.

11
in

f
2.

15
in

f
1.

96
–

18
00

–
–

ge
np

oo
lin

g_
le

e2
-3

84
9.

27
-3

84
9.

27
-3

81
8.

02
2.

01
-3

51
6.

59
76

.0
9

-3
84

9.
27

10
2.

43
-3

84
9.

27
97

.8
5

-3
83

8.
67

94
.6

5
-3

60
4.

08
12

2.
55

-3
84

9.
27

18
00

-3
84

9.
27

57
.0

2

gr
ap

hp
ar

t_
cl

iq
ue

-7
0

19
87

.0
0

63
48

.0
0

65
30

.0
0

18
14

.6
6

89
25

.0
0

11
89

.0
3

89
25

.0
0

12
94

.0
8

89
25

.0
0

12
70

.1
6

89
25

.0
0

13
13

.9
4

89
25

.0
0

12
00

.1
4

90
68

.0
0

18
00

88
99

.0
0

18
00

ka
ll_

ci
rc

le
s_

c7
a

2.
66

2.
66

4.
11

0.
4

in
f

0.
96

in
f

0.
80

in
f

1.
2

in
f

0.
70

3.
56

1.
53

–
18

00
2.

66
1.

75

m
at

ho
pt

5_
6

—
-0

.9
4

2.
56

0
-0

.6
3

0.
04

-0
.9

4
0.

06
-0

.9
4

0.
05

-0
.9

4
0.

06
-0

.9
4

0.
05

–
–

-0
.9

4
0.

01

m
hw

4d
—

0.
03

27
.8

7
0.

01
0.

03
0.

16
0.

03
0.

21
0.

03
0.

15
0.

03
0.

16
0.

03
0.

14
–

–
0.

03
0.

14

sf
ac

lo
c1

_2
_9

0
5

17
.8

9
24

.6
6

0.
99

17
.8

9
5.

25
17

.8
9

5.
50

17
.8

9
4.

86
17

.8
9

11
.1

8
17

.8
9

5.
81

22
.3

3
18

00
18

.1
7

18
00

sf
ac

lo
c1

_4
_9

0
0

10
.4

6
16

.7
2

4.
38

10
.5

5
14

.7
1

10
.6

7
13

.5
3

10
.6

1
13

.9
3

10
.5

4
25

.2
6

10
.4

6
22

.4
9

22
.4

0
18

00
20

.4
4

18
00

sh
ip

or
ig

0
5.

54
5.

54
0.

02
in

f
0.

28
in

f
0.

13
in

f
0.

19
in

f
0.

24
in

f
0.

06
–

18
00

–
–

ss
sd

20
-0

8p
er

sp
27

96
44

46
96

67
.3

0
47

18
98

.8
4

18
00

.0
4

in
f

1.
26

53
64

80
.8

3
25

6.
87

in
f

1.
83

47
30

60
.9

7
28

8.
57

48
44

59
.6

1
31

9.
39

49
58

81
.9

0
18

00
66

23
41

.7
0

18
00

ss
sd

25
-0

4p
er

sp
28

72
32

30
01

86
.8

0
30

03
92

.7
7

18
00

.0
3

in
f

1.
33

30
07

68
.3

7
25

2.
13

in
f

2.
33

30
07

68
.3

7
24

7.
79

30
10

37
.9

3
24

9.
59

30
17

90
.8

0
18

00
30

20
00

.9
3

18
00

st
_b

pv
2

-8
-8

.0
0

0.
00

0.
01

-8
.0

0
0.

06
-8

.0
0

0.
07

-8
.0

0
0.

06
-8

.0
0

0.
06

-8
.0

0
0.

07
-8

.0
0

0
-8

.0
0

0

st
_b

sj
4

-7
02

62
-7

02
62

.0
5

-6
78

97
.6

6
0.

02
-7

02
62

.0
5

0.
16

-7
02

62
.0

5
0.

13
-7

02
62

.0
5

0.
15

-7
02

62
.0

5
0.

15
-7

02
62

.0
5

0.
09

-7
02

62
.0

5
0

-7
02

62
.0

5
0.

02

4.4 Conclusions and Future Research 87

Table 4.3: Performance of schemes and solvers on MINLPLib instances (III)
N

am
e

D
ua

lB
d

Pr
im

al
B

d
bn

b
m

sb
nb

S1
m

sb
nb

S2
m

sb
nb

S3
m

sb
nb

S4
m

sb
nb

S5
sc

ip
co

ue
nn

e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

z∗
ti

m
e

st
_e

16
12

29
2

12
29

2.
47

13
68

0.
79

0.
02

12
29

2.
47

0.
11

12
29

2.
47

0.
10

12
29

2.
47

0.
11

12
29

2.
47

0.
11

12
29

2.
47

0.
21

12
29

2.
47

0.
06

12
29

2.
47

0.
12

st
_e

19
-1

19
-1

18
.7

0
-8

6.
42

0.
01

-1
18

.7
0

0.
08

-1
18

.7
0

0.
10

-1
18

.7
0

0.
1

-1
18

.7
0

0.
06

-1
18

.7
0

0.
06

-1
18

.7
0

5.
12

-1
18

.7
1

0.
05

st
_f

p7
b

-6
35

-6
34

.7
5

-4
90

.1
1

0.
06

-6
34

.7
5

0.
18

-6
34

.7
5

0.
16

-6
34

.7
5

0.
2

-6
34

.7
5

0.
20

-6
34

.7
5

0.
23

-6
34

.7
5

0.
08

-6
34

.7
5

0.
29

st
_f

p7
c

-8
69

5
-8

69
5.

01
-5

13
6.

40
0.

05
-8

69
5.

01
0.

20
-7

25
1.

69
0.

20
-8

69
5.

01
0.

18
-8

69
5.

01
0.

22
-8

69
5.

01
0.

28
-8

69
5.

01
0.

06
-8

69
5.

01
0.

23

st
_f

p7
d

-1
15

-1
14

.7
5

6.
55

0.
02

-1
14

.7
5

0.
16

-1
14

.7
5

0.
19

-1
14

.7
5

0.
19

-1
14

.7
5

0.
19

-1
14

.7
5

0.
22

-1
14

.7
5

0.
06

-1
14

.7
5

0.
3

st
_f

p8
15

63
9

15
63

9.
00

18
42

3.
00

0.
02

in
f

0.
24

in
f

0.
32

in
f

0.
26

in
f

0.
25

15
63

9.
00

0.
23

15
63

9.
00

0
15

63
9.

00
0.

23

st
_g

lm
p_

fp
3

-1
2

-1
2.

00
-9

.0
0

0.
01

-1
2.

00
0.

06
-1

2.
00

0.
06

-1
2.

00
0.

07
-1

2.
00

0.
08

-1
2.

00
0.

08
-1

2.
00

0
-1

2.
00

0

st
_g

lm
p_

kk
92

-1
2

-1
2.

00
-9

.0
0

0.
02

-1
2.

00
0.

08
-1

2.
00

0.
08

-1
2.

00
0.

07
-1

2.
00

0.
06

-1
2.

00
0.

09
-1

2.
00

0
-1

2.
00

0.
01

st
_h

t
-2

-1
.6

0
0.

00
0.

01
-1

.4
5

0.
05

-1
.6

0
0.

06
-1

.6
0

0.
05

-1
.6

0
0.

05
-1

.6
0

0.
05

-1
.6

0
0

-1
.6

0
0.

02

st
_j

cb
pa

f2
-7

95
-7

94
.8

6
-3

88
.3

5
0.

02
-7

94
.8

6
0.

13
-7

94
.8

6
0.

13
-7

94
.8

6
0.

11
-7

94
.8

6
0.

12
-3

88
.3

5
0.

1
-7

94
.8

6
0.

01
-7

94
.8

6
0.

04

st
_p

an
1

-5
-5

.2
8

0.
00

0.
01

-4
.7

0
0.

07
-4

.6
2

0.
06

-5
.2

8
0.

09
-5

.2
8

0.
08

-5
.2

8
0.

07
-5

.2
8

0
-5

.2
8

0.
02

st
_p

h1
1

-1
1

-1
1.

28
0.

00
0.

01
-1

1.
28

0.
06

-1
1.

28
0.

06
-1

1.
28

0.
06

-8
.0

0
0.

07
-1

1.
28

0.
06

-1
1.

28
0

-1
1.

28
0.

02

st
_p

h1
2

-2
3

-2
2.

63
0.

00
0.

01
-2

2.
63

0.
06

-2
2.

63
0.

11
-2

2.
63

0.
09

-2
2.

63
0.

09
-2

2.
63

0.
06

-2
2.

63
0

-2
2.

63
0.

01

st
_p

h1
3

-1
1

-1
1.

28
0.

00
0.

01
-1

1.
28

0.
08

-1
1.

28
0.

08
-1

1.
28

0.
09

-1
1.

28
0.

07
-1

1.
28

0.
06

-1
1.

28
0

-1
1.

28
0.

01

st
_p

h1
5

-3
93

-3
92

.7
0

0.
00

0.
01

-3
92

.7
0

0.
08

-3
92

.7
0

0.
09

-3
92

.7
0

0.
09

-3
92

.7
0

0.
08

-3
92

.7
0

0.
08

-3
92

.7
0

0
-3

92
.7

0
0.

01

st
_p

h1
-2

30
-2

30
.1

2
0.

00
0.

01
-2

30
.1

2
0.

11
-2

30
.1

2
0.

11
-2

30
.1

2
0.

11
-2

30
.1

2
0.

09
-2

15
.5

2
0.

14
-2

30
.1

2
0

-2
30

.1
2

0.
02

st
_p

h2
-1

02
8

-1
02

8.
12

0.
00

0.
01

-9
32

.8
6

0.
15

-1
02

8.
12

0.
13

-1
02

8.
12

0.
14

-1
02

8.
12

0.
12

-1
02

8.
12

0.
13

-1
02

8.
12

0
-1

02
8.

12
0.

02

st
_p

h3
-4

20
-4

20
.2

3
0.

00
0.

01
-4

20
.2

3
0.

07
-4

20
.2

3
0.

09
-4

20
.2

3
0.

11
-4

20
.2

3
0.

09
-4

20
.2

3
0.

1
-4

20
.2

3
0

-4
20

.2
3

0.
01

st
_q

pc
-m

0
-5

-5
.0

0
0.

00
0

-5
.0

0
0.

05
-5

.0
0

0.
05

-5
.0

0
0.

06
-5

.0
0

0.
05

-5
.0

0
0.

07
-5

.0
0

0
-5

.0
0

0.
01

st
_q

pk
1

-3
-3

.0
0

0.
00

0.
01

-3
.0

0
0.

06
-3

.0
0

0.
06

-3
.0

0
0.

07
-3

.0
0

0.
06

-3
.0

0
0.

07
-3

.0
0

0
-3

.0
0

0.
02

st
_r

v2
-6

4
-6

4.
48

-6
2.

75
0.

01
-6

4.
48

0.
13

-6
4.

48
0.

13
-6

4.
48

0.
14

-6
4.

48
0.

13
-6

4.
48

0.
16

-6
4.

48
0.

01
-6

4.
48

0.
32

st
_r

v9
-1

20
-1

20
.1

5
-1

17
.5

9
0.

21
-1

18
.9

8
0.

28
-1

18
.9

8
0.

35
-1

18
.9

8
0.

32
-1

18
.9

8
0.

26
-1

17
.5

9
2.

9
-1

20
.1

5
0.

14
-1

20
.1

5
3.

24

su
pp

ly
ch

ai
np

1_
02

03
06

43
75

52
43

75
51

.6
8

43
84

71
.6

9
1.

12
43

75
51

.6
3

7.
00

43
75

51
.6

3
5.

96
43

75
51

.6
3

6.
66

43
75

51
.6

3
6.

89
43

75
51

.6
3

7.
12

43
75

51
.6

8
0.

2
43

75
51

.6
8

0.
95

tr
ic

p
0

0.
00

26
34

78
.4

9
3.

67
61

.2
5

11
.8

5
0.

00
9.

88
74

0.
89

7.
72

0.
00

9.
43

0.
00

7.
37

88
75

00
00

.0
0

18
00

74
0.

89
18

00

tr
ig

—
-3

.7
6

0.
00

0.
01

-2
.4

8
0.

06
-3

.7
6

0.
06

-3
.7

6
0.

06
-3

.7
6

0.
06

-3
.5

6
0.

06
–

–
-3

.7
6

0.
03

ts
pn

15
29

9
32

7.
14

32
9.

91
23

.8
3

32
7.

14
18

.7
3

32
7.

14
23

.0
0

32
7.

14
20

.9
9

32
7.

14
18

.7
2

32
7.

14
27

.2
9

–
18

00
33

1.
09

18
00

w
al

l
-1

-1
.0

0
1.

00
0.

01
0.

00
0.

13
1.

00
0.

37
in

f
0.

25
in

f
0.

37
1.

00
0.

12
–

–
–

1.
96

w
as

te
w

at
er

05
m

1
23

0
22

9.
70

26
9.

43
0.

19
22

9.
70

0.
60

26
0.

37
1.

00
22

9.
70

1.
15

54
2.

20
0.

75
26

0.
37

1.
18

22
9.

70
12

3.
69

22
9.

70
40

0.
75

w
as

te
w

at
er

11
m

1
15

16
21

27
.1

2
30

80
.2

7
0.

27
21

27
.1

2
0.

70
21

27
.1

2
0.

75
21

27
.1

2
0.

58
21

27
.1

2
0.

52
21

27
.1

2
0.

72
44

05
.1

6
18

00
27

84
.9

7
18

00

w
as

te
w

at
er

13
m

1
12

44
15

64
.9

6
18

42
.3

3
0.

97
15

64
.9

6
1.

03
15

64
.9

6
1.

16
15

64
.9

6
1.

17
15

64
.9

6
1.

40
15

64
.9

6
1.

17
20

31
.9

3
18

00
15

64
.9

6
18

00

w
as

te
w

at
er

14
m

1
38

3
51

3.
00

56
7.

20
0.

14
51

3.
00

0.
38

51
3.

00
0.

56
51

3.
00

0.
41

51
3.

00
0.

62
51

3.
00

0.
46

57
8.

90
18

00
53

6.
53

18
00

bl
en

d1
46

47
45

.2
8

–
–

-i
nf

35
2.

36
-i

nf
34

7.
89

40
.5

4
36

0.
69

-i
nf

34
8.

44
-i

nf
29

2.
16

43
.8

2
18

00
45

.2
8

18
00

bl
en

d8
52

54
53

.9
6

–
–

51
.1

9
39

0.
49

51
.0

7
37

6.
92

-i
nf

38
8.

21
-i

nf
40

0.
70

47
.6

6
37

1.
05

53
.3

0
18

00
53

.9
6

14
33

.2
2

sp
or

tt
ou

rn
am

en
t1

4
96

96
.0

0
90

.0
0

0.
14

94
.0

0
2.

64
94

.0
0

0.
81

94
.0

0
1.

94
94

.0
0

3.
98

94
.0

0
1.

59
94

.0
0

18
00

96
.0

0
23

3.
56

Chapter 5

Mixed-Integer Derivative-Free

Optimization

We study the problem of minimizing a convex function on a finite subset of the

integer lattice (?). In particular, we consider problems of the form

minimize
x

f (x) subject to x ∈ Ω ⊂ Zn. (5.1)

We first define what it means for f to be convex on a set Ω ⊂ Zn.

Definition 5.0.1 (Convexity on Integer Subsets). A function f is (integer-)convex

on Ω if for x ∈ Ω and any p points yi ∈ Ω satisfying x =
∑p

i=1 λiy
i with λi ∈ [0, 1] and∑p

i=1 λi = 1, then f (x) ≤
∑p

i=1 λi f (yi).

Note that if no point in Ω can be represented as a convex combination of

other points (e.g., if Ω represents purely binary decisions), then any function triv-

ially satisfies Definition 5.0.1.

We make the following assumption about Problem (5.1).

Assumption 5.1. f is convex on Ω, Ω ⊂ Zn is nonempty and bounded, and f cannot be

evaluated at x < Ω.

Because we assume that f cannot be evaluated at noninteger points, Problem

(5.1) can be referred to as a convex optimization problem with unrelaxable integer

constraints (?). We note that Ω needs not contain all integer points in its convex

hull (i.e., our approach allows for situations where conv (Ω) ∩ Zn , Ω); such in-

stances may arise when arguments to f must satisfy some additional constraints.

Problem (5.1) can also be viewed as minimizing an integer-convex1 function ((?,

Definition 15.2)) over a nonempty finite subset of Zn.
1Although ? considers integer convexity only for polynomials, this definition can be applied

to more general classes of functions over the sets considered here.

89

90 Mixed-Integer Derivative-Free Optimization

Admittedly, it is rare to know that f is convex when f is not given in closed

form (although one may be able to detect convexity (?) or estimate a probability

that f is convex on the finite domain Ω (?). Nevertheless, studying the convex case

is important because we are unaware of any method (besides complete enumer-

ation) for obtaining exact solutions to (5.1) when f (convex or otherwise) cannot

be evaluated at noninteger points.

One example where an objective is not given in closed form but is known to

be convex arises in the combinatorial optimal control of partial differential equa-

tions (PDEs). For example, (?, Lemma 2) show that the solution operator of cer-

tain semilinear elliptic PDEs is a convex function of the controls provided that the

nonlinearities in the PDE and boundary conditions are concave and nondecreas-

ing. Thus, any linear function of the states of the PDE (e.g., the max-function) is a

convex function of the controls when the states are eliminated. ? propose using

adjoint information to compute subgradients of the (continuous relaxation of the)

objective, but an alternative would be to consider a derivative-free approach.

We consider only pure-integer problems of the form (5.1); however, our de-

velopments are equally applicable to the mixed-integer case

minimize
x,y

F(x, y) subject to (x, y) ∈ Ω × Ψ ⊂ Zn × Rm (5.2)

provided F is convex on Ω × Ψ. If we define the function

f (x) = min
y∈Ψ

F(x, y)

and if f is well defined over Ω, then (5.2) can be solved by minimizing f on

Ω ⊂ Zn, where each evaluation f (x) requires an optimization of the continuous

variables y for a fixed x. (When there is no additional information on F and Ψ,

each continuous optimization problem may be difficult to solve.) Because many

of the results below rely only on the convexity of f and not the discrete nature of

Ω, much of the analysis below readily applies to the mixed-integer case.

We are especially interested in problems where the cost of evaluating f is

large. Problems of the form (5.1) or (5.2) where the objective is expensive to eval-

uate and some integer constraints are unrelaxable arise in a range of simulation-

based optimization problems. For example, the optimal design of concentrat-

ing solar power plants gives rise to computationally expensive simulations for

each set of design parameters (?). Furthermore, some of the design parameters

(e.g., the number of panels on the power plant receiver) cannot be relaxed to

noninteger values. Similar problems arise when tuning codes to run on high-

performance computers (?). In this case, f (x) may be the memory footprint of a

91

code that is compiled with settings x, which can correspond to decisions such as

loop unrolling or tiling factors that do not have meaningful noninteger values.

Optimal material design problems may also constrain the choice of atoms to a

finite set, resulting in unrelaxable integer constraints; ? propose a derivative-free

optimization algorithm designed explicitly for such a problem.

Motivated by such applications, we develop a method that will certifiably

converge to the solution of (5.1) under Assumption 5.1 without access to ∂ f (i.e.,

a (sub)gradient of a continuous relaxation of f). Using only evaluations of f ,

we construct secants, which are linear functions that interpolate f at a set of n + 1

points. These secant functions underestimate f in certain parts of Ω. We use these

secants to define conditional cuts that are valid in disconnected portions of the do-

main. The complete set of secants and the conditions that describe when they are

valid are used to construct an underestimator of a convex f . While access to ∂ f

could strengthen such an underestimator, we do not address such considerations

in this paper. While different specific applications are by nature convex, in many

other situations, one might suspect that f is convex, but without proof. In such

cases, if f is indeed convex, our method will converge to a global optimum. Oth-

erwise, our algorithm might generate cuts that are not valid, hence, the model

might not be an underestimator of f . However, our algorithm will still converge

to a (possibly good) local minimum, but will not be able to provide a proof of

(convexity or) nonconvexity of f . Also, our method can be applied in a specific

restricted region of a known nonconvex problem, in which case it will converge

to a local optimum in that region.

While we consider only bound constraints solving (5.1) in this paper, our

method can easily be extended to cater to general constraints.

Solving (5.1) under Assumption 5.1 without access to ∂ f poses a number

of theoretical and computational challenges. Because the integer constraints are

unrelaxable, one cannot apply traditional branch-and-bound approaches. In par-

ticular, model-based continuous derivative-free methods would require evaluat-

ing the objective at noninteger points to ensure convergence for the continuous

relaxation of (5.1). In addition, other traditional techniques for mixed-integer

optimization—such as Benders decomposition (?) or outer approximation by ?

and ?—cannot be used to solve (5.1) when ∂ f is unavailable. Since we know of

no method (other than complete enumeration) for obtaining global minimizers

of (5.1) under Assumption 5.1, we know of no potential algorithm to address this

problem when a (sub)gradient is unavailable.

92 Mixed-Integer Derivative-Free Optimization

We make three contributions in this paper: (1) we develop a new underesti-

mator for convex functions on subsets of the integer lattice that is based solely on

function evaluations; (2) we present an algorithm that alternates between updat-

ing this underestimator and evaluating the objective in order to identify a global

solution of Problem (5.1) under Assumption 5.1; and (3) we show empirically

that certifying global optimality in such cases is a challenging problem. In our

experiments, we are unable to prove optimality for many problems when n ≥ 5,

and we provide insights into why a proof of optimality remains computationally

challenging.

Outline. Section 5.1 surveys recent methods for addressing (5.1). Section 5.2

introduces valid conditional cuts using only the function values of a convex ob-

jective and discusses the theoretical properties of these cuts. Section 5.3 presents

an algorithm for solving (5.1) and shows that this algorithm identifies a global

minimizer of (5.1) under Assumption 5.1. Section 5.4 considers an MILP based

approach for formulating the underestimator and Section 5.5 presents the method

SUCIL—secant underestimator of convex functions on the integer lattice. Sec-

tion 5.6 provides detailed numerical studies for implementations of SUCIL on a

set of convex problems. Section 5.7 discusses many of the challenges in obtaining

global solutions to (5.1).

5.1 Background

Developing methods to solve (5.1) without access to derivatives of f is an active

area of research (???) Most methods address general (i.e., nonconvex) functions f ,

and heuristic approaches are commonly adopted to handle integer decision vari-

ables for such derivative-free optimization problems. For example, the method

by ? rounds noninteger components of candidate points to the nearest feasible

integer values. The method’s asymptotic convergence results are based on the

inclusion of points drawn uniformly from the finite domain (and rounding non-

integer values as necessary).

Integer-constrained pattern-search methods by ? and ? generalize their con-

tinuous counterparts. These modified pattern-search methods can be shown to

converge to mesh-isolated minimizers: points with function values that are better

than all neighboring points on the integer lattice. Unfortunately, such mesh-

isolated minimizers can be arbitrarily far from a global minimizer, even when f

5.1 Background 93

is convex; ? (Figure 2) show an example of such a function f . Other methods that

converge to mesh-isolated minimizers include direct-search methods that update

the integer variables via a local search (??) and mesh adaptive direct-search meth-

ods adapted to address discrete and granular variables (i.e., those that have a

controlled number of decimals) (??). The direct-search method by ? accounts for

integer constraints by constructing a set of directions that have a nonnegative

span of Rn and that ensure that all evaluated points will be integer valued. This

method is shown to converge to a type of stationary point that, even in the con-

vex case, may not be a global minimizer. ? present various definitions of local

minimizers of (5.1) and a discussion of associated properties. The BFO method

by ? has a recursive step that explores points near the current iterate by fixing

each of the discrete variables to its value plus or minus a step-size parameter.

Figure 5.1: 16 primitive direc-

tions emanating from (0, 0) in

the domain Ω = [−2, 2]2 ∩ Z2

n = 2 n = 3 n = 4 n = 5

k |Ω| # |Ω| # |Ω| # |Ω| #

1 9 8 27 26 81 80 243 242

2 25 16 125 98 625 544 3,125 2,882

3 49 32 343 290 2,403 2,240 16,807 16,322

4 81 48 729 578 6,561 5,856 59,049 55,682

Table 5.1: Number of primitive directions in a discrete

1-neighborhood, # = |N(xc, 1)|, that emanate from the

origin xc of the domain Ω = [−k, k]n ∩ Zn and that cor-

respond to points in Ω.

The method by ? uses line searches over a set of primitive directions, that

is, a set of scaled directions D where no vector di ∈ D is a positive multiple of

a different d j ∈ D. This method explores a discrete set of directions around the

current iterate until finding a local minimum xc in a β-neighborhood, defined as

N(xc, β) = {xc + αd ∈ Ω : d ∈ D, α ∈ N, α ≤ β} for β ∈ N. Although ? target

nonconvex objectives, their approach will converge to a global minimum xc of a

convex objective f if all points inN(xc, 1) are evaluated. Figure 5.1 illustrates such

a discrete 1-neighborhood. Unfortunately, |N(xc, 1)| can be large; see Table 5.1.

Model-based methods approximate objective functions on the integer lattice

by using surrogate models (see, for example, ?, ?, and ?). The surrogate model is

used to determine points where the objective should be evaluated; the model is

typically refined after each objective evaluation. The methodology by ? specifi-

94 Mixed-Integer Derivative-Free Optimization

cally uses radial basis function surrogate models and does automatic model se-

lection at each iteration. Mixed-integer nonlinear optimization solvers are used

to minimize the surrogate to obtain the next integer point for evaluation. The

model-based methods of ?? and ? modify the sampling strategies and local

searches typically used to solve continuous objective versions. The approaches

by ? and ? restart when a suitably defined local minimizer is encountered, con-

tinuing to evaluate the objective until the available budget of function evaluations

is exhausted. These model-based methods differ in the initial sampling method,

the type of surrogate model, and the sampling strategy used to select the next

points to be evaluated. ? present a survey and taxonomy of continuous and

integer model-based optimization approaches.

In a different line of research, ? propose a branch-and-bound framework

to address binary variables; a solution to the relaxed nonlinear subproblems is

obtained via a combination of global kriging models and local surrogate mod-

els. Similarly, ? replace the black-box portions of the objective function (and

constraints) by a stochastic surrogate; the resulting mixed-integer nonlinear pro-

grams are solved by branch and bound. Both approaches assume that the integer

constraints are relaxable.

5.2 Underestimator of Convex Functions on the

Integer Lattice

To construct an underestimator of a convex objective function f , we now discuss

secant functions, which are linear mappings that interpolate f at n + 1 points. We

provide conditions for where these cuts will underestimate f . We then discuss

necessary conditions on the set of evaluated points so that if all possible secants

are constructed, these conditional cuts underestimate f on the domain Ω. As we

will see in Section 5.3, this underestimator is essential for obtaining a global mini-

mizer of (5.1) under Assumption 5.1. Throughout this section, X ⊆ Ω denotes a set

of at least n + 1 points in Ω at which the objective function f has been evaluated.

5.2.1 Secant Functions and Conditional Cuts

Constructing a secant function requires a set of n + 1 interpolation points

where f has been evaluated. To define a secant function for f , we introduce a

multi-index i of n + 1 distinct indices, 1 ≤ i1 < . . . < in+1 ≤ |X|, as i = (i1, . . . , in+1).

With a slight abuse of notation, we will refer to elements i j ∈ i.

5.2 Underestimator of Convex Functions on Integer Lattice 95

Given the set of points Xi =
{
xi j ∈ X ⊆ Ω : i j ∈ i

}
, we construct the secant func-

tion

mi(x) = (ci)>x + bi,

where the coefficients ci ∈ Rn and bi ∈ R are the solution to the linear system

[
X̄i e

] ci

bi

 = f i, where X̄i =

(xi1)>
...

(xin+1)>

 , e =

1
...

1

 , and f i =

f (xi1)
...

f (xin+1)

 . (5.3)

The secant function mi is unique provided that the set Xi is affinely independent.

We now show that the secant function mi underestimates f in certain polyhedral

cones, namely, the cones

Ui =
⋃
i j∈i

cone
(
xi j − Xi), (5.4)

where

cone
(
xi j − Xi) =

xi j +

n+1∑
l=1,l, j

λl(xi j − xil) : i j ∈ i, il ∈ i, λl ≥ 0

 . (5.5)

Lemma 5.2.1 (Conditional cuts). If f is convex on Ω and Xi ⊆ Ω is affinely indepen-

dent, then the unique linear mapping mi satisfying mi(xi j) = f (xi j) for each i j ∈ i satisfies

mi(x) ≤ f (x) for all x ∈ Ui ⋂ Ω.

Proof. The uniqueness of the linear mapping follows directly from the affine in-

dependence of Xi.
Let x be a point in cone

(
xi j − Xi)⋂ Ω for arbitrary xi j ∈ Xi. By (5.5),

x = xi j +

n+1∑
l=1,l, j

λl

(
xi j − xil

)
, (5.6)

with λl ≥ 0 (for l = 1, . . . , n + 1; l , j). Rearranging (5.6) yields

xi j =
1

1 +
∑n+1

k=1,k, j λk
x +

1
1 +

∑n+1
k=1,k, j λk

n+1∑
l=1,l, j

λlxil ,

showing that xi j can be expressed as a convex combination of {x} ∪ {xil : l =

1, . . . , n + 1; l , j}, all of which are points in Ω. Therefore, by convexity of f

on Ω (see Definition 5.0.1),

f (xi j) ≤
1

1 +
∑n+1

k=1,k, j λk
f (x) +

1
1 +

∑n+1
k=1,k, j λk

n+1∑
l=1,l, j

λl f
(
xil

)
.

96 Mixed-Integer Derivative-Free Optimization

Solving for f (x) and using the fact that mi interpolates f at points in Xi, we obtain

f (x) ≥

1 +

n+1∑
k=1,k, j

λk

 f (xi j) −
n+1∑

l=1,l, j

λl f (xil),

=

1 +

n+1∑
k=1,k, j

λk

 mi(xi j) −
n+1∑

l=1,l, j

λlmi(xil),

= mi(xi j) +

n+1∑
l=1,l, j

λl

(
mi(xi j) − mi(xil)

)
,

= mi(x),

where the last equality holds by (5.6) and the linearity of mi. Because x is an

arbitrary point in cone
(
xi j − Xi) for arbitrary xi j , the result is shown.

Corollary 5.2.2. The linear mapping mi(x) defined in Lemma 5.2.1 satisfies f (x) ≥

mi(x), ∀x ∈ cone
(
xk − Xi \ xil

)
, where xk is such that f (xk) ≥ f (xil).

Corollary 5.2.2 indicates that one can just replace a point in Xi and the ear-

lier mapping mi would still be valid in the cone associated with the new point.

However, the mapping mi(x) would yield a ‘weaker’ underestimator than the one

derived using the points Xi ∪ xik \ xil .

Corollary 5.2.3. Let xk be a point such that the points Xi′ = Xi ∪ xk \ xil are affinely

independent and f (xk) ≤ f (xi j). Then, the linear mapping mi′(x) derived using the points

Xi′ as per Lemma 5.2.1 satisfies f (x) ≥ mi′(x), ∀x ∈ Ui \ cone
(
xk − Xi).

Corollary 5.2.3 states that a valid (and tighter) cut can be obtained for the

cones associated with the points Xi \ xil by replacing one of the points xil in Xi by

another point with a function value lower than that of xil . The proofs of Corol-

lary 5.2.2 and Corollary 5.2.3 follow easily from that of Lemma 5.2.1.

We now prove that the cones inUi do not intersect when Xi is affinely inde-

pendent. We note that the following result holds for any affinely independent set

Xi ⊂ Rn.

Lemma 5.2.4 (A point is in at most one cone). If Xi is affinely independent, no point

x ∈ Rn satisfies x ∈ cone
(
xi j − Xi) and x ∈ cone

(
xik − Xi) for xi j , xik ∈ Xi and xi j , xik .

Proof. Let xi1 and xi2 be different, but otherwise arbitrary, points in Xi. To arrive at

a contradiction, suppose that there exists x ∈ cone
(
xi1 −Xi)∩ cone

(
xi2 −Xi). That is,

x = xi1 +
∑n+1

l=2 λl

(
xi1 − xil

)
and x = xi2 +

∑n+1
l=1,l,2 σl

(
xi2 − xil

)
for λl ≥ 0 (l ∈ {2, . . . , n + 1})

5.2 Underestimator of Convex Functions on Integer Lattice 97

and σl ≥ 0 (l ∈ {1, 3, . . . , n + 1}). Subtracting these two expressions yields

0 = xi1 − xi2 +

n+1∑
l=2

λl(xi1 − xil) −
n+1∑

l=1,l,2

σl(xi2 − xil),

= xi1 − xi2 +

n+1∑
l=2

λlxi1 −

n+1∑
l=2

λlxi2 +

n+1∑
l=2

λlxi2 −

n+1∑
l=2

λlxil −

n+1∑
l=1,l,2

σl(xi2 − xil),

=

1 +

n+1∑
l=2

λl

 (xi1 − xi2
)
−

n+1∑
l=2

λl

(
xil − xi2

)
+

n+1∑
l=1,l,2

σl

(
xil − xi2

)
,

=

1 + σ1 +

n+1∑
l=2

λl

 (xi1 − xi2
)

+

n+1∑
l=3

(σl − λl)
(
xil − xi2

)
. (5.7)

Since Xi is an affinely independent set, the vectors
{
xil − xi2 : il ∈ i, il , i2

}
are lin-

early independent. Hence the dependence relation in (5.7) can be satisfied only if

the coefficient on (xi1 − xi2) vanishes. That is,

1 + σ1 +

n+1∑
l=2

λl = 0,

which contradicts λl ≥ 0 (for l = 2, . . . , n + 1) and σ1 ≥ 0. Since xi1 and xi2 were

arbitrary points in Xi, the result is shown.

For each affinely independent set Xi, Lemma 5.2.1 ensures that the secant

function mi underestimates f on Ω ∩Ui. We can therefore underestimate f via a

model that consists of the pointwise maximum of the underestimators for which

the point is in Ui for some affinely independent set Xi of previously evaluated

points. Minimizing this nonconvex model on the integer Ω can then provide a

lower bound for the global minimum of f on Ω.

Figure 5.2 shows a two-dimensional example of points that produce such

secant functions and the regions in which they will underestimate any convex

function f . For the n + 2 points (circles), we consider three affinely independent

sets indicated by triangles linking n + 1 points. The left image shows an affinely

independent set (blue line triangle), and the three cones (shaded blue area) in

which the secant through these points is a valid underestimator. The right image

shows that conditional cuts using n + 2 points can cover all of Rn.

5.2.2 Lower Bound for f

We now describe an optimization problem whose solution provides a lower

bound for f on Ω. Let W(X) denote the set of all multi-indices corresponding to

98 Mixed-Integer Derivative-Free Optimization

Figure 5.2: Illustration of areas in R2 where conditional cuts are valid. Left shows the

regions of the domain where the secant through three points (the vertices of the blue

triangle) will underestimate f . Right shows that one point in the interior of n + 1 points

is sufficient to underestimate f . The conditional cuts correspond to the n + 1 points in the

triangle of the same color.

affinely independent subsets of X:

W(X) =

{
i : Xi ⊆ X, Xi is affinely independent

}
. (5.8)

If f has been evaluated at every point in X, we can construct a secant function

(ci)>x + bi interpolating f on Xi for every multi-index i ∈ W(X). We then collect

all such conditional cuts in the piecewise integer linear program

minimize
x,η

η

subject to η ≥ (ci)>x + bi, for all i ∈ W(X) with x ∈ Ui,

x ∈ Ω,

(PILP)

whereUi is defined in (5.4).

For the set of points X and corresponding W(X), let η(x̄) denote the value of

(PILP) when the constraint x = x̄ is added to (PILP) for a particular x̄ ∈ Ω.

As we will see below, η represents the largest lower bound for f induced by

the set X, and the solution to (PILP) provides a lower bound for f on Ω. Because

the cuts in (PILP) are valid only withinUi, the resulting model takes an optimal

value of η∗ = −∞ if there is a point x ∈ Ω that is not in the union of Ui over

all i ∈ W(X). Also, if size of W(X) is sufficiently large, there might be a large

number of redundant inequalities in (PILP), however, finding and removing such

inequalities seems to be difficult and beyond the scope of this paper.

Lemma 5.2.5 (Underestimator of f). If f is convex on Ω, then the optimal value η∗ of

(PILP) satisfies η∗ ≤ f (x) for all x ∈ Ω.

5.2 Underestimator of Convex Functions on Integer Lattice 99

Proof. If W(X) is empty, the result holds trivially since η is unconstrained. Other-

wise, since (PILP) minimizes η, it suffices to show that η(x) ≤ f (x) for arbitrary

x ∈ Ω. Two cases can occur. First, if x < Ui for every i ∈ W(X), then no condi-

tional cut exists at x. Thus η(x) = −∞ and η(x) < f (x). Second, if x ∈ Ui for some

i ∈ W(X), then

(ci)>x + bi ≤ f (x),

by Lemma 5.2.1, where the affine independence of Xi follows from the definition

of W(X). Therefore, η(x) ≤ f (x) for all x ∈ Ω. Since η∗ = min
x∈Ω

η(x), the result is

shown.

If W(X) in (PILP) is replaced by a proper subset W ′(X) ⊂ W(X) of multi-

indices, then Lemma 5.2.5 still holds. (This relaxation of (PILP) associated with

removing constraints cannot increase η∗.) Such a replacement may be necessary

if W(X) becomes too large to allow considering every affinely independent subset

of X when forming (PILP).

5.2.3 Covering Rn with Conditional Cuts

We find it beneficial to ensure that X contains points that result in a finite

objective value for the underestimator described by (PILP). We now establish a

condition that ensures that the union of conditional cuts induced by X covers Rn

and therefore Ω.

We say that a point x0 belongs to the interior of the convex hull of a set of

points X = {x1, . . . , xn+1} if scalars α j exist such that

x0 =

n+1∑
j=1

α jx j, where
n+1∑
j=1

α j = 1 and α j > 0 for j = 1, . . . , n + 1. (5.9)

This is denoted by x0 ∈ int (conv (X)).

Lemma 5.2.6 (Affine independence of initial points). If X = {x1, . . . , xn+1} ⊂ Rn is

an affinely independent set and if x0 satisfies x0 ∈ int (conv (X)), then all subsets of n + 1

points in {x0} ∪ X are affinely independent.

Proof. For contradiction, suppose that the set {x0} ∪ X \ {xn+1} is not poised and

therefore is affinely dependent. Then, there must exist scalars β j not all zero, and

(without loss of generality) xn ∈ X such that

n−1∑
j=0

β j(x j − xn) = 0. (5.10)

100 Mixed-Integer Derivative-Free Optimization

Replacing x0 with (5.9) in the left-hand side above yields

0 = β0

 n+1∑
j=1, j,n

α jx j + (αn − 1)xn

 +

n−1∑
j=1

β j(x j − xn),

=

n−1∑
j=1

(β0α j + β j)x j +

(
β0(αn − 1) −

n−1∑
j=1

β j

)
xn + β0αn+1xn+1. (5.11)

Since X is poised, the vectors {x1, . . . , xn+1} are affinely independent; by definition

of affine independence, the only solution to
∑n+1

j=1 γ jx j = 0 and
∑n+1

j=1 γ j = 0 is γ j = 0

for j = 1, . . . , n + 1. The sum of the coefficients from (5.11) satisfies

n−1∑
j=1

(β0α j + β j) + β0(αn − 1) −
n−1∑
j=1

β j + β0αn+1 = β0

n+1∑
j=1

α j − β0 = 0,

because
∑n+1

j=1 α j = 1. This means that all coefficients of x j in (5.11) are also equal

to zero. Since αn+1 > 0, the last term from (5.11) implies that β0 = 0. Considering

the remaining coefficients in (5.11), we conclude that β0α j + β j = 0, which implies

that β j = 0 for j = 1, . . . , n − 1. This contradicts the assumption that not all β j = 0.

Hence, the result is proved.

We now establish a simple set of points that produces conditional cuts that

cover Rn and, therefore, the domain Ω. First, we define an important concept used

in many derivative-free algorithms.

Definition 5.2.7 (Positive spanning set). (?, Theorem 2.3 (iii)) A positive spanning set

is a set of vectors, {v1, . . . , vr} ⊂ Rn, such that for every x ∈ Rn there exists nonnegative

coefficients, β ∈ Rr, β ≥ 0 such that x =
∑r

j=1 β jv
j.

Lemma 5.2.8 (Initial points and coverage of Ω). Let X be an affinely independent set

of n + 1 points, let x0 ∈ int (conv (X)), and let W(X ∪ {x0}) be defined as in (5.8). Then,

1. the vectors (x0 − x j) for j ∈ {1, . . . , n + 1} form a ‘positive spanning set’: that is any

x ∈ Rn can be expressed as

x =

n∑
j=1

αi(x0 − x j),

with α j ≥ 0 for all j, and x0 has been chosen arbitrarily.

2. ⋃
i∈W(X∪{x0})

Ui = Rn.

5.2 Underestimator of Convex Functions on Integer Lattice 101

Proof. Since x0 ∈ int (conv (X)), there exist α j > 0 such that

0 = (
n+1∑
j=1

α j)(x0 − x0) = (
n+1∑
j=1

α j)x0 −

n+1∑
j=1

α jx j =

n+1∑
j=1

α j(x0 − x j), (5.12)

where the second equality follows from (5.9). The existence of α j > 0 such that∑n+1
j=1 α j(x0−x j) = 0 implies that the vectors

{
x0 − x j : j ∈ {1, . . . , n + 1}

}
are a positive

spanning set (see Definition 5.2.7). Therefore any x ∈ Rn can be expressed as

x =

n∑
j=1

α j(x0 − x j),

with α j ≥ 0 for all j.

We will show that any x ∈ Rn belongs toUi for some multi-index i containing

x0. By Lemma 5.2.6, every set of n distinct vectors of the form (x0 − x j) for x j ∈ X

is a linearly independent set. Thus we can express

x − x0 =

n+1∑
j=1, j,l

λ j(x0 − x j), (5.13)

for some l ∈ {1, . . . n + 1}. If λ j ≥ 0 for each j, then we are done, and x ∈ cone
(
x0 −

X \ {xl}
)
.

Otherwise, choose an index j′ such that λ j′ is the most negative coefficient

on the right of (5.13) (breaking ties arbitrarily). Using (5.12), we can exchange the

indices l and j′ in (5.13) by observing that

λ j′(x0 − x j′) =
−λ j′

α j′

 n+1∑
j=1, j, j′

α j(x0 − x j)

 .
Note that −λ j′

α j′
α j > 0 by (5.9), and we can rewrite (5.13) as

x − x0 =

n+1∑
j=1, j, j′

µ j(x0 − x j), (5.14)

with new coefficients µ j that are strictly larger than λ j:

µ j =

λ j −

λ j′

α j′
α j > λ j, j , l, j , j′,

−
λ j′

α j′
α j j = l.

Observe that (5.14) has the same form as (5.13) but with coefficients µ j that are

strictly greater than λ j. We can now define λ = µ and repeat the process. If there

is some λ j′ < 0, the process will strictly increase all λ j. Because there are only a

finite number of subsets of size n, we must eventually have all λ j ≥ 0. Once λ j′

has been pivoted out, it can reenter only with a positive value (like µl above), so

eventually all λ j will be nonnegative.

102 Mixed-Integer Derivative-Free Optimization

Lemma 5.2.8 ensures that any affinely independent set of n + 1 points with

an additional point in their interior will produce conditional cuts that cover Rn.

Figure 5.2 illustrates this for n = 2. An alternative set of n + 2 points is

X = {0, e1, e2, . . . , en,−e} ,

where ei is the ith unit vector and e is the vector of ones. Larger sets, such as those

of the form

X = {0, e1,−e1, . . . , en,−en} ,

will similarly guarantee coverage of Rn.

We note that the results in this section do not rely on X or Ω being a subset of

Zn. Therefore, the results are readily applicable to the case when f has continuous

and integer variables.

5.3 Proposed Algorithm and Convergence Analysis

We now present Algorithm 5.1 to identify global solutions to (5.1) under Assump-

tion 5.1. Each iteration of Algorithm 5.1 involves updating the underestimator

Algorithm 5.1: Identifying a global minimizer of a convex objective on

integer Ω.

Input: A set of evaluated points X0 ⊆ Ω satisfying
∣∣∣W(X0)

∣∣∣ > 0

1 Set x̂ ∈ arg min
x∈X0

f (x), upper bound u0 ← f (x̂), and lower bound l0 ← −∞;

k ← 0

2 while lk < uk do

3 Update: Update the piecewise linear program (PILP) using W(Xk)

4 Lower Bound: Solve (PILP) and let its optimal value be lk+1

5 Next Iterate: Select a new trial point xk+1 ∈ Ω \ Xk

6 Evaluate f (xk+1) and set Xk+1 ← Xk ∪ {xk+1}

7 if f (xk+1) < uk then

8 Upper Bound: New incumbent x̂← xk+1 and upper bound

uk+1 ← f (xk+1)
9 else

10 uk+1 ← uk

11 k ← k + 1

Output: x̂, a global minimizer of f on Ω

5.3 Proposed Algorithm and Convergence Analysis 103

of the form (PILP), and then minimizing the underestimator to update the best-

known lower bound and also produce a point to be evaluated. This point replaces

the current incumbent if it has a smaller function value. Algorithm 5.1 stops when

the best-known lower bound equals the best-found function value.

Section 5.4 and Section 5.5 shows two approaches for modeling the under-

estimator and Section 5.5.1 highlights other details that are important for an ef-

ficient implementation of Algorithm 5.1. For example, the next point evaluated

can be a solution of (PILP) but this needs not be the case.

Note that (PILP) provides a valid lower bound for f on Ω. If X ⊆ Ω are

points where f has been evaluated, then min { f (x) : x ∈ X} is an upper bound for

the minimum of f on Ω. Algorithm 5.1 terminates when the upper bound is equal

to the lower bound provided by (PILP). We observe that Algorithm 5.1 produces

a nondecreasing sequence of lower bounds provided that conditional cuts are

not removed from (PILP); we show in Theorem 5.3.1 that this sequence of lower

bounds will converge to the global minimum of f on Ω.

Algorithm 5.1 resembles a traditional outer-approximation approach (???)

in that it obtains a sequence of lower bounds of (5.1) using an underestimator

that is updated after each function evaluation. These function evaluations pro-

vide a nonincreasing sequence of upper bounds on the objective; when the upper

bound equals the lower bound provided by the underestimator, the method can

terminate with a certificate of optimality.

Algorithm 5.1 leaves open a number of important decisions concerning how

(PILP) is formulated and solved and how the next iterate is selected. While we

will discuss more involved options for addressing these concerns, a simple choice

would be to add all new possible cuts and let the next iterate be a minimizer of

(PILP). If this minimizer is not chosen, a (possibly difficult) separation problem

may have to be solved to obtain a new iterate in Line 5, for example, when Ω

is sparse. Although such choices can result in computational difficulties, these

choices are useful for showing the behavior of Algorithm 5.1, which we do now.

In Figure 5.3 we see three iterations of Algorithm 5.1 solving the one-dimensional

problem

minimize f (x) = x2 subject to x ∈ [−4, 4], x ∈ Z.

Black dots indicate interpolation points where f has been previously evaluated,

and green dots indicate the solution to (PILP) in each iteration. The solid red

lines show the piecewise linear underestimator of the function. We observe that

Lemma 5.2.1 can be strengthened for one-dimensional problems where condi-

104 Mixed-Integer Derivative-Free Optimization

−3 −1 1 3

−10

10

x

y

Iter. 1: lk = −9, uk = 1, x̂ = 1

−3 −1 1 3

−10

10

x

y

Iter. 2: lk = −0.27, uk = 0, x̂ = 0

−3 −1 1 3

−10

10

x

y

Iter. 3: lk = 0, uk = 0, x̂ = 0

Figure 5.3: Illustration of Algorithm 5.1 minimizing f (x) = x2 on [−4, 4] ∩ Z.

tional cuts underestimate convex f at all points outside the convex hull of the

points used to determine the corresponding secant function. (This is not true for

n > 1.)

We now prove that Algorithm 5.1 identifies a global minimizer of f .

Theorem 5.3.1 (Convergence of Algorithm 5.1). If Assumption 5.1 holds, Algo-

rithm 5.1 terminates at an optimal solution x∗ of (5.1) in finitely many iterations.

Proof. Algorithm 5.1 will terminate in a finite number of iterations because As-

sumption 5.1 ensures that Ω is finite and Line 5 ensures that xk is not a previously

evaluated element of Ω.

For contradiction, assume that Algorithm 5.1 terminates at iteration k′ with

f (x̂) > f (x∗) for some x∗ ∈ arg min
x∈Ω

f (x). It follows from Line 8 that x∗ < Xk′ , because

f (x∗) < f (x̂). Lemma 5.2.5 ensures that the value of each conditional cut at x∗ is

not larger than f (x∗), which implies that η(x∗) ≤ f (x∗). Thus, the lower bound

satisfies

lk′ ≤ f (x∗) < f (x̂) = uk′ .

Since lk′ < uk′ , Algorithm 5.1 did not terminate at iteration k′, giving a contradic-

tion. Therefore, the result is shown.

A special case of Theorem 5.3.1 ensures that Algorithm 5.1 terminates with a

global solution of (5.1) when xk is an optimal solution of (PILP). As in most inte-

ger optimization algorithms, the termination condition lk = uk may be met before

Xk = Ω; that is, Algorithm 5.1 needs not evaluate all the points in Ω. Termination

before Xk = Ω occurs when (PILP) is refined in Step 4 of Algorithm 5.1 and the

lower bound at all points (and on the optimal value of (5.1)) is tightened. When

the next iterate is chosen, the upper bound typically improves and convergence

5.4 Formulating (PILP) as an MILP Problem 105

occurs faster than enumeration. Yet, in the worst-case scenario, when cuts are

unable to refine (PILP), the algorithm will evaluate all of Ω. The lower bound at

each point in Ω will be equal to the function value at that point, which will imply

lk = uk = minx∈Ω f (x) for (PILP) (ensuring termination of the algorithm).

Algorithm 5.1 relies critically on the underestimator described by (PILP).

Section 5.4 and Section 5.5 develops two approaches for formulating (PILP),

and Section 5.5.1 discusses important details for efficiently implementing Algo-

rithm 5.1. Section 5.5.2 combines these details in a description of our preferred

method for solving (5.1), SUCIL .

5.4 Formulating (PILP) as an MILP Problem

We present two methods for encoding (PILP) and thereby obtain lower bounds

for (5.1). The first approach formulates (PILP) as a mixed-integer linear program

(MILP) using binary variables to indicate when a point x is inUi for some multi-

index i. We show later in Section 5.5 that the resulting MILP is difficult to solve

for even small problem instances. This motivates the development of the second

approach, which directly builds an enumerative model of (PILP) in the space of

the original variables only. First, we present the MILP based approach.

5.4.1 MILP Formulation

Formulating (PILP) as an MILP problem requires forming the secant func-

tion mi(x) = (ci)>x + bi corresponding to each multi-index i ∈ W(X). Since mi

is valid only in Ui (see Lemma 5.2.5), we use binary variables to encode when

x ∈ Ui. Explicitly, for each i ∈ W(X) and each i j ∈ i, our MILP model sets the

binary variable zi j to be 1 if and only if x ∈ cone
(
xi j − Xi). Although the forward

implication can be easily modeled by using continuous variables λi j , we must

introduce additional binary variables wi j for the reverse implication.

We now describe the constraints in the MILP model, some of which include

“big-M” terms that can make the model difficult to solve numerically. The first

set of constraints ensures that η is no smaller than any of the conditional cuts that

underestimate f :

η ≥ (ci)>x + bi − Mη

1 − n+1∑
j=1

zi j

 , ∀i ∈ W(X), (5.15)

106 Mixed-Integer Derivative-Free Optimization

where Mη is a sufficiently large constant. By Lemma 5.2.4, we can add constraints

to ensure that x ∈ Ω belongs to no more than one of the cones inUi for a given i:
n+1∑
j=1

zi j ≤ 1, ∀i ∈ W(X). (5.16)

The following constraints define each point x ∈ Ω as a linear combination of the

extreme rays of each cone
(
xi j − Xi):

x = xi j +

n+1∑
l=1,l, j

λ
i j

l

(
xi j − xil

)
, ∀i ∈ W(X), ∀i j ∈ i. (5.17)

To indicate that x ∈ cone
(
xi j −Xi), the following constraints enforce a lower bound

of 0 on λ when the corresponding zi j = 1:

λ
i j

l ≥ −Mλ

(
1 − zi j

)
, ∀i ∈ W(X), ∀i j, il ∈ i, j , l, (5.18)

where Mλ is a sufficiently large constant. Next, we introduce the binary variables

w
i j

l that are 1 when the corresponding variable λi j

l is nonnegative. The following

constraints model the condition that wi j

l = 0 implies that the corresponding λ
i j

l

takes a negative value:

λ
i j

l ≤ −ελ + Mλw
i j

l , ∀i ∈ W(X), ∀i j, il ∈ i, j , l, (5.19)

where ελ is a sufficiently small positive constant. The last set of constraints force

at least one of the w variables to be 0 if the corresponding z is 0:

nzi j ≤

n+1∑
l=1,l, j

w
i j

l ≤ n − 1 + zi j , ∀i ∈ W(X), ∀i j ∈ i. (5.20)

The full MILP model encoding of (PILP) is

minimize
x,λ,z,w

η

subject to (5.15)–(5.20),

w
i j

l , z
i j ∈ {0, 1}, ∀l, j ∈ {1, . . . , n + 1}, l , j; ∀i ∈ W(X),

x ∈ Ω.

(CPF)

5.4.2 Issues with MILP Formulation

The constants Mη,Mλ, and ελ must be chosen carefully in order to avoid nu-

merical issues when solving (CPF). In early numerical results, we observed that

taking large values for Mη and Mλ and small values for ελ resulted in numerical

issues for the MILP solvers. In an attempt to remedy this situation, we derived

cuts in which ci and bi are integer valued. We elaborate on these issues in this

section.

5.4 Formulating (PILP) as an MILP Problem 107

Derivation of Tolerances

We show how one can compute sufficient values of Mη, ελ, and Mλ for the MILP

model (CPF). We first show that if we choose these parameters incorrectly, then

the resulting MILP model no longer provides a valid lower bound.

Effect of an Insufficient ελ Value. A large ελ or small Mλ (or both) could result in

an incorrect value of zi j = 1 for a point x < cone
(
xi j − Xi), violating the implication

of zi j = 1 and yielding an invalid lower bound on f . This is illustrated using a

one-dimensional example in Figure 5.4. Similarly, one can encounter an invalid

lower bound at an iteration if Mλ is chosen to be smaller than required.

−2 −1 1 2

x

f(x)

Figure 5.4: An example of false termination of Algorithm 5.1 using (CPF) when an insufficient

value of ελ is used: f (x) = x2 and interpolation points −1 and 1 are used to form the secant shown

in red colour. Any value of ελ > 0.5 forces z11 = z12 = 1, activating the cut η ≥ 1 at the optimal

x∗ = 0, resulting in lkf = uk
f = 1.

Bound on Mη Let l f be a valid lower bound of f on Ω. With this lower bound,

scalars Mi can be defined as

Mi = max
x∈Ω
{(ci)>x + bi} − l f , ∀i ∈ W(X). (5.21)

If Ω = {x : lx ≤ x ≤ ux}, where lx, ux ∈ R
n are known, then we can set

Mi =
∑

h:cij <0

ci
hlx +

∑
h:cij ≥0

ci
hux + bi − l f , h = 1, . . . , n, ∀i ∈ W(X). (5.22)

Then, we can either set individual values of Mi within each constraint (5.15),

which would yield a tighter model, or use a single parameter,

Mη = max
i
{Mi}, (5.23)

as shown in (CPF).

108 Mixed-Integer Derivative-Free Optimization

Bounds on ελ and Mλ Sufficient values of Mλ and ελ are not easy to calculate

as they depend on the rays generated at xi j , and the domain Ω. We show next,

that bounds on these values can be computed by solving a set of optimization

problems. A sufficient value for ελ can be computed based on the representations

of the n + 1 hyperplanes formed using different combinations of n points, ∀i ∈
W(X). We can use one of the representations of the hyperplane passing through

points Xi \ {xi j}, j = 1 . . . n + 1 to obtain bounds on ελ, by solving an optimization

problem for each i j ∈ i. Let cii j− and bii j− denote the solution of the following

problem.
minimize

c,b
‖c‖1

subject to c>xil + b = 0, l = 1, . . . , n + 1, l , j,

‖c‖1 ≥ 1,

c ∈ Zn, b ∈ Z.

(P−hyp)

Problem (P−hyp) can be easily cast as an integer program by replacing ‖c‖1 by

e>y, where e = (1, . . . , 1)> is the vector or all ones, and the variables y satisfy the

constraints y ≥ c, y ≥ −c. Because, the hyperplane is generated using n integer

points, it can be shown that there exists a solution cii j− and bii j− that is nonzero

and integral, as stated in the following proposition.

Proposition 5.4.1. Consider a hyperplane S = {x : c>x + b = 0} such that c and b are

integral. The Euclidean distance between an arbitrary point x̂ ∈ Zn \ S , and S , is greater

than or equal to 1
||c||2

.

Proof. The Euclidean distance between a point x̂ and S is the 2-norm of the pro-

jection of the line segment joining an arbitrary point w ∈ S and x̂, on the normal

passing through x̂, and can be expressed as

|c> x̂ + b|
||c||2

. (5.24)

By integrality of c, b and x̂, and since x̂ < S , |c> x̂+b| ≥ 1, and the result follows.

Proposition 5.4.1 can be used directly to get a sufficient value of ελ as follows.

ελ = min
i∈W(X), i j∈i

1

||cii j− ||2

. (5.25)

The bound can be tightened using the following optimization problem.

minimize
x

|(cii j−)>x + bii j− |

||cii j− ||2

subject to |(cii j−)>xil + bii j− | ≥ 1,

x ∈ Ω.

(P-ε)

5.4 Formulating (PILP) as an MILP Problem 109

If we denote by ε
ii j−

λ , the optimal value of (P-ε), then the following is a sufficient

value of ελ.

ελ = min
i∈W(X), i j∈i

ε
ii j−

λ . (5.26)

Similarly, if we maximize the objective in (P-ε), and denote the optimal value by

M
ii j−

λ we get a sufficient value for Mλ as follows.

Mλ = max
i∈W(X), i j∈i

M
ii j−

λ . (5.27)

No-Good Cuts and Stronger Objective Bounds. For our initial experiments,

we tried setting arbitrarily small values for ελ instead of obtaining the best pos-

sible values by solving a set of optimization problems as elaborated above. The

problem with having such values of ελ > 0 too small is that it allows us to ignore

the cuts at the interpolation points, x(k), causing a violation of the bound, η ≥ f (k),

for x = x(k) in the MILP model, resulting in repetition of iterates in the algorithm.

We fixed this by adding the following valid inequality to the MILP model.

η ≥ f (k) − M‖x(k) − x‖1.

We can write this inequality as a linear constraint, by introducing a binary repre-

sentation of the variables, x, requiring nU binary variables, ξi j, i = 1, . . . , n, j =

1, . . . ,U, where n is the dimension of our problem, and 0 ≤ x ≤ U. With this

representation, we obtain

xi =

U∑
j=1

iξi j, 1 =

U∑
j=1

ξi j, ξi j ∈ {0, 1},

and write the η-constraint equivalently as

η ≥ f (k) − M
n∑

i=1

 ∑
j:ξ(k)

i j =0

ξi j +
∑

j:ξ(k)
i j =1

(
1 − ξi j

) .
One can spawn fewer binary variables using binary variables in the following

way,

xi =

bUic∑
j=1

2 j · ξi j, ξi j ∈ {0, 1},

however, we do not elaborate more on this as the MILP approach is not scalable

in this context.

One can then show, for example, that 1/‖ci‖2 is a valid lower bound for ελ,

and similar tight bounds can be derived for Mλ. With these tighter constants,

110 Mixed-Integer Derivative-Free Optimization

Figure 5.5: Characteristics of the first 12 instances of (CPF) generated by Algorithm 5.1

minimizing the convex quadratic abhi on Ω = [−2, 2]3 ∩ Z3. Left shows the lower bound

and solution time (mean of five replications and maximum and minimum times are also

shown); right shows the number of binary and continuous variables and constraints. For

further details of these 12 MILP models, see Table 5.1.

some numerical issues were resolved. Yet, the growth in the number of con-

straints in (CPF) prevented its application to problems with n ≥ 3.

Initial versions of the MILP model (CPF) resulted in large times to solution.

Figure 5.5 shows the behavior of Algorithm 5.1—when adding all possible cuts

when updating (PILP) and choosing the next iterate be a minimizer of (PILP)—

when minimizing the convex quadratic function abhi (defined in Table A.4 of

Appendix A) on Ω = [−2, 2]3 ∩ Z3. We note that the variations in CPU time are

consistent over five repeated runs and vary by less than 2.4% for the last two iter-

ations. The solution time of MILP solvers depends critically on implementation

features, including presolve operations, node selection rules, and branching pref-

erences. After the additional set of cuts (constraints) are introduced in iteration

12 of this problem instance, the MILP solver was able to solve the problem in

slightly less time than the previous iteration. (Such occurrences are not rare in

MILPs: time to solution is not strictly increasing in problem size.) Overall, we

find that the growth in CPU time is due to the increasing number of conditional

cuts and the associated explosion in the number of binary and continuous vari-

ables. This trend appears to limit the applicability of the MILP approach. Note

that the global minimum of abhi on [−2, 2]3 ∩ Z3 has not yet been encountered

when the MILPs become too large to solve. (The iteration 13 MILP instance was

not solved in 30 minutes.)

5.5 Enumerative Approach 111

Table 5.1: Characteristics of the first 12 instances of (CPF) generated by Algorithm 5.1 minimizing

the convex quadratic function abhi on Ω = [−2, 2]3 ∩ Z3. (CPF) instances are generated by AMPL

and solved by CPLEX; times are the mean of five replications.

k sHyp LB UB time simIter nodes bVars cVars cons x̂

1 20 -616.3 79.9 0.1 374 0 335 268 960 [2; 2;−2]

2 52 -555.1 79.9 3.9 13,180 8,089 847 685 2,466 [2; 2;−1]

3 100 -475.2 44.7 10.9 31,423 8,555 1,615 1,310 4,724 [2; 1;−2]

4 172 -434.4 44.7 7.3 19,267 1,728 2,767 2,247 8,110 [1; 2;−2]

5 276 -413.9 19.1 30.8 68,264 5,874 4,431 3,600 13,000 [2; 1;−1]

6 418 -373.1 19.1 95.1 84,031 7,933 6,703 5,447 19,676 [1; 2;−1]

7 611 -311.7 19.1 59.6 83,102 5,440 9,791 7,957 28,749 [2;−2;−2]

8 866 -293.2 19.1 99.6 86,318 3,933 13,871 11,273 40,736 [1; 1;−2]

9 1,196 -232.0 19.1 154.2 84,440 4,568 19,151 15,564 56,248 [1; 1;−1]

10 1,532 -199.5 19.1 452.3 235,473 6,400 24,527 19,933 72,042 [2;−2;−1]

11 2,038 -192.9 19.1 1,006 387,491 9,686 32,623 26,512 95,826 [2;−1;−2]

12 2,605 -140.9 19.1 964.3 455,939 29,279 41,695 33,884 122,477 [1;−1;−2]

Table 5.1 shows the size of the MILP model at each iteration and the com-

putational effort required for solving it. The column k refers to the iteration of

Algorithm 5.1, sHyp denotes the number of secants (i.e., |W(X)|), and LB and UB

give the lower and upper bound on f on Ω, respectively. We show the compu-

tational effort needed to solve each MILP instance via time, the mean solution

time (in seconds) for 5 replications; simIter, the number of simplex iterations; and

nodes, the number of branch-and-bound nodes explored by the MILP solver. The

size of each MILP instance (after presolve) is shown in terms of bVars, the num-

ber of binary variables; cVars, the number of continuous variables; and cons, the

number of constraints. Table 5.1 also shows the optimal solution x̂ of each MILP

instance. These experiments were performed by using CPLEX (v.12.6.1.0) on a

2.20 GHz, 12-core Intel Xeon computer with 64 GB of RAM. For this small prob-

lem we see that the size of the MILP instance grows exponentially as the iterations

proceed, which results in an exponential growth in solution time as illustrated in

Figure 5.5. The iteration 13 MILP instance was not solved after 30 minutes.

5.5 Enumerative Approach

Whereas the MILP model from Section 5.4 encodes information about every con-

ditional cut in a single model, this section considers an alternative approach of

updating the value of η(x) for each x ∈ Ω as new conditional cuts are encoun-

tered. After the information from a new secant function is used to update η(x),

the secant is discarded.

112 Mixed-Integer Derivative-Free Optimization

Ordering the finite set of feasible integer points as
{
x1, x2, . . . , x|Ω|

}
, our ap-

proach maintains and updates a vector of bounds[
η(x1), η(x2), . . . , η(x|Ω|)

]>
∈ R|Ω|, (5.28)

where η(x j) is the value of (PILP) when x = x j. The value of η(x j) is initialized to

−∞; and as each secant is constructed, η(x j) is set to the maximum of its current

value and the value of the conditional cut at x j. This procedure is described in

Algorithm 5.2. Since the important information about each conditional cut will be

stored in η(x), the secants defining each cut do not need to be stored. (Not storing

secants comes at a cost of storing η(x) for each x ∈ Ω, which may be prohibitive if

|Ω| is large.)

If ηk(x) is the value of the underestimator (5.28) at iteration k, then solving

each instance of (PILP) corresponds to looking up arg min
j∈{1,...,|Ω|}

ηk(x j) (breaking ties

arbitrarily). Similarly, termination of Algorithm 5.1 requires testing only that

min
j∈{1,...,|Ω|}

ηk(x j) ≥ uk.

Note that when solving (5.1), updating η(x) for all x ∈ Ω is unnecessary.

Rather, one needs to update η(x) only at points that could possibly be a global

minimum of f on Ω. When f is evaluated at xk+1 and a multi-index i ∈ W(Xk∪xk+1)

is encountered that is not in W(Xk), we update the lower bound only at points in

Ui that are also in

Ωk = {x ∈ Ω \ Xk : ηk(x) < uk}. (5.29)

That is, we update ηk(x) for points inUi
k = Ωk ∩U

i for each newly encountered i.

Algorithm 5.2: Routine for updating lower bound for f at each point

in Ω.
1 Function UpdateEta(Xi,bi,ci,Ui

k ,η(x)):

2 for ik ∈ i do

3 for j = 1, . . . , |Ω| do

4 if x j ∈ cone
(
xik − Xi) ∩Ui

k then

5 η(x j)← max
(
η(x j), (ci)>x j + bi)

5.5.1 Other Implementation Details

The enumerative approach of maintaining the value of the underestimator

η(x) described in Section 5.5 avoids many of the computational pitfalls of the

5.5 Enumerative Approach 113

MILP model discussed in Section 5.4. Below, we discuss additional computa-

tional enhancements that lead to an efficient implementation of Algorithm 5.1 in

conjunction with Algorithm 5.2.

Checking Whether Xi Is Affinely Independent and Whether x ∈ Ui

We now describe a numerically efficient representation of cone
(
xi j − Xi) for i j ∈ i.

Given an affinely independent set of n + 1 points, Xi, for each i j ∈ i we define a

secant function satisfying

(ci j)>xil + bi j = 0, for all il ∈ i, il , i j, and (5.30)

(ci j)>xi j + bi j > 0. (5.31)

Only one such secant exists for each i j ∈ i; however, the representation of this

secant is not unique since (ci j , bi j) are obtained by solving an underdetermined

system of equations. Given (ci j , bi j) satisfying (5.30) and (5.31), we define the cor-

responding halfspace,

Hi j = {x : (ci j)>x + bi j ≤ 0}. (5.32)

We now show that cone
(
x j − Xi), defined in (5.5), can be represented as the inter-

section of n such halfspaces.

Lemma 5.5.1 (Set equality). For an affinely independent set Xi, cone
(
xi j − Xi) = F i j =⋂

il,i j

Hil for each i j ∈ i.

Proof. Let i be given and i j ∈ i fixed. We first show that cone
(
xi j − Xi) ⊆ F i j by

showing that an arbitrary x ∈ cone
(
xi j − Xi) satisfies (5.32) for each il ∈ i, il , i j.

Given (cil , bil) satisfying (5.30) and (5.31), then using the definition (5.5) yields

(cil)>x + bil = (cil)>
xi j +

n+1∑
k=1,k, j

λk(xi j − xik)

 + bil ,

= (cil)>xi j + bil +

n+1∑
k=1,k, j

λk(cil)>xi j −

n+1∑
k=1,k, j

λk(cil)>xik ,

= 0 +

n+1∑
k=1,k, j

λk

(
(cil)>xi j + bil

)
−

n+1∑
k=1,k, j

λk

(
(cil)>xik + bil

)
,

= 0 −
l−1∑

k=1,k, j

λk

(
(cil)>xik + bil

)
− λl

(
(cil)>xil + bil

)
−

n+1∑
k=l+1,k, j

λk

(
(cil)>xik + bil

)
,

= −λl

(
(cil)>xil + bil

)
≤ 0,

114 Mixed-Integer Derivative-Free Optimization

where we have used (5.30) in the last three equations. The final inequality holds

because λl ≥ 0 by (5.5) and (cil)>xil + bil > 0 by (5.31). Because il is arbitrary, it

follows that any x in cone
(
xi j − X

)
is also in F i j .

We now show that F i j ⊆ cone
(
x j−Xi) by contradiction. If x < cone

(
xi j −Xi) for

a set of n + 1 poised points Xi, then x can be represented as xi j +

n+1∑
l=1,l, j

λl

(
xi j − xil

)
only with some λl < 0. Thus, (5.32) is violated for some l, and hence x < F i j .

Lemma 5.5.1 gives a representation of each cone
(
xi j − Xi) involving n half-

spaces that differs from cone
(
xil − Xi) for il ∈ i, il , i j in only one component.

Therefore, we can represent Ui via only n + 1 halfspaces. We efficiently calcu-

late these halfspaces by utilizing the QR factorization
[
Qi Ri] =

[
X̄i e

]>
. If Ri has

positive diagonal entries, then the multi-index i corresponds to an affinely inde-

pendent set Xi. The coefficients in each (ci j , bi j) can be obtained by updating Qi,
Ri by deleting the corresponding column from

[
X̄i e

]>
. The sign of (ci j , bi j) can be

changed in order to ensure that (5.31) holds.

Approximating W(Xk ∪ {xk+1})

The use of ηk(x) to store the lower bound at each x ∈ Ωk allows us to avoid encod-

ing all secants in W(Xk). After f has been evaluated at a new point xk+1, construct-

ing the tightest possible underestimator in ηk requires considering multi-indices i
in W(Xk∪{xk+1}) that contain xk+1. (Combinations not containing xk+1 have already

been considered in previous iterations.) While not storing secants is significantly

more computationally efficient than encoding and storing all secants in W(Xk),

it still results in checking the affine independence of prohibitively many sets of

n+1 points. For example, if
∣∣∣Xk

∣∣∣ = 100 and n = 5, over 75 million QR factorizations

must be performed, as discussed in Section 5.5.1.

Therefore, as an alternative, we seek a small, representative subset of multi-

indices of W(Xk) by identifying a subset of points that will yield the best condi-

tional cuts.

Definition 5.5.2. Let W̄k be the set of multi-indices in W(Xk) that define the largest

lower bound at some point in Ωk (defined in (5.29)). That is, W̄k = {i : ∃x ∈

Ωk such that ηk(x) = mi(x)}. We denote the generator set of points as Gk = {x j : ∃i ∈
W̄k such that j ∈ i}.

Hence, Gk contains points that define ηk(x) for at least one x ∈ Ωk. Using

W(Gk) in place of W(Xk) does relax (PILP), yet the lower bounding property of

5.5 Enumerative Approach 115

Figure 5.6: Number of total combinations and affinely independent combinations that

include xk+1 in W(Xk) (left) and W(Gk) (right) when minimizing quad on Ω = [−4, 4]3∩Z3.

(PILP) still remains. We show below that this change does not affect the finite

termination property of Algorithm 5.1 provided at least one cut is added for every

new xk+1.

Figure 5.6 compares the growth of the number of subsets of indices that must

be considered when determining whether a multi-index i is affinely independent

or not when using Algorithm 5.1 to minimize quad (Table A.4 in Appendix A)

on Ω = [−4, 4]3 ∩ Z3. Preliminary numerical experiments showed that although

a high percentage of all combinations in W(Xk ∪ xk+1), which involve the new

iterate xk+1 at an iteration k, are affinely independent, only a small fraction of

these actually update the lower bound at any point in Ωk (we elaborate more on

this in Section 5.7).

Selecting xk+1

Early experiments with our algorithm showed that it spent many early iterations

evaluating points at the boundary of Ω. Although Section 5.2.3 provides a method

for ensuring that all x ∈ Ω are bounded by at least one conditional cut, the solu-

tion to (PILP) is often at the boundary of Ω. Rather than moving so far from a

candidate solution, we consider a trust-region approach to keep iterates close to

the current incumbent. As long as we maintain a lower bound for f on Ω, the

convergence proof in Theorem 5.3.1 does not depend on xk+1 being the global

minimizer of our lower bound.

In practice, we use an infinity-norm trust region and set the minimum trust-

region radius, ∆min to 1. At iteration k, the maximum radius that must be consid-

ered is maxx,y∈Ωk ,x,y ‖x − y‖∞.

116 Mixed-Integer Derivative-Free Optimization

5.5.2 The SUCIL Method

We now present the SUCIL —secant underestimator of convex functions on

the integer lattice— method for obtaining global solutions to (5.1) under Assump-

tion 5.1. The algorithm using the trust-region step is shown in Algorithm 5.3. We

observe that Algorithm 5.3 maintains a valid lower bound ηk(x) at every point,

x ∈ Ωk, and that the trust-region mechanism ensures that the algorithm termi-

nates only when the lower bound equals the best observed function value.

We note that Gk may not be a subset of Gk+1, because Ωk can contain fewer

points as the upper and lower bounds on f are improved. However, the following

generalization of Theorem 5.3.1 ensures that Algorithm 5.3 still returns a global

minimizer of (5.1).

Theorem 5.5.3 (Convergence of Algorithm 5.3). If Assumption 5.1 holds and if

W(Gk) includes at least one cut for every x ∈ Ωk, then Algorithm 5.3 terminates at an

optimal solution x∗ of (5.1) in finitely many iterations.

Proof. Algorithm 5.3 will terminate in a finite number of iterations because Ω is

bounded and Line 16 ensures that xk is not a previously evaluated element of Ω.

Because W(Gk) ⊂ W(Xk), it follows that ηk(x) is a valid lower bound for f on Ω,

and the trust-region mechanism in Line 18 ensures that Algorithm 5.3 terminates

only if lk+1 = uk. Therefore, the result is shown.

Both Algorithm 5.1 and Algorithm 5.3 have a worse than exponential time

complexity because they solve an MILP problem (indirectly, in Algorithm 5.3).

For integer programming algorithms like branch-and-bound, typically a weak

bound is given by complete enumeration. Our algorithms may have to enumer-

ate all points in Ω when our secants are ineffective. For example, if Ω = {0, 1}n,

the described approaches must evaluate all 2n points. A noteworthy expensive

computation in Algorithm 5.3 is the construction of the set Gk (see Line 5) that

requires finding sets of n-sized combinations of points in Xk at each iteration k.

This can amount to O((|Xk|)!/n!(|Xk| − n)!) such sets. Different tasks and checks

then have to be performed corresponding to each element in Gk. For example, we

compute a QR factorization (O(n3)) for each element in Gk to check if a point lies

inUi and update the lower bound if the point belongs toUi.

5.5 Enumerative Approach 117

Algorithm 5.3: The SUCIL method for convex MIDFO.

Input: A set of evaluated points X0 ⊆ Ω :
⋃

i∈W(X0)

Ui = Rn and trust-region

radius lower bound ∆min ≥ 1

1 Set x̂ ∈ arg min
x∈X0

f (x), upper bound u0 ← f (x̂), Ω0 ← Ω, and k ← 0.

2 Initialize lower bounding function η−1(x)← −∞ for all x ∈ Ω; set lower

bound l0 ← −∞.

3 while lk < uk do

4 Update:

5 Generate Gk (according to Definition 5.5.2) using Xk .

6 for i ∈ W(Gk) do

7 Compute QR factors: [Q,R]← qr([e Xi]).
8 if Xi is affinely independent then

9 Find ci, bi and form setUi
k ← Ωk ∩U

i using QR factors.

10 Update look-up: ηk ← UpdateEta(Xi,bi,ci,Ui
k ,ηk−1); see

Algorithm 5.2.

11 Lower Bound:

12 lk+1 ← min
x∈Ωk

ηk(x) from look-up table.

13 if lk+1 = uk then

14 break

15 Next Iterate:

16 Update Ωk ← {x ∈ Ω \ Xk : ηk(x) < uk} .

17 if {x ∈ Ωk : ‖x − x̂‖ ≤ ∆k} = ∅ then

18 Increase trust-region radius: ∆k ← ∆k + 1 until

{x ∈ Ωk : ‖x − x̂‖ ≤ ∆k} , ∅ .
19 else

20 Set xk+1 ∈ arg min
x∈Ωk:‖x−x̂‖≤∆k

ηk(x).

21 Evaluate f (xk+1) and set Xk+1 ← Xk ∪ {xk+1}.

22 if f (xk+1) < uk then

23 Upper Bound:

24 New incumbent x̂← xk+1 and upper bound uk+1 ← f (xk+1).

25 Increase trust-region radius ∆k+1 ← ∆k + 1 .

26 else

27 No progress: uk+1 ← uk and reduce trust-region radius

∆k+1 ← max
{
∆min,

∆k
2

}
.

28 k ← k + 1

Output: x̂, a global minimizer of f on Ω

118 Mixed-Integer Derivative-Free Optimization

Method X in (PILP)? xk+1 =?

SUCIL Gk arg min
x∈Ωk:‖x−x̂‖∞≤∆k

ηk(x)

SUCIL-noTR Gk arg min
x∈Ωk

ηk(x)

SUCIL-ideal1 Xk arg min
x∈Ω\Xk

f (x)

SUCIL-ideal2 Gk arg min
x∈Ω\Xk

f (x)

Table 5.2: Description of how SUCIL versions

choose X in (PILP) and the next iterate xk+1

(breaking ties in arg min arbitrarily). Gk is de-

fined in Definition 5.5.2, and Xk is all points

evaluated before iteration k.

Figure 5.7: Performance profiles for

SUCILs. Convergence measured by

number of function evaluations before

a method terminates with a certificate

of global optimality.

5.6 Numerical Experiments

We now describe numerical experiments performed on multiple versions of SU-

CIL ; see Table 5.2. These methods differ in how xk+1 is selected and in the set

of points used within (PILP). The last two methods are idealized because they

assume access to the true function value at every point in Ωk. They are included

in order to provide a best-case performance for a SUCIL implementation. In the

numerical experiments to follow, we set ∆min ← 1 in Algorithm 5.3 and use an

infinity-norm trust region. All SUCIL instances begin by evaluating the starting

point x̄ and {x̄ ± e1, . . . , x̄ ± en} ensuring a finite lower bound at every point in Ω.

Below, we compare SUCIL implementations with a direct-search method,

DFLINT (?); a model-based method, MATSuMoTo (?); and a hybrid method,

NOMAD (?). We tested the default nonmonotone DFLINT in MATLAB, as well

as the monotone version, denoted DFLINT-M . We tested the default C++ ver-

sion of NOMAD (v.3.9.0) as well as the same version with DISABLE MODELS

set to true, denoted NOMAD-dm ; the rest of the settings are default. MAT-

SuMoTo is a surrogate-model toolbox explicitly designed for computationally

expensive, black-box, global optimization problems. Since MATSuMoTo has a

restarting mechanism that ensures that any budget of function evaluations will

be exhausted, we input the optimal objective function value to MATSuMoTo and

allowed it to run (and make as many restarts as required) until the global opti-

mal value was identified. The default settings were used: surrogate models using

cubic radial basis functions, sampling at the minimum of the surrogate, and us-

5.6 Numerical Experiments 119

ing an initial symmetric Latin hypercube design. We performed 20 replications

of MATSuMoTo for each problem instance. We show the results from the repli-

cation that takes a number of function evaluations less than but closest to the

median value for each problem instance. A common starting point is given to all

methods; the starting point for the problems entropy, infnorm, maxq, mxhilb

and onenorm is the global minimizer. A maximum function evaluation limit of

1,000 is set for all the methods when there are more than 1000 points in Ω.

We perform numerical experiments minimizing the convex objectives in Ta-

ble A.4 in Appendix A on the domains [−K,K]n ∩ Zn for K = 4, 10, 20 for n ∈ {3, 4}

and K = 4 for n = 5 to yield 112 problem instances. (The last row of Table 5.1

shows |Ω| for these test problems.) While we choose to test our method on do-

mains Ω defined only by bound constraints on x variables, general convex con-

straints can be also be accommodated by adding a small mechanism to check

the feasibility of the new iterate. Of note is the KLT function that generalizes

the example function by ? that shows how coordinate search methods can fail

to find descent. The function by ? is itself a modification of the Dennis-Woods

function (?), is strongly convex, and points x along the line x1 = · · · = xn sat-

isfy f (x) < f (x ± εei) for all i and for all ε > 0. The problems CB3II, CB3I, LQ,

maxq, and mxhilb were introduced by ? and also used by ?. These five prob-

lems are either summation or maximization of generalizations of simple convex

functions, constructed by extending or chaining nonsmooth convex functions or

making smooth functions nonsmooth. The function LQ takes a global minimum

at any x ∈ [0, 1]n ∩ Zn that does not have zeros in consecutive coordinates. For

example, for n = 3, the points [0, 1, 0]>, [0, 1, 1]>, [1, 0, 1]>, [1, 1, 0]>, and [1, 1, 1]>

are optimal but [0, 0, 0]>, [0, 0, 1]>, and [1, 0, 0]> are not. Problem reciprob is

a slightly modified version of the foundational case of concave reciprocal func-

tions (?, Exercise 4.4.10) whose convexity is difficult to establish through Hes-

sian computations. Problem entropy (?, Section 6.4) has applications in nuclear

magnetic resonance analysis. If there are relatively few points in Ω and the time

required to evaluate f is small (as for our test instances), one could argue that

an enumerative procedure itself could solve the problem in a reasonable time.

However, we use these instances to thoroughly examine the behavior that might

be seen on expensive-to-evaluate black-box functions. Therefore, we compare

methods using performance profiles (?) that are based on the number of func-

tion evaluations required to satisfy the respective convergence criterion. For each

method s, ρs(α) =
|{p∈P:rp,s≤α}|

|P| , for a scalar α ≥ 1, P is the collection of problems, and

120 Mixed-Integer Derivative-Free Optimization

Figure 5.8: Performance profiles of different methods solving 112 problem instances. Left

compares the number of evaluations until a method terminates; right compares the num-

ber of evaluations before a method first evaluates a global minimizer. Performance for

each solver on each problem instance can be found in Tables A.1–A.3 in Appendix A.

rp,s =
Np,s

mins∈S {Np,s}
is the performance ratio. We consider two measures of Np,s: (1) the

number of function evaluations before a method s terminates on a problem p and

(2) the number of function evaluations taken by method s to evaluate a global

minimizer on problem p.

Figure 5.7 compares the number of evaluations required for four implemen-

tations of SUCIL to terminate (with a certificate of optimality) on the set of test

problems. While SUCIL-ideal1 is no slower than any other implementation on

all the test problems, it is not a realistic method in that it evaluates points based

on their known function values. SUCIL requires no more than three times the

evaluations as SUCIL-ideal1 for the set of test problems. We do observe that us-

ing a trust region in SUCIL is a significant advantage. For many of the problems

considered, SUCIL-noTR spent many function evaluations in the corners of Ω.

As a point of comparison with the results in Figure 5.7, a different estimate

of the number of function evaluations (or primitive directions explorations) re-

quired for the proof of optimality for our instances can be seen in Table 5.1, in

columns corresponding to n ∈ {3, 4, 5} and k = 4. As evident from the results in

Tables A.1–A.3, our method incurs a remarkably low number of function evalu-

ations for many problems, which can be attributed to exploitation of convexity

and subsequent formation of the underestimators, as explained in Section 5.1.

Note that for many problems (with fixed n), the number of function evaluations

to prove optimality does not grow as K increases.

5.7 Discussion 121

We now analyze the performance of SUCIL compared with the other meth-

ods. Figure 5.8 (left) shows the performance profiles for methods to terminate on

the 112 test problems; Figure 5.8 (right) compares the number of function evalu-

ations required before each method first evaluates a global minimizer. This com-

parison is nontrivial because each solver has its own design considerations and

notions of local optimality. Also, the other solvers do not assume convexity of the

problem or exploit it. Hence, our results merely demonstrate that SUCIL prov-

ably converges to a global optimum and uses fewer function evaluations to cer-

tify global optimality because of its exploitation of convexity. Figure 5.8 shows

that our algorithm requires the least number of function evaluations for more

than 80% of the instances and provides a global optimality certificate, in addi-

tion. In reaching the global optimal solution quickly, however, DFLINT wins for

more than 60% of the instances. Although SUCIL is not particularly designed to

greedily descend to the global optimum, it is still competitive with the rest of the

methods on this front.

Next, we examine the behavior of various solvers using data profiles with

convergence test as described by ?. Figure 5.9 (left) shows the data profiles for

τ = 0. We observe that DFLINT performs slightly better compares to other solvers

within the function evaluation range [16, 64], however, DFLINT-M and SUCIL

are quite close. For an accuracy level τ = 0.5 (right, Figure 5.9), most of the

solvers perform identically, except MATSuMoTo .

While our approach finishes in seconds for many problems, this does not

hold for all problems. For example, the n = 5, K = 4 instance of reciprob re-

quired approximately 1 minute over its 44 function evaluations and mxhilb re-

quired 5 minutes for its 144 function evaluations. As the problem domain grows,

so can the computational requirements. The worst-case problem was onenorm

for n = 5, K = 4, which required approximately three days to complete. (Nearly

all of this time was spent constructing and using the various secants to update

the lower bound η.)

5.7 Discussion

The order of results in this paper tells the story of how we arrived at the im-

plementation of SUCIL . We first attempted to classify where linear interpolation

models provide lower bounds for convex functions, yielding the results in Sec-

tion 5.2; we then proved that such linear functions can underlie a convergent

122 Mixed-Integer Derivative-Free Optimization

Figure 5.9: Data profiles of different methods solving 112 problem instances. Left profile

corresponds to τ = 0 and right corresponds to τ = 0.5.

algorithm, as in Section 5.3. We initially modeled the secants and the conditions

in which they are valid as an MILP problem, as in Section 5.4. After observing

that the number of variables in the MILP model was larger than the number of

points in the domain Ω, we were motivated to develop the enumerative model in

Section 5.5.

Unconditional cuts

Our computational developments expose a number of fundamental challenges

for integer derivative-free optimization. The complexity of our piecewise linear

model (PILP) is made worse by the fact that each secant function is valid only in

the union of n + 1 conesUi, resulting in conditional cuts. We note that it may not

be possible to derive unconditional cuts, that is, cuts that are valid in the whole do-

main Ω. For example, we might initially consider secants interpolating a convex

f at the n + 1 points x ∈ Zn and x ± ei ∈ Z
n, where for every i we can choose either

+ or −. Such points form a unit simplex that has no integer points in its interior.

Consequently, one might suspect that the resulting cut is valid everywhere in Ω.

However, the following example shows that the resulting cut is not uncondition-

ally valid. Consider f (x) = x2
1−x1x2+x2

2 and the set of points {[1, 1]>, [0, 1]>, [1, 0]>}.

It follows that f (x) = 1 at these points, and hence the unique interpolating secant

function is the constant function, m(x) = 1. Now consider the point x = [0, 0]> for

which f (x) = 0, which is not underestimated by m(x) = 1.

5.7 Discussion 123

Binary domains

Another limitation of our method is that it will have to evaluate all feasible points

when Ω = {0, 1}n (a pure binary domain) for convergence because no point in Ω\Xi

belongs toUi, where Xi is an arbitrary affinely independent set of n + 1 points in

{0, 1}n. (Complete enumeration would also be required by any method searching

a discrete 1-neighborhood for a binary problem.)

Number of secant evaluations

In Figure A.1 in Appendix A we show the number of function evaluations needed

to first evaluate a global minimizer and the additional number of evaluations

used to prove it is a global minimizer for some of our test functions. As is com-

mon, the effort required to certify optimality can be significantly larger than the

cost of finding the optimum. In terms of number of function evaluations re-

quired, the proof of optimality is even more time consuming. Because the iter-

ations where Xk or Gk is large require checking many potential secant functions,

in SUCIL the computational cost of iterations can differ by orders of magnitude

as the algorithm progresses.

Although our method provides a practical iterative way to check sufficiency

of a set of points (optimality conditions) for a given convex instance, each itera-

tion involves construction and evaluation of a large number of combinations of

different n + 1 points, which limits the scalability of Algorithm 5.3 in solving in-

stances of higher dimensions. Yet, in our numerical experiments, we observe that

only a small fraction of the total cuts evaluated are useful. We call (ci, bi) an up-

dating cut at an iteration k if there exists an x ∈ Ωk such that mi(x) > ηk(x), that is, a

cut that improves the lower bound at at least one x ∈ Ωk. In addition, if mi(x) ≥ uk,

we call it a pruning cut. A pruning cut helps eliminate points to be considered in

the next iteration (Ωk+1). Figure 5.10 shows the number of updating and pruning

cuts generated per iteration of SUCIL when minimizing quad on [−4, 4]3 ∩ Z3.

Separation of useful cuts

The fact that few cuts prune a point or update the lower bound at any point

where the minimum could be suggests that there may be some way to exclude a

large set of multi-indices from consideration, possibly yielding dramatic compu-

tational savings. For example, it can be shown that it is not necessary to consider

any multi-index that corresponds to a set of points that contain another point in

124 Mixed-Integer Derivative-Free Optimization

Figure 5.10: Number of total and affinely independent combinations of n + 1 points, the

secant functions that update, and the secant functions that prune at least one point when

minimizing quad on Ω = [−4, 4]3 ∩ Z3 using SUCIL . (Markers are removed when there is

no updating or no pruning cut in an iteration.)

its convex hull. Unfortunately, we are unaware of any efficient approach for gen-

erating the subsets of X that contain n + 1 point and that do not contain any other

point in X in their convex hull.

Ideally, we would like to evaluate only the combinations that yield updat-

ing or pruning cuts. However, this approach requires the solution of a separate

problem that we believe is especially hard to solve. Even the following simpler

problem of finding a pruning cut at a given candidate point seems difficult.

Problem 1. Given a point x̄ ∈ Zn, a set of (integer) points X where f has been evaluated,

and scalar u, find a cut that prunes x̄. That is, find a multi-index i such that x̄ ∈ Ui and

(ci)
>

x̄ + bi ≥ u, and (ci, bi) solves (5.3), or show that no such multi-index i exists.

If we choose a small subset X̄k of Xk to form W(X̄k), the SUCIL algorithm

can end up using a large number of function evaluations to obtain a certificate

of optimality, which is not desirable because we target expensive derivative-free

functions. The reason is that points are evaluated that would be ruled worse than

optimal if secants were built by using all combinations of points in Xk. This situ-

ation occurred when setting X̄k to be a random subset of Xk, a subset of the points

closest to x̂, or a subset of points with best function values. Using Gk avoids dis-

carding too many points from Xk; but we observe a significant increase in
∣∣∣W(Gk)

∣∣∣,
and thus we incur heavy computational costs during some iterations. The wall

clock time required per iteration for solving instances of dimension less than 5 in

our setup is not significant, but we present the same for 5-dimensional instances

5.7 Discussion 125

Figure 5.11: Wall-clock time recorded and number of secants constructed per iteration of

SUCIL for 8 convex test problems on Ω = [−4, 4]5 ∩ Z5.

using SUCIL on a 96-core Intel Xeon computer with 1.5 TB of RAM. The complex-

ity of our approach is better quantified by counting the number of combinations

of points (or potential secants) considered at iteration k. Using Gk, we typically

produce a strict subset of all possible combinations in such a way that the size

of W(Gk) decreases during the later iterations. This is shown in Figure 5.11: the

number of secants added per iteration for all 5-dimensional test instances using

SUCIL . Once Ωk, the number of points with η(x) less than f (x̂), starts decreasing,

so do Gk and
∣∣∣W(Gk)

∣∣∣. In general, it is difficult to predict when the number of com-

binations (or the wall clock time curve) would be at the peak, but we suspect this

peak will be worse as n increases, by both the size and the iteration number where

it occurs. This limits the applicability of the current implementation of SUCIL on

higher-dimensional problems.

We also note that the storage requirements for the enumerative model may

be prohibitive, even for moderate problem sizes. For example, an array storing

the value of η(x) as an 8-byte scalar for all x ∈ Ω = [−10, 10]10 ∩ Z10 would require

over 200 GB of storage.

Sufficient sets (X∗) that prove optimality

Again, since nearly all cuts in W(Gk) do not update η(x) at any point in Ωk (see

Figure 5.10), we believe there may be some approach for intelligently selecting

points from Xk using their geometry, their function values, and distance from

the best available iterate that will rule some multi-indices i as unnecessary to

consider. We did attempt to identify minimal sets of points that were necessary

126 Mixed-Integer Derivative-Free Optimization

for SUCIL to certify optimality for a variety of n = 2 test cases, but no general

rule was apparent.

We are interested in the sets X∗ ⊂ Ω of points, such that the lower bound

derived from the model (PILP) is equal to f (x∗), which proves optimality. We call

such a set of points a sufficient set of interpolation points (clearly, a necessary

condition is that at least one x∗ ∈ X∗).

Unfortunately, it seems nontrivial to construct low cardinality sufficient sets,

even in the n = 2 case, as the following two examples illustrate. We consider the

two quadratics in R2, quad and abhi, and construct sufficient sets to prove op-

timality of x∗ = (2, 2), the optimal solution for both these functions. Figure 5.12

depicts the continuous contours of the functions quad and abhi that comprise at

least one integer point. The optimal x∗ = (2, 2) is depicted as a green solid circle.

A set which includes the optimal, the black square dots and any two of the ma-

genta colored diamond dots, is sufficient for the convergence of Algorithm 5.1.

Similarly, we present one such sufficient set for abhi in the same figure. Algo-

rithm 5.1 converges for this problem if the interpolation set includes the green

solid circle and the black square dots.

Figure 5.12: Points sufficient for Algorithm 5.1 to prove optimality on quad (left) and

abhi (right).

The examples illustrate that the shape of the sufficient set depends strongly

on the function that is minimized. It is not clear how to construct a minimal set

of interpolation points that prove optimality.

In addition, the size of a minimum cardinality optimal set may not be a poly-

nomial function of n. AS already mentioned earlier, lets take the example quad,

5.7 Discussion 127

where just by observation of Figure 5.12, one can infer that all the 2n points, in-

cluding the unique optimum, are necessary for f =
∑n

i x2
i when x ∈ {0, 1}n i.e.

Algorithm 5.3 will not terminate unless every point x ∈ Ω has been evaluated.

A different underestimator model

Perhaps it is possible to construct a convex, continuous piecewise-linear under-

estimator to remedy many of these issues. We are unaware of how such a model

would be constructed and updated when new points and function values become

available. Moreover, we conjecture that it is not possible to build a general con-

vex underestimation model for a convex derivative-free function just by using the

first order information, that is, just the pairs of points and their function values.

Ultimately, we believe further insights are yet to be discovered that will fa-

cilitate better algorithms for minimizing convex functions on integer domains.

Chapter 6

Conclusions and Future Work

We study MINLPs, a general class of mathematical optimization problems, that

are theoretically difficult to solve due to the presence of nonlinear functions and

integer constrained variables. We address two cases of MINLPs. In the first case,

the functions involved in the objective and the constraints are smooth and dif-

ferentiable. We present share-memory parallel algorithms for these MINLPs and

analyze their performance via extensive computational experiments on bench-

marking instances. In the second case, we study MIDFO problems. Here, math-

ematical descriptions of the functions in the MINLPs and their derivatives are

not available. In addition, every function evaluation is expensive. Under cer-

tain assumptions, we present methods similar to outer approximation for solving

MIDFO problems to global optimality using only function evaluations.

Chapter 2 presents parallel algorithms for convex MINLP. We consider the

serial and parallel versions of four algorithms: NLP-BB with sharing of branching

information between threads (mcbnbSRel), QG with extra linearizations and par-

allelization using Minotaur’s own branch-and-cut implementation (mcqgHyb),

QG with branch-and-cut implementation of CPLEX MILP solver running in op-

portunistic mode (lstoaO), and OA with CPLEX MILP solver using all solutions

from the solution pool of CPLEX (oaSol). We analyze the performance of parallel

algorithms for scalability and compare them amongst each other and with two

other parallel MINLP solvers, FSCIP (?) and SHOT (?). The goal is to study the

effects of various algorithmic components and implementations on the perfor-

mance of algorithms.

We observe that all solvers benefit from parallelization, although none ob-

tains perfect scalability. We also observe that OA (that uses an external MILP

solver) performs better than the QG algorithm of Minotaur that has its own

129

130 Conclusions and Future Work

branch-and-cut implementation and lacks several key MILP features. Overall,

QG using callbacks of an MILP solver outperformed other algorithms. Parallel

QG (with enhanced linearization schemes shown by ?) turned out to be the next

best algorithm. Parallel extensions of the NLP-BB and QG report improvement

upon their sequential counterparts by more than 40% using up to 16 threads.

The speedup is more prominent for difficult instances. As the number of nodes

processed increased by only about 60%, the proposed parallel algorithms can

be made more compact and opportunistic. Nevertheless, advanced MILP tech-

niques seem to impact the MINLP algorithms to a large extent and are the best

alternatives subject to the availability of a good MILP solver.

In Chapter 3, we study anomalies in parallel tree-search algorithms, in par-

ticular, detrimental anomalies in NLP-BB and QG algorithms for convex MINLPs.

The existence of detrimental anomalies may cause the parallel algorithms to per-

form worse than the sequential algorithm. We present a simple but practical un-

ambiguous branching scheme that preserves the nondetrimental property of the

tree-search for NLP-BB. Moreover, for QG, we extend the notion of unambiguity

to cut generation, which is essential to make the overall algorithm nondetrimen-

tal. Our numerical results show that such guarantees are practically attainable in

state-of-the-art parallel MINLP algorithms by using unambiguous components.

We also achieve deterministic reproducible runs using these algorithmic compo-

nents.

In Chapter 4, we propose a multi-start branch-and-estimate heuristic for

nonconvex MINLP, that approximately solves each node of the branch-and-

bound tree using parallelism. Each node in this tree is a nonconvex NLP. We

experiment with five randomized schemes to generate initial points for solving

the nonconvex NLPs using a local NLP solver, to find good solutions to noncon-

vex NLPs. We compared different schemes in our heuristic amongst themselves

and compared the best settings with two global solvers, SCIP and Couenne, and

with a convex MINLP algorithm, the NLP-BB from Minotaur. Our computational

results show that the multi-start heuristic performs better than NLP-BB in terms

of solution quality. Compared to the global solver, the solution quality obtained

by our heuristic is comparable, while it fares better in terms of the time taken.

Overall, the multi-start method seems promising in terms of obtaining good so-

lutions heuristically for nonconvex problems, and parallelism helps in exploring

more in the same amount of computational time.

131

In Chapter 5, we first present a way to obtain an underestimator of a

derivative-free function, assuming that the objective function is convex. Under-

estimators for MIDFO problems are rare, and so are provably convergent global

optimization algorithms, even for the convex case. We present a globally conver-

gent algorithm based on our underestimator. We formulate the underestimator as

a piecewise linear MILP model and keep tightening it using function evaluations

until the algorithm converges. We present two algorithmic implementations, one

that exploits an MILP solver and another which we call SUCIL, that heuristically

maintains the bounds at each point in the domain. Our computational results

show we require much fewer function evaluations compared to other MIDFO

solvers like DFLINT, MATSuMoTo etc. This is because we exploit convexity in

our algorithm. Although, our algorithmic implementations are mainly for the

proof of concept, there is a huge scope of improvement on this front. The first

issue is the sensitivity of the MILP model to tolerances, and second is the design

of SUCIL algorithm, due to which it can not be scaled up for instances of larger

sizes.

Next, we highlight a few promising research directions that stem out of the

work presented in this thesis.

Single-Tree OA for Nonconvex MINLP Our computational results show that

lstoa , the QG algorithm that uses lazy cuts callback functionality of MILP solvers,

exhibits the best performance. This algorithm is also called single-tree OA by ??.

This is presumably due to the advanced MILP techniques like conflict graphs,

presolving, cuts, etc. in MILP solvers that eventually outweigh the other MINLP

algorithms like QG and NLP-BB where the MINLP solver manages its own LP

and NLP based trees. Recently, on similar lines as lstoa , ? have solved a mixed-

integer quadratic bilevel problem, where bilevel-specific structure of the problem

is exploited to ultimately reduce the problem to a single-level convex MIQCQP,

which is then solved using multi- and single-tree OA. On some instances, the

single-tree algorithm outperformed the multi-tree algorithm. Leveraging on the

current effectiveness of MILP solvers, one can solve nonconvex MINLPs, espe-

cially, MIQCQPs, in a spatial branch-and-bound like framework, using the call-

back functionalities of an advanced MILP solver. In such a possible algorithm, a

deviation from the existing (convex) ones would be in creation of the LP nodes

within the MILP solver when one would branch on continuous variables. Also,

the child nodes would require more than just changing the bounds of variables.

132 Conclusions and Future Work

For example, envelops of bilinear terms (?) are refined significantly when bounds

change. One way to accomplish such refinements is by using branching callbacks

provided by the MILP solver. Another issue is that the cuts using the integer

solutions (for example, the outer-approximation cuts) obtained in the MILP tree

may no longer be valid. So, other specific (convex) reformulations based on the

MIQCQP structure of the problem might have to be explored, that yield good

valid inequalities.

Multi-Level Distributed- and Shared-Memory Parallel Frameworks Most

state-of-the-art parallel MINLP algorithms (???) typically focus on only one level

of parallelism, and are efficient only up to a certain number of processors (?). One

can design multi-level parallel frameworks that distributes data and/or tasks to

individual processing units depending upon some known estimate of the scala-

bility limits at each level. If available, shared-memory parallelism can be readily

used at some lower level. The distribution of available processing units can be

statically or dynamically decided based on the scalability of tasks at each level.

A direct simple extension could be a parallel subtree-level NLP-BB for convex

MINLPs. One can solve at the second level, different NLPs of the subtree using

shared-memory parallelism (using dynamic or some preassigned number k of)

processors up to which it scales well, and at the first level distribution of subtrees

could be done. Another different idea is to design an MILP-based branch-and-

bound for nonconvex MINLPs. MILP solvers have been observed to scale up to

4 or 8 processors (?) in similar contexts, hence the first level distribution of MILP

subtrees can be done based on this number.

Novel Models and Relaxations for MIDFO There are several theoretical and

computational challenges open on MIDFO front; we mention a few immedi-

ate extensions. State-of-the-art methods address the integrality in MIDFO prob-

lems either using local searches (?), or integer directions (?) or using surrogate

models (?). Surrogate models could be convex or nonconvex, and represent

an approximate mathematical function based on the values evaluated at some

points. Within MIDFO algorithms, these models are optimized using appropriate

MINLP algorithms. When the surrogate model is nonconvex, it is typically not

solved to global optimality because solving nonconvex MINLPs is difficult. But

one can solve such embedded nonconvex MINLPs using global MINLP solvers

directly or by exploiting the special structures in nonconvex functions using the

133

techniques from nonconvex MINLP. Problem specific heuristics can also be used.

In case the integer variables are unrelaxable, as in Chapter 5, continuous relax-

ations based approaches to find a valid bounding relaxation do not work. But

one can explore novel bounding methods for problems with unrelaxable integer

variables.

Appendix A

Test Problems and Numerical Results

for MIDFO

Tables A.1–A.3 contain detailed numerical results for the interested reader. Note

that some solvers do not respect the given budget of function evaluations. We

have used a different stopping criterion for MATSuMoTo : it is set to stop only

when a point with the optimal value has been identified. Also, although the

global minimum has been provided as the starting point to all the solvers for

entropy, infnorm, onenorm, maxq and mxhilb, the MATSuMoTo solver uses

its initial symmetric Latin hypercube design. The last row of Table 5.1 in Sec-

tion 5.1 shows |Ω| for these problems.

Table A.4 shows the details of the convex problems used for benchmarking

the MIDFO solvers.

135

136 Test Problems and Numerical Results for MIDFO

Table A.1: Number of function evaluations taken by solvers for 7 of the 16 base problems and

various values of n and K. For MATSuMoTo , the nearest value less than the median of the number

of the evaluations of 20 replications is chosen.

Problem SUCIL DFLINT DFLINT-M NOMAD NOMAD-dm MATSuMoTo

abhi n=3 K=4 40 (29) 150 (9) 161 (9) 59 (20) 129 (56) 56 (26)

abhi n=3 K=10 42 (24) 1001 (9) 1000 (9) 49 (20) 122 (34) 94 (64)

abhi n=3 K=20 41 (24) 1001 (9) 1001 (9) 49 (20) 122 (34) 153 (123)

abhi n=4 K=4 75 (50) 959 (12) 993 (12) 110 (16) 453 (88) 82 (52)

abhi n=4 K=10 89 (48) 1001 (12) 1001 (12) 110 (16) 480 (88) 344 (314)

abhi n=4 K=20 101 (48) 1001 (12) 1001 (12) 124 (30) 488 (91) 560 (530)

abhi n=5 K=4 154 (113) 1000 (15) 1001 (15) 301 (41) 1000 (156) 133 (103)

lse n=3 K=4 20 (15) 53 (13) 70 (16) 24 (6) 43 (6) 39 (9)

lse n=3 K=10 19 (19) 414 (19) 448 (21) 32 (7) 49 (7) 40 (10)

lse n=3 K=20 20 (20) 1000 (22) 1000 (24) 41 (7) 50 (7) 40 (10)

lse n=4 K=4 75 (12) 181 (17) 223 (22) 61 (27) 115 (15) 42 (12)

lse n=4 K=10 108 (14) 974 (25) 1000 (29) 82 (33) 133 (25) 42 (12)

lse n=4 K=20 708 (16) 983 (29) 1000 (33) 64 (9) 129 (9) 47 (17)

lse n=5 K=4 199 (14) 760 (21) 826 (51) 67 (8) 224 (8) 44 (14)

CB3I n=3 K=4 25 (10) 181 (6) 184 (6) 56 (12) 108 (12) 64 (34)

CB3I n=3 K=10 26 (10) 1001 (6) 1000 (6) 56 (12) 108 (12) 226 (196)

CB3I n=3 K=20 24 (10) 1001 (6) 1000 (6) 56 (12) 108 (12) 1000 (1000)

CB3I n=4 K=4 54 (14) 1001 (8) 1001 (57) 149 (42) 456 (23) 96 (66)

CB3I n=4 K=10 59 (14) 1001 (8) 1001 (57) 150 (48) 457 (23) 1000 (1000)

CB3I n=4 K=20 64 (14) 1001 (8) 1001 (57) 154 (35) 471 (35) 1000 (1000)

CB3I n=5 K=4 155 (68) 1001 (10) 1000 (89) 417 (18) 1000 (18) 237 (207)

CB3II n=3 K=4 26 (11) 181 (6) 184 (6) 44 (12) 108 (12) 59 (29)

CB3II n=3 K=10 30 (11) 1001 (6) 1000 (6) 44 (12) 108 (12) 227 (197)

CB3II n=3 K=20 34 (11) 1001 (6) 1000 (6) 44 (12) 108 (12) 1000 (1000)

CB3II n=4 K=4 56 (14) 1001 (18) 1001 (49) 125 (30) 460 (35) 101 (71)

CB3II n=4 K=10 54 (14) 1001 (18) 1001 (49) 125 (30) 462 (35) 1000 (1000)

CB3II n=4 K=20 53 (14) 1001 (18) 1001 (49) 173 (61) 477 (51) 1000 (1000)

CB3II n=5 K=4 135 (66) 1001 (25) 1001 (85) 465 (69) 1000 (54) 197 (167)

LQ n=3 K=4 26 (2) 181 (4) 182 (4) 48 (7) 107 (7) 44 (14)

LQ n=3 K=10 34 (2) 1001 (4) 1000 (4) 48 (7) 107 (7) 49 (19)

LQ n=3 K=20 47 (2) 1001 (4) 1000 (4) 48 (7) 107 (7) 54 (24)

LQ n=4 K=4 52 (15) 1001 (6) 1000 (6) 145 (9) 453 (10) 46 (16)

LQ n=4 K=10 51 (15) 1001 (6) 1000 (6) 145 (9) 454 (10) 86 (56)

LQ n=4 K=20 49 (15) 1001 (6) 1000 (6) 157 (20) 471 (20) 81 (51)

LQ n=5 K=4 129 (17) 1001 (8) 1001 (8) 425 (15) 1000 (15) 54 (24)

entropy n=3 K=4 28 (1) 181 (1) 181 (1) 36 (1) 108 (1) 44 (14)

entropy n=3 K=10 21 (1) 1001 (1) 1001 (1) 36 (1) 108 (1) 60 (30)

entropy n=3 K=20 36 (1) 1001 (1) 1001 (1) 36 (1) 108 (1) 54 (24)

entropy n=4 K=4 51 (1) 1001 (1) 1001 (1) 89 (1) 451 (1) 56 (26)

entropy n=4 K=10 50 (1) 1001 (1) 1001 (1) 89 (1) 451 (1) 94 (64)

entropy n=4 K=20 50 (1) 1001 (1) 1001 (1) 110 (1) 465 (1) 417 (387)

entropy n=5 K=4 143 (1) 1001 (1) 1001 (1) 254 (1) 1000 (1) 63 (33)

infnorm n=3 K=4 18 (1) 181 (1) 181 (1) 34 (1) 107 (1) 49 (19)

infnorm n=3 K=10 19 (1) 1001 (1) 1001 (1) 34 (1) 107 (1) 59 (29)

infnorm n=3 K=20 19 (1) 1001 (1) 1001 (1) 34 (1) 107 (1) 60 (30)

infnorm n=4 K=4 35 (1) 1001 (1) 1001 (1) 90 (1) 451 (1) 57 (27)

infnorm n=4 K=10 34 (1) 1001 (1) 1001 (1) 90 (1) 451 (1) 277 (247)

infnorm n=4 K=20 34 (1) 1001 (1) 1001 (1) 116 (1) 465 (1) 261 (231)

infnorm n=5 K=4 82 (1) 1001 (1) 1001 (1) 255 (1) 1000 (1) 107 (77)

137

Table A.2: Number of function evaluations taken by solvers for 7 of the 16 base problems and

various values of n and K. For MATSuMoTo , the nearest value less than the median of the number

of the evaluations of 20 replications is chosen.

Problem SUCIL DFLINT DFLINT-M NOMAD NOMAD-dm MATSuMoTo

KLT n=3 K=4 27 (10) 146 (10) 152 (24) 51 (24) 116 (34) 49 (19)

KLT n=3 K=10 33 (20) 1001 (10) 1001 (27) 52 (25) 125 (55) 55 (25)

KLT n=3 K=20 33 (20) 1001 (10) 1001 (27) 52 (25) 125 (55) 147 (117)

KLT n=4 K=4 75 (40) 953 (13) 954 (125) 116 (42) 457 (55) 56 (26)

KLT n=4 K=10 68 (33) 1001 (13) 1000 (132) 121 (30) 492 (71) 568 (538)

KLT n=4 K=20 71 (33) 1001 (13) 1000 (132) 112 (30) 469 (30) 56 (26)

KLT n=5 K=4 121 (69) 1001 (16) 1000 (169) 296 (43) 1000 (176) 90 (60)

logfrac n=3 K=4 18 (17) 53 (13) 70 (16) 24 (6) 43 (6) 39 (9)

logfrac n=3 K=10 22 (12) 414 (19) 448 (21) 31 (7) 49 (7) 39 (9)

logfrac n=3 K=20 47 (39) 1000 (22) 1000 (24) 48 (7) 50 (7) 39 (9)

logfrac n=4 K=4 28 (12) 181 (17) 223 (22) 51 (17) 116 (13) 41 (11)

logfrac n=4 K=10 29 (14) 974 (25) 1000 (29) 95 (38) 126 (18) 41 (11)

logfrac n=4 K=20 31 (16) 983 (29) 1000 (33) 150 (9) 157 (9) 41 (11)

logfrac n=5 K=4 46 (14) 760 (21) 810 (51) 59 (8) 224 (8) 48 (18)

maxq n=3 K=4 18 (1) 181 (1) 181 (1) 34 (1) 107 (1) 49 (19)

maxq n=3 K=10 19 (1) 1001 (1) 1001 (1) 34 (1) 107 (1) 69 (39)

maxq n=3 K=20 19 (1) 1001 (1) 1001 (1) 34 (1) 107 (1) 108 (78)

maxq n=4 K=4 35 (1) 1001 (1) 1001 (1) 91 (1) 451 (1) 62 (32)

maxq n=4 K=10 34 (1) 1001 (1) 1001 (1) 91 (1) 451 (1) 226 (196)

maxq n=4 K=20 34 (1) 1001 (1) 1001 (1) 118 (1) 465 (1) 81 (51)

maxq n=5 K=4 82 (1) 1001 (1) 1001 (1) 257 (1) 1000 (1) 117 (87)

multlin n=3 K=4 20 (20) 64 (28) 77 (28) 32 (13) 92 (54) 40 (10)

multlin n=3 K=10 24 (24) 419 (30) 459 (30) 34 (14) 95 (55) 66 (36)

multlin n=3 K=20 26 (26) 1000 (31) 1000 (31) 47 (15) 105 (56) 109 (79)

multlin n=4 K=4 38 (38) 239 (81) 257 (81) 96 (44) 256 (91) 51 (21)

multlin n=4 K=10 60 (60) 1000 (83) 1000 (83) 107 (45) 266 (92) 128 (98)

multlin n=4 K=20 76 (76) 1000 (84) 1000 (84) 108 (38) 272 (96) 231 (201)

multlin n=5 K=4 38 (37) 923 (192) 949 (192) 224 (40) 1000 (719) 111 (81)

mxhilb n=3 K=4 19 (1) 181 (1) 181 (1) 35 (1) 106 (1) 50 (20)

mxhilb n=3 K=10 19 (1) 1001 (1) 1001 (1) 35 (1) 106 (1) 69 (39)

mxhilb n=3 K=20 19 (1) 1001 (1) 1001 (1) 35 (1) 106 (1) 232 (202)

mxhilb n=4 K=4 56 (1) 1001 (1) 1001 (1) 90 (1) 450 (1) 67 (37)

mxhilb n=4 K=10 58 (1) 1001 (1) 1001 (1) 90 (1) 450 (1) 407 (377)

mxhilb n=4 K=20 58 (1) 1001 (1) 1001 (1) 113 (1) 464 (1) 1000 (1000)

mxhilb n=5 K=4 144 (1) 1001 (1) 1001 (1) 257 (1) 1000 (1) 88 (58)

onenorm n=3 K=4 19 (1) 181 (1) 181 (1) 36 (1) 107 (1) 44 (14)

onenorm n=3 K=10 19 (1) 1001 (1) 1001 (1) 36 (1) 107 (1) 60 (30)

onenorm n=3 K=20 19 (1) 1001 (1) 1001 (1) 36 (1) 107 (1) 159 (129)

onenorm n=4 K=4 48 (1) 1001 (1) 1001 (1) 89 (1) 451 (1) 57 (27)

onenorm n=4 K=10 48 (1) 1001 (1) 1001 (1) 89 (1) 451 (1) 240 (210)

onenorm n=4 K=20 48 (1) 1001 (1) 1001 (1) 117 (1) 469 (1) 1000 (1000)

onenorm n=5 K=4 133 (1) 1001 (1) 1001 (1) 255 (1) 1000 (1) 83 (53)

quad n=3 K=4 27 (10) 150 (9) 157 (51) 53 (18) 119 (35) 44 (14)

quad n=3 K=10 34 (11) 1001 (9) 1000 (60) 53 (22) 125 (49) 59 (29)

quad n=3 K=20 30 (11) 1001 (9) 1000 (60) 53 (22) 125 (49) 113 (83)

quad n=4 K=4 103 (47) 959 (12) 982 (113) 111 (12) 460 (89) 56 (26)

quad n=4 K=10 66 (37) 1001 (12) 1000 (128) 112 (20) 486 (73) 224 (194)

quad n=4 K=20 66 (37) 1001 (12) 1000 (128) 115 (30) 472 (57) 102 (72)

quad n=5 K=4 146 (58) 1000 (15) 1001 (171) 286 (26) 1000 (58) 116 (86)

138 Test Problems and Numerical Results for MIDFO

Table A.3: Number of function evaluations taken by solvers for 2 of the 16 base problems and

various values of n and K. For MATSuMoTo , the nearest value less than the median of the number

of the evaluations of 20 replications is chosen.

Problem SUCIL DFLINT DFLINT-M NOMAD NOMAD-dm MATSuMoTo

recipro n=3 K=4 17 (16) 50 (10) 61 (10) 32 (7) 47 (8) 39 (9)

recipro n=3 K=10 21 (21) 411 (16) 444 (16) 50 (16) 64 (15) 44 (14)

recipro n=3 K=20 22 (14) 1000 (19) 1000 (19) 43 (8) 64 (9) 44 (14)

recipro n=4 K=4 24 (24) 177 (13) 218 (13) 75 (21) 198 (41) 41 (11)

recipro n=4 K=10 27 (14) 970 (21) 1000 (21) 111 (40) 216 (30) 51 (21)

recipro n=4 K=20 29 (16) 979 (25) 1000 (25) 128 (60) 243 (59) 61 (31)

recipro n=5 K=4 44 (14) 755 (16) 814 (16) 224 (47) 653 (40) 53 (23)

reciprob n=3 K=4 18 (16) 50 (10) 61 (10) 32 (7) 47 (8) 39 (9)

reciprob n=3 K=10 22 (21) 411 (16) 438 (16) 53 (15) 64 (11) 44 (14)

reciprob n=3 K=20 32 (31) 1000 (19) 1000 (19) 61 (12) 64 (9) 49 (19)

reciprob n=4 K=4 26 (12) 177 (13) 199 (13) 80 (21) 207 (28) 42 (12)

reciprob n=4 K=10 39 (39) 970 (21) 1000 (21) 111 (31) 216 (30) 46 (16)

reciprob n=4 K=20 64 (38) 979 (25) 1000 (25) 82 (9) 237 (73) 61 (31)

reciprob n=5 K=4 44 (14) 755 (16) 788 (16) 186 (26) 685 (70) 53 (23)

Figure A.1: Number of evaluations for 8 test functions on [−4, 4]5 ∩ Zn before SUCIL

first identifies a global minimum and evaluations required to prove its global optimality.

The fewest number of evaluations required by any of DFLINT , DFLINT-M , NOMAD ,

NOMAD-dm , and MATSuMoTo is shown for comparison.

139

Table A.4: Set of convex test problems and their minimizers on the domain [−K,K]n ∩ Zn. The

corresponding references are: [1] ? [2] ? [3] ? [4] ? [5] ? [6] ?, Section 6.4 [7] ? [8] ?, Exer-

cise 2.2.12 [9] ? [10] ?, Example 2.2.9 [11] ? [12] ?, Exercise 4.4.10 [13] ?, Exercise 4.4.10.

Name Expression f (x∗) x∗

abhi [1]
n∑

i=1

[
64 (c1(xi − 2) − c2(xi+1 − 2))2 + (c2(xi − 2) − c1(xi+1 − 2))2

]
,

c1 = cos
(
π
8

)
, c2 = sin

(
π
8

) 0 2e

lse [2] log

 n∑
i=1

exi

 log(n) − K −Ke

CB3I [3]
n−1∑
i=1

max
{
x4

i + x2
i+1, (2 − xi)2 + (2 − xi+1)2 , 2e−xi+xi+1

}
2(n − 1) e

CB3II [4] max

n−1∑
i=1

x4
i + x2

i+1,

n−1∑
i=1

(2 − xi)2 + (2 − xi+1)2 ,

n−1∑
i=1

2e−xi+xi+1

 2(n − 1) e

LQ [5]
n−1∑
i=1

max
{
−xi − xi+1,−xi − xi+1 + x2

i + x2
i+1 − 1

}
−(n − 1) many

entropy [6]
n∑

i=1

|xi | log
(
|xi | + (1 + |xi |

2)1/2
)
−

(
1 + |xi |

2
)1/2

−n 0

infnorm max
i∈{1...n}

{|xi |} 0 0

KLT [7] max
i∈{1,...,n}

{
‖x − ci − 2e‖2

}
, ci = 2ei − e n 2e

logfrac [8]
∑

i:xi,0

log
(
1 +

e2xi − 1
exi − 1

)
+

∑
i:xi=0

log(3), i ∈ {1, . . . , n} n log
(
1 + e−2K−1

e−K−1

)
−Ke

maxq [9] max
i∈{1,...,n}

{
x2

i

}
0 0

multlin [10] −

 n∏
i=1

xi

1/n

if xi ≥ 0 ∀i, otherwise ∞ −K Ke

mxhilb [11] max
i∈{1,...,n}

n∑

j=1

∣∣∣∣∣ x j

i + j − 1

∣∣∣∣∣
 0 0

onenorm
n∑

i=1

|xi | 0 0

quad
n∑

i=1

(xi − 2)2 0 2e

recipro [12]
∑

S j⊆{1,...,n},|S j |≥1

(−1)|S j+1|

log
(
2 + |S j |K +

∑
i∈S j xi

) ∑
S j

(−1)|S j+1|

log
(
2 + |S j |(K + 1)

) Ke

reciprob [13]
∑

S j⊆{1,...,n},|S j |≥1

(−1)|S j+1|

|S j |(K + 1) +
∑

i∈S j xi

∑
S j

(−1)|S j+1|

|S j |(2K + 1)
Ke

Bibliography

Abhishek, K., Leyffer, S., and Linderoth, J., 2010a, “FilMINT: An outer approx-

imation based solver for convex mixed-integer nonlinear programs,” Informs

Journal on Computing 22, 555–567.

Abhishek, K., Leyffer, S., and Linderoth, J. T., 2010b, “Modeling without cate-

gorical variables: A mixed-integer nonlinear program for the optimization of

thermal insulation systems,” Optimization and Engineering 11, 185–212.

Abramson, M., Audet, C., Chrissis, J., and Walston, J., 2009, “Mesh adaptive direct

search algorithms for mixed variable optimization,” Optimization Letters 3, 35–

47.

Achterberg, T., 2007a, “Conflict analysis in mixed integer programming,” Discrete

Optimization 4, 4–20.

Achterberg, T., 2007b, Constraint integer programming, Ph.D. thesis (Technical Uni-

versity Berlin).

Achterberg, T., 2009, “SCIP: solving constraint integer programs,” Mathematical

Programming Computation 1, 1–41.

Achterberg, T., Bixby, R. E., Gu, Z., Rothberg, E., and Weninger, D., 2016, Presolve

Reductions in Mixed Integer Programming, Tech. Rep. 16-44 (ZIB, Takustr. 7, 14195

Berlin).

Achterberg, T., Koch, T., and Martin, A., 2005, “Branching rules revisited,” Oper-

ations Research Letters 33, 42–54.

Androulakis, I. P., Maranas, C. D., and Floudas, C. A., 1995, “αBB: A global op-

timization method for general constrained nonconvex problems,” Journal of

Global Optimization 7, 337–363.

141

http://dx.doi.org/10.1007/s11081-010-9109-z
http://dx.doi.org/10.1007/s11590-008-0089-2

142 Bibliography

Applegate, D., Bixby, R., Chvátal, V., and Cook, W., 1998, “On the solution of

traveling salesman problems,” in Documenta Mathematica Journal der Deutschen

Mathematiker-Vereinigung, International Congress of Mathematicians, pp. 645–656.

Audet, C., and Dennis, Jr., J. E., 2000, “Pattern search algorithms for mixed vari-

able programming,” SIAM Journal on Optimization 11, 573–594.

Audet, C., and Dennis Jr, J. E., 2006, “Mesh adaptive direct search algorithms for

constrained optimization,” SIAM Journal on optimization 17, 188–217.

Audet, C., and Hare, W. L., 2017, Derivative-Free and Blackbox Optimization

(Springer).

Audet, C., Le Digabel, S., and Tribes, C., 2019, “The mesh adaptive direct search

algorithm for granular and discrete variables,” SIAM Journal on Optimization

29, 1164–1189.

Balaprakash, P., Tiwari, A., and Wild, S. M., 2014, “Multi-objective optimization

of HPC kernels for performance, power, and energy,” in High Performance Com-

puting Systems. Performance Modeling, Benchmarking and Simulation, Vol. 8551,

edited by Jarvis, S. A., Wright, S. A., and Hammond, S. D. (Springer). pp. 239–

260.

Bartz-Beielstein, T., and Zaefferer, M., 2017, “Model-based methods for continu-

ous and discrete global optimization,” Applied Soft Computing 55, 154–167.

Belotti, P., Lee, J., Liberti, L., Margot, F., and Wachter, A., 2009, “Branching and

bounds tightening techniques for non-convex MINLP,” Optimization Methods

and Software 24

Belotti, P., 2009, Couenne: a user’s manual, Tech. Rep. (Technical report, Lehigh

University).

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., and Mahajan, A., 2013,

“Mixed-integer nonlinear optimization,” Acta Numerica 22, 1–131.

Berthold, T., 2006, Primal Heuristics for Mixed Integer Programs, Master’s thesis

Berthold, T., 2014a, Heuristic algorithms in global MINLP solvers, Ph.D. thesis

Berthold, T., 2014b, “Primal MINLP heuristics in a nutshell,” in Operations Re-

search Proceedings 2013 (Springer). pp. 23–28.

http://dx.doi.org/10.1137/S1052623499352024
http://dx.doi.org/10.1007/978-3-319-68913-5
http://dx.doi.org/10.1137/18m1175872
http://dx.doi.org/10.1007/978-3-319-10214-6_12
http://dx.doi.org/10.1007/978-3-319-10214-6_12
http://dx.doi.org/10.1016/j.asoc.2017.01.039
http://www.zib.de/berthold/Berthold2014.pdf

Bibliography 143

Berthold, T., 2018, “A computational study of primal heuristics inside an

MI(NL)P solver,” Journal of Global Optimization 70, 189–206.

Berthold, T., Farmer, J., Heinz, S., and Perregaard, M., 2018, “Parallelization of

the FICO Xpress-Optimizer,” Optimization Methods and Software 33, 518–529.

Berthold, T., and Gleixner, A. M., 2014, “Undercover: a primal MINLP heuristic

exploring a largest sub-MIP,” Mathematical Programming 144, 315–346.

Bixby, R., and Rothberg, E., 2007, “Progress in computational mixed integer

programming–a look back from the other side of the tipping point,” Annals

of Operations Research 149, 37.

Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee,

J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A., 2008a, “An algorithmic

framework for convex mixed integer nonlinear programs,” Discrete Optimiza-

tion 5, 186–204.

Bonami, P., Biegler, L. T., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Laird,

C. D., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A., 2008b, “An

algorithmic framework for convex mixed integer nonlinear programs,” Discrete

Optimization 5, 186–204.

Bonami, P., Cornuéjols, G., Lodi, A., and Margot, F., 2009, “A feasibility pump for

mixed integer nonlinear programs,” Mathematical Programming 119, 331–352.

Bonami, P., and Gonçalves, J. P., 2012, “Heuristics for convex mixed integer non-

linear programs,” Computational Optimization and Applications 51, 729–747.

Bonami, P., and Lee, J., 2007, “BONMIN user’s manual,” Numer. Math. 4, 1–32.

Borwein, J. M., Bailey, D. H., Girgensohn, R., Bailey, D. H., and Borwein, J. M.,

2004, Experimentation in Mathematics: Computational Paths to Discovery (CRC

Press).

Borwein, J. M., and Vanderwerff, J. D., 2010, Convex Functions: Constructions, Char-

acterizations and Counterexamples (Cambridge University Press).

Boukouvala, F., Misener, R., and Floudas, C. A., 2016a, “Global optimization

advances in mixed-integer nonlinear programming, MINLP, and constrained

derivative-free optimization, CDFO,” European Journal of Operational Research

252, 701–727.

http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1201/9781439864197
http://dx.doi.org/10.1017/cbo9781139087322
http://dx.doi.org/10.1017/cbo9781139087322

144 Bibliography

Boukouvala, F., Misener, R., and Floudas, C. A., 2016b, “Global optimization

advances in mixed-integer nonlinear programming, MINLP, and constrained

derivative-free optimization, CDFO,” European Journal of Operational Research

252, 701–727.

Boyd, S., and Vandenberghe, L., 2004, Convex Optimization (Cambridge University

Press).

Brooke, A., Kendrick, D., Meeraus, A., and Raman, R., 1998, GAMS A user’s guide,

GAMS Developments Corporation, 1217 Potomac Street, N.W., Washington DC

20007, USA

Buchheim, C., Kuhlmann, R., and Meyer, C., 2018, “Combinatorial optimal con-

trol of semilinear elliptic PDEs,” Computational Optimization and Applications 70,

641–675.

Burer, S., and Letchford, A. N., 2012, “Non-convex mixed-integer nonlinear pro-

gramming: A survey,” Surveys in Operations Research and Management Science

17, 97–106.

Bussieck, M. R., Drud, A. S., and Meeraus, A., 2003, “MINLPLib - a collection of

test models for mixed-integer nonlinear programming,” INFORMS Journal on

Computing 15, 114–119.

CBC. “CBC User Guide,” , 2019. URL http://www.coin-or.org/Cbc

Chapman, B., Jost, G., and Van Der Pas, R., 2008, Using OpenMP: portable shared

memory parallel programming, Vol. 10 (MIT press).

Charalambous, C., and Bandler, J. W., 1976, “Non-linear minimax optimization

as a sequence of least pth optimization with finite values of p,” International

Journal of Systems Science 7, 377–391.

Charalambous, C., and Conn, A. R., 1978, “An efficient method to solve the min-

imax problem directly,” SIAM Journal on Numerical Analysis 15, 162–187.

Chinneck, J., and Shafique, M., 2014, “Towards a fast heuristic for MINLP,” pre-

sented at Mixed-Integer Nonlinear Programming 2014, CMU, Pittsburgh.

Conn, A. R., Scheinberg, K., and Vicente, L. N., 2009, Introduction to Derivative-Free

Optimization (SIAM).

http://dx.doi.org/10.1016/j.ejor.2015.12.018
http://dx.doi.org/10.1017/cbo9780511804441
http://dx.doi.org/10.1007/s10589-018-9993-2
http://www.coin-or.org/Cbc
http://dx.doi.org/10.1080/00207727608941924
http://dx.doi.org/10.1080/00207727608941924
http://dx.doi.org/10.1137/0715011
http://dx.doi.org/10.1137/1.9780898718768
http://dx.doi.org/10.1137/1.9780898718768

Bibliography 145

Costa, A., and Nannicini, G., 2018, “RBFOpt: An open-source library for black-

box optimization with costly function evaluations,” Mathematical Programming

Computation 10, 597–629.

CPLEX. “CPLEX 12.8 User’s Manual,” , 2019. URL https://www.ibm.com/

support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.

help/pdf/usrcplex.pdf

Crainic, T. G., Le Cun, B., and Roucairol, C., 2006, “Parallel branch-and-bound

algorithms,” Parallel combinatorial optimization, 1–28.

Dagum, L., and Menon, R., 1998, “OpenMP: an industry standard API for shared-

memory programming,” IEEE computational science and engineering 5, 46–55.

D’Ambrosio, C., Frangioni, A., Liberti, L., and Lodi, A., 2012, “A storm of feasi-

bility pumps for nonconvex MINLP,” Mathematical programming 136, 375–402.

Danna, E., Rothberg, E., and Le Pape, C., 2005, “Exploring relaxation induced

neighborhoods to improve MIP solutions,” Mathematical Programming 102, 71–

90.

Davis, E., and Ierapetritou, M., 2009, “A kriging based method for the solution of

mixed-integer nonlinear programs containing black-box functions,” Journal of

Global Optimization 43, 191–205.

Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous, E., and

LeBlanc, A. R., 1974, “Design of ion-implanted mosfet’s with very small physi-

cal dimensions,” IEEE Journal of Solid-State Circuits 9, 256–268.

Dennis, Jr., J. E., and Woods, D. J., 1987, “Optimization on microcomputers: The

Nelder-Mead simplex algorithm,” in New Computing Environments: Microcom-

puters in Large-Scale Computing, edited by Wouk, A. (SIAM). ISBN 0898712106,

pp. 116–122.

Dolan, E. D., and Moré, J., 2002, “Benchmarking optimization software with per-

formance profiles,” Mathematical Programming, A 91, 201–213.

Duran, M. A., and Grossmann, I. E., 1986, “An outer-approximation algorithm

for a class of mixed-integer nonlinear programs,” Mathematical Programming

36, 307–339.

http://dx.doi.org/10.1007/s12532-018-0144-7
http://dx.doi.org/10.1007/s12532-018-0144-7
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcplex.pdf
http://dx.doi.org/10.1007/s10898-007-9217-2
http://dx.doi.org/10.1007/s10898-007-9217-2
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/bf02592064

146 Bibliography

Fletcher, R., 2000, Practical Methods of Optimization, 2nd ed. (John Wiley & Sons,

Chichester).

Fletcher, R., and Leyffer, S., 1994, “Solving mixed integer nonlinear programs by

outer approximation,” Mathematical Programming 66, 327–349.

Floudas, C. A., and Gounaris, C. E., 2009, “A review of recent advances in global

optimization,” Journal of Global Optimization 45, 3.

Fourer, R., Gay, D. M., and Kernighan, B. W., 2003, AMPL: A Modelling Language

for Mathematical Programming, 2nd ed. (Books/Cole—Thomson Learning).

Fujie, T., and Kojima, M., 1997, “Semidefinite programming relaxation for non-

convex quadratic programs,” Journal of Global Optimization 10, 367–380.

García-Palomares, U. M., and Rodríguez-Hernández, P. S., 2019, “Unified ap-

proach for solving box-constrained models with continuous or discrete vari-

ables by non monotone direct search methods,” Optimization Letters 13, 95–111.

Geißler, B., Martin, A., Morsi, A., and Schewe, L., 2012, “Using piecewise lin-

ear functions for solving MINLPs,” in Mixed integer nonlinear programming

(Springer). pp. 287–314.

Geoffrion, A. M., and Marsten, R. E., 1972, “Integer programming algorithms: A

framework and state-of-the-art survey,” Management Science 18, 465–491.

Geoffrion, A. M., 1972, “Generalized benders decomposition,” Journal of optimiza-

tion theory and applications 10, 237–260.

Goux, J.-P., and Leyffer, S., 2002, “Solving large MINLPs on computational grids,”

Optimization and Engineering 3, 327–346.

Graf, P. A., and Billups, S., 2017, “MDTri: Robust and efficient global mixed inte-

ger search of spaces of multiple ternary alloys,” Computational Optimization and

Applications 68, 671–687.

Grama, A., Kumar, V., Gupta, A., and Karypis, G., 2003, Introduction to parallel

computing (Pearson Education).

Gümüş, Z. H., and Floudas, C. A., 2005, “Global optimization of mixed-integer

bilevel programming problems,” Computational Management Science 2, 181–212.

http://dx.doi.org/10.1007/bf01581153
http://dx.doi.org/10.1007/s11590-018-1253-y
http://dx.doi.org/10.1287/mnsc.18.9.465
http://dx.doi.org/10.1007/s10589-017-9922-9
http://dx.doi.org/10.1007/s10589-017-9922-9

Bibliography 147

Gupta, O. K., and Ravindran, A., 1985, “Branch and bound experiments in convex

nonlinear integer programming,” Management science 31, 1533–1546.

GUROBI. “Gurobi optimizer 9.0 reference manual,” , 2019. URL https:

//www.gurobi.com/wp-content/plugins/hd_documentations/

documentation/9.0/refman.pdf

Gutmann, H.-M., 2001, “A radial basis function method for global optimization,”

Journal of global optimization 19, 201–227.

Haarala, M., Miettinen, K., and Mäkelä, M. M., 2004, “New limited memory bun-

dle method for large-scale nonsmooth optimization,” Optimization Methods and

Software 19, 673–692.

Hall, J., 2010, “Towards a practical parallelisation of the simplex method,” Com-

putational Management Science 7, 139–170.

Hart, W. E., Watson, J.-P., and Woodruff, D. L., 2011, “Pyomo: modeling and

solving mathematical programs in Python,” Mathematical Programming Compu-

tations 3, 219–260.

Hart, W. E., Phillips, C. A., and Eckstein, J., 2013, PEBBL: An object-oriented frame-

work for scalable parallel branch and bound., Tech. Rep. (Sandia National Labora-

tories (SNL-NM), Albuquerque, NM (United States)).

Hart, W. E., and Phillips, C. A., 2008, Parallelization Issues for MINLP., Tech. Rep.

(Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)).

Hemker, T., Fowler, K., Farthing, M., and von Stryk, O., 2008, “A mixed-integer

simulation-based optimization approach with surrogate functions in water re-

sources management,” Optimization and Engineering 9, 341–360.

Hemmecke, R., Köppe, M., Lee, J., and Weismantel, R., 2010, “Nonlinear inte-

ger programming,” in 50 Years of Integer Programming 1958–2008 (Springer). pp.

561–618.

Holmström, K., Quttineh, N.-H., and Edvall, M., 2008, “An adaptive radial ba-

sis algorithm (ARBF) for expensive black-box mixed-integer constrained global

optimization,” Optimization and Engineering 9, 311–339.

Hunting, M., 2011, “The AIMMS outer approximation algorithm for MINLP,”

Paragon Decision Technology, Haarlem

https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
http://dx.doi.org/10.1080/10556780410001689225
http://dx.doi.org/10.1080/10556780410001689225
http://dx.doi.org/10.1007/s11081-008-9048-0
http://dx.doi.org/10.1007/978-3-540-68279-0_15
http://dx.doi.org/10.1007/s11081-008-9037-3

148 Bibliography

Hunting, M. “AIMMS– Whitepaper-COA,” , 2019. URL https://download.

aimms.com/aimms/download/references/AIMMS-Whitepaper-COA.

pdf

Jeroslow, R. C., 1973, “There cannot be any algorithm for integer programming

with quadratic constraints,” Operations Research 21, 221–224.

Jian, N., and Henderson, S. G., 2020, “Estimating the probability that a function

observed with noise is convex,” INFORMS Journal on Computing 32, 376–389.

Jian, N., Henderson, S. G., and Hunter, S. R., 2014, “Sequential detection of con-

vexity from noisy function evaluations,” in Proceedings of the Winter Simulation

Conference (IEEE).

Kannan, R., and Monma, C. L., 1978, “On the computational complexity of integer

programming problems,” in Optimization and Operations Research (Springer).

pp. 161–172.

Karmarkar, N., 1984, “A new polynomial-time algorithm for linear program-

ming,” in Proceedings of the sixteenth annual ACM symposium on Theory of com-

puting, pp. 302–311.

Kilinç, M., and Sahinidis, N. V., 2017, “State-of-the-art in mixed-integer nonlin-

ear programming,” in Advances and trends in optimization with engineering ap-

plications, MOS-SIAM book series on optimization (SIAM, Philadelphia). pp.

273–292.

Kiwiel, K. C., 1989, “An ellipsoid trust region bundle method for nonsmooth con-

vex minimization,” SIAM Journal on Control and Optimization 27, 737–757.

Kleinert, T., Grimm, V., and Schmidt, M., 2019, Outer Approximation for Global

Optimization of Mixed-Integer Quadratic Bilevel Problems, Tech. Rep. (Friedrich-

Alexander-Universität Erlangen-Nürnberg).

Koch, T., Ralphs, T., and Shinano, Y., 2012, “Could we use a million cores to solve

an integer program?.” Mathematical Methods of Operations Research 76, 67–93.

Kolda, T. G., Lewis, R. M., and Torczon, V. J., 2003, “Optimization by direct search:

New perspectives on some classical and modern methods,” SIAM Review 45,

385–482.

https://download.aimms.com/aimms/download/references/AIMMS-Whitepaper-COA.pdf
https://download.aimms.com/aimms/download/references/AIMMS-Whitepaper-COA.pdf
https://download.aimms.com/aimms/download/references/AIMMS-Whitepaper-COA.pdf
http://dx.doi.org/10.1109/wsc.2014.7020215
http://dx.doi.org/10.1109/wsc.2014.7020215
http://dx.doi.org/10.1137/0327039
http://dx.doi.org/10.1137/S003614450242889

Bibliography 149

Kronqvist, J., Lundell, A., and Westerlund, T., 2016, “The extended support-

ing hyperplane algorithm for convex mixed-integer nonlinear programming,”

Journal of Global Optimization 64, 249–272.

Lai, T.-H., and Sahni, S., 1984, “Anomalies in parallel branch-and-bound algo-

rithms,” Communications of the ACM 27, 594–602.

Larson, J., Menickelly, M., and Wild, S. M., 2019, “Derivative-free optimization

methods,” Acta Numerica 28, 287–404.

Lasdon, L., and Plummer, J. C., 2008, “Multistart algorithms for seeking feasibil-

ity,” Computers & operations research 35, 1379–1393.

Le Digabel, S., 2011, “Algorithm 909: NOMAD: Nonlinear optimization with the

MADS algorithm,” ACM Transactions on Mathematical Software 37, 1–15.

Le Digabel, S., and Wild, S. M., 2015, A Taxonomy of Constraints in Black-Box

Simulation-Based Optimization, Preprint ANL/MCS-P5350-0515 (Argonne).

Li, G.-J., 1985, Parallel processing of combinatorial search problems, Ph.D. thesis (Pur-

due University).

Li, G.-J., and Wah, B. W., 1986, “Coping with anomalies in parallel branch-and-

bound algorithms,” IEEE Transactions on Computers 100, 568–573.

Li, G.-J., and Wah, B. W., 1990, “Computational efficiency of parallel combinato-

rial or-tree searches,” IEEE Transactions on Software Engineering 16, 13–31.

Lima, R. M., and Grossmann, I. E., 2011, “Computational advances in solving

mixed integer linear programming problems,” Chemical Engineering Greetings

to Prof. Sauro Pierucci, AIDAC 151, 160.

Lin, Y., and Schrage, L., 2009, “The global solver in the LINDO API,” Optimization

Methods & Software 24, 657–668.

Linderoth, J. T., and Savelsbergh, M. W., 1999, “A computational study of search

strategies for mixed integer programming,” INFORMS Journal on Computing 11,

173–187.

LINDO. “LINDO Systems Inc,” , 2019. URL https://www.lindo.com/

downloads/PDF/LindoUsersManual.pdf

http://dx.doi.org/10.1017/s0962492919000060
http://dx.doi.org/10.1145/1916461.1916468
http://www.mcs.anl.gov/papers/P5350-0515.pdf
http://www.mcs.anl.gov/papers/P5350-0515.pdf
https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf
https://www.lindo.com/downloads/PDF/LindoUsersManual.pdf

150 Bibliography

Liuzzi, G., Lucidi, S., and Rinaldi, F., 2011, “Derivative-free methods for bound

constrained mixed-integer optimization,” Computational Optimization and Ap-

plications 53, 505–526.

Liuzzi, G., Lucidi, S., and Rinaldi, F., 2015, “Derivative-free methods for mixed-

integer constrained optimization problems,” Journal of Optimization Theory and

Applications 164, 933–965.

Liuzzi, G., Lucidi, S., and Rinaldi, F., 2020, “An algorithmic framework based on

primitive directions and nonmonotone line searches for black-box optimization

problems with integer variables,” Mathematical Programming Computation 12,

673–702.

Lourenço, H. R., Martin, O. C., and Stützle, T., 2003, “Iterated local search,” in

Handbook of metaheuristics (Springer). pp. 320–353.

Lubin, M., Hall, J. J., Petra, C. G., and Anitescu, M., 2013, “Parallel distributed-

memory simplex for large-scale stochastic LP problems,” Computational Opti-

mization and Applications 55, 571–596.

Lundell, A., Kronqvist, J., and Westerlund, T., 2018, “The supporting hyperplane

optimization toolkit-a polyhedral outer approximation based convex minlp

solver utilizing a single branching tree approach..” Preprint, Optimization On-

line

Mahajan, A., 2010, “Presolving mixed–integer linear programs,” Wiley Encyclope-

dia of Operations Research and Management Science

Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., and Munson, T., 2020, “Mino-

taur: A mixed-integer nonlinear optimization toolkit,” Mathematical Program-

ming Computation, 1–38.

Mans, B., and Roucairol, C., 1996, “Performances of parallel branch and bound

algorithms with best-first search,” Discrete Applied Mathematics 66, 57–74.

MATLAB. “Optimization Toolbox,” , 2021. URL https://www.mathworks.

com/products/optimization.html

McCormick, G. P., 1976, “Computability of global solutions to factorable non-

convex programs: Part I-Convex underestimating problems,” Mathematical pro-

gramming 10, 147–175.

http://dx.doi.org/10.1007/s10589-011-9405-3
http://dx.doi.org/10.1007/s10589-011-9405-3
http://dx.doi.org/10.1007/s10957-014-0617-4
http://dx.doi.org/10.1007/s10957-014-0617-4
https://www.mathworks.com/products/optimization.html
https://www.mathworks.com/products/optimization.html

Bibliography 151

Melo, W., Fampa, M., and Raupp, F., 2018, “An overview of MINLP algorithms

and their implementation in Muriqui Optimizer,” Annals of Operations Research,

1–25.

Migdalas, A., Toraldo, G., and Kumar, V., 2003, “Nonlinear optimization and par-

allel computing,” Parallel Computing 29, 375–391.

Misener, R., and Floudas, C. A., 2014, “ANTIGONE: algorithms for continu-

ous/integer global optimization of nonlinear equations,” Journal of Global Opti-

mization 59, 503–526.

Mladenović, N., and Hansen, P., 1997, “Variable neighborhood search,” Computers

& Operations Research 24, 1097–1100.

Moré, J. J., and Wild, S. M., 2009, “Benchmarking derivative-free optimization

algorithms,” SIAM Journal on Optimization 20, 172–191.

Müller, J., 2014, MATSuMoTo: The MATLAB surrogate model toolbox for computation-

ally expensive black-box global optimization problems, Tech. Rep. 1404.4261 (arXiv).

Müller, J., 2016, “MISO: Mixed-Integer Surrogate Optimization framework,” Op-

timization and Engineering 17, 177–203.

Müller, J., Shoemaker, C. A., and Piché, R., 2013, “SO-I: A surrogate model algo-

rithm for expensive nonlinear integer programming problems including global

optimization applications,” Journal of Global Optimization 59, 865–889.

Müller, J., Shoemaker, C. A., and Piché, R., 2013, “SO-MI: A surrogate model algo-

rithm for computationally expensive nonlinear mixed-integer black-box global

optimization problems,” Computers & Operations Research 40, 1383–1400.

Munguía, L.-M., Oxberry, G., and Rajan, D., 2016, “PIPS-SBB: A parallel

distributed-memory branch-and-bound algorithm for stochastic mixed-integer

programs,” in 2016 IEEE International Parallel and Distributed Processing Sympo-

sium Workshops (IPDPSW) (IEEE). pp. 730–739.

Munguía, L., Oxberry, G., Rajan, D., and Shinano, Y., 2019, “Parallel PIPS-SBB:

multi-level parallelism for stochastic mixed-integer programs,” Comp. Opt. and

Appl. 73, 575–601.

Nelder, J., and Mead, R., 1965, “A simplex method for function minimization,”

Computer Journal 7, 308–313.

https://arxiv.org/abs/1404.4261
https://arxiv.org/abs/1404.4261
http://dx.doi.org/10.1007/s11081-015-9281-2
http://dx.doi.org/10.1007/s11081-015-9281-2
http://dx.doi.org/10.1007/s10898-013-0101-y
http://dx.doi.org/10.1016/j.cor.2012.08.022

152 Bibliography

Nesterov, Y., and Nemirovskii, A., 1994, Interior-point polynomial algorithms in con-

vex programming (SIAM).

Newby, E., and Ali, M. M., 2015 apr, “A trust-region-based derivative free algo-

rithm for mixed integer programming,” Computational Optimization and Appli-

cations 60, 199–229.

Nocedal, J., and Wright, S. J., 1999, Numerical Optimization (Springer-Verlag, New

York).

PARAM Siddhi-AI. “PARAM Siddhi-AI Supercomputer,” , 2021. URL https:

//www.top500.org/system/179901/

Porcelli, M., and Toint, P. L., 2017 jun, “BFO, a trainable derivative-free brute

force optimizer for nonlinear bound-constrained optimization and equilibrium

computations with continuous and discrete variables,” ACM Transactions on

Mathematical Software 44, 1–25.

Powell, M. J., 1999, “Recent research at cambridge on radial basis functions,” New

Developments in Approximation Theory, 215–232.

Quesada, I., and Grossmann, I. E., 1992, “An LP/NLP based branch and bound

algorithm for convex MINLP optimization problems,” Computers & chemical

engineering 16, 937–947.

Ralphs, T., Shinano, Y., Berthold, T., and Koch, T., 2018, “Parallel solvers for

mixed integer linear optimization,” in Handbook of parallel constraint reasoning

(Springer). pp. 283–336.

Ralphs, T., Guzelsoy, M., and Mahajan, A., 2015, “SYMPHONY 5.6.9 user’s man-

ual,”

Rashid, K., Ambani, S., and Cetinkaya, E., 2012, “An adaptive multiquadric ra-

dial basis function method for expensive black-box mixed-integer nonlinear

constrained optimization,” Engineering Optimization 45, 185–206.

Reeves, C. R., 2010, “Genetic algorithms,” in Handbook of metaheuristics (Springer).

pp. 109–139.

Richter, P., Ábrahám, E., and Morin, G., 2011, “Optimisation of concentrating so-

lar thermal power plants with neural networks,” in Adaptive and Natural Com-

http://dx.doi.org/10.1007/s10589-014-9660-1
http://dx.doi.org/10.1007/s10589-014-9660-1
https://www.top500.org/system/179901/
https://www.top500.org/system/179901/
http://dx.doi.org/10.1145/3085592
http://dx.doi.org/10.1145/3085592
http://dx.doi.org/10.1080/0305215X.2012.665450
http://dx.doi.org/10.1007/978-3-642-20282-7_20
http://dx.doi.org/10.1007/978-3-642-20282-7_20

Bibliography 153

puting Algorithms, Vol. 6593, edited by Dobnikar, A., Lotrič, U., and Šter, B.

(Springer). pp. 190–199.

Rios, L. M., and Sahinidis, N. V., 2013, “Derivative-free optimization: a review

of algorithms and comparison of software implementations,” Journal of Global

Optimization 56, 1247–1293.

Rockafellar, R., 1970, Convex Analysis (Princeton University Press, Princeton, NJ).

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989, “Design and analysis

of computer experiments,” Statistical science, 409–423.

Sahinidis, N. V., 1996, “BARON: A general purpose global optimization software

package,” Journal of global optimization 8, 201–205.

Sahinidis, N. V., 2019, “Mixed-integer nonlinear programming 2018,” Optimiza-

tion and Engineering 2, 301–306.

SAS/OR. “SAS/OR 15.1 User’s Guide Mathematical Programming,” ,

2019. URL https://support.sas.com/documentation/onlinedoc/

or/151/ormpug.pdf

Sharma, M., Hahn, M., Leyffer, S., Ruthotto, L., and van Bloemen Waanders, B.,

2020a, “Inversion of convection-diffusion equation with discrete sources,” Op-

timization and Engineering

Sharma, M., Palkar, P., and Mahajan, A., 2020b, Linearization and Parallelization

Schemes for Convex Mixed-Integer Nonlinear Optimization, Tech. Rep. 7793

Shinano, Y., 2018, “The ubiquity generator framework: 7 years of progress

in parallelizing branch-and-bound,” in Operations Research Proceedings 2017

(Springer). pp. 143–149.

Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., and Koch, T., 2011, “ParaSCIP:

a parallel extension of SCIP,” in Competence in High Performance Computing 2010

(Springer). pp. 135–148.

Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., and Winkler, M.,

2016, “Solving open MIP instances with ParaSCIP on supercomputers using

up to 80,000 cores,” in 2016 IEEE International Parallel and Distributed Processing

Symposium (IPDPS) (IEEE). pp. 770–779.

http://dx.doi.org/10.1007/978-3-642-20282-7_20
http://dx.doi.org/10.1007/978-3-642-20282-7_20
http://dx.doi.org/10.1007/978-3-642-20282-7_20
https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf
https://support.sas.com/documentation/onlinedoc/or/151/ormpug.pdf
http://www.optimization-online.org/DB_HTML/2020/05/7793.html
http://www.optimization-online.org/DB_HTML/2020/05/7793.html

154 Bibliography

Shinano, Y., Berthold, T., and Heinz, S., 2018, “ParaXpress: an experimental ex-

tension of the FICO Xpress-Optimizer to solve hard MIPs on supercomputers,”

Optimization Methods and Software 33, 530–539.

Shinano, Y., and Fujie, T., 2007, “ParaLEX: A parallel extension for the CPLEX

mixed integer optimizer,” in European Parallel Virtual Machine/Message Passing

Interface Users’ Group Meeting (Springer). pp. 97–106.

Shinano, Y., Heinz, S., Vigerske, S., and Winkler, M., 2017, “FiberSCIP - a shared

memory parallelization of SCIP,” INFORMS Journal on Computing 30, 11–30.

Shinano, Y., Rehfeldt, D., and Gally, T., 2019, “An easy way to build parallel state-

of-the-art combinatorial optimization problem solvers: A computational study

on solving steiner tree problems and mixed integer semidefinite programs by

using ug [SCIP-*,*]-libraries,” in 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW) (IEEE). pp. 530–541.

SHOT. “The Supporting Hyperplane Optimization Toolkit,” , 2019. URL http:

//www.github.com/coin-or/shot

Smith, E. M., and Pantelides, C. C., 1997, “Global optimisation of nonconvex

MINLPs,” Computers & Chemical Engineering 21, S791–S796.

Smith, L., Chinneck, J., and Aitken, V., 2013a, “Constraint consensus concentra-

tion for identifying disjoint feasible regions in nonlinear programmes,” Opti-

mization Methods and Software 28, 339–363.

Smith, L., Chinneck, J., and Aitken, V., 2013b, “Improved constraint consensus

methods for seeking feasibility in nonlinear programs,” Computational Opti-

mization and Applications 54, 555–578.

Tawarmalani, M., and Sahinidis, N. V., 2005, “A polyhedral branch-and-cut ap-

proach to global optimization,” Mathematical Programming 103, 225–249.

Tawarmalani, M., and Sahinidis, N. V., 2013, Convexification and global optimization

in continuous and mixed-integer nonlinear programming: theory, algorithms, soft-

ware, and applications, Vol. 65 (Springer Science & Business Media).

Torczon, V., 1997, “On the convergence of pattern search algorithms,” SIAM Jour-

nal on optimization 7, 1–25.

http://www.github.com/coin-or/shot
http://www.github.com/coin-or/shot

Bibliography 155

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., and Martí, R., 2007, “Scatter

search and local NLP solvers: A multistart framework for global optimization,”

INFORMS Journal on Computing 19, 328–340.

Van Hentenryck, P., 1999, The OPL optimization programming language (MIT press).

Vigerske, S., and Gleixner, A., 2018, “SCIP: Global optimization of mixed-integer

nonlinear programs in a branch-and-cut framework,” Optimization Methods and

Software 33, 563–593.

Wächter, A., and Biegler, L. T., 2006, “On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming,” Mathemat-

ical programming 106, 25–57.

Witzig, J., Berthold, T., and Heinz, S., 2017, “Experiments with conflict analy-

sis in mixed integer programming,” in International Conference on AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems

(Springer). pp. 211–220.

Wolsey, L. A., and Nemhauser, G. L., 1999, Integer and combinatorial optimization,

Vol. 55 (John Wiley & Sons).

Xpress. “FICO Xpress-Optimizer,” , 2019. URL http://www.fico.com/en/

Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.

aspx

Xu, Y., Ralphs, T. K., Ladányi, L., and Saltzman, M. J., 2009, “Computational ex-

perience with a software framework for parallel integer programming,” IN-

FORMS Journal on Computing 21, 383–397.

Zhou, K., Chen, X., Shao, Z., Wan, W., and Biegler, L. T., 2014, “Heteroge-

neous parallel method for mixed integer nonlinear programming,” Computers

& Chemical Engineering 66, 290–300.

http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx

List of Publications, Posters and

Talks

• Larson J., Leyffer S., Palkar, P. and Wild, S., 2017, “A Method for Convex

Black-Box Integer Global Optimization”, 2020, (accepted in) Journal of Global

Optimization.

• Sharma M., Palkar P., and Mahajan A., “Linearization and Paralleliza-

tion Schemes for Convex Mixed-Integer Nonlinear Optimization,” Under

review, Optimization Online, http://www.optimization-online.org/

DB_FILE/2020/05/7793.pdf

• Palkar P., Mahajan A., “Addressing Anomalies In Parallel Branch- and-

Bound Algorithms for Mixed-Integer Nonlinear Optimization”, 2021, (To

be communicated).

• Palkar P., Mahajan A., “A Branch-and-Estimate Heuristic Procedure for

Solving Nonconvex Integer Optimization Problems,” 2015 IEEE Interna-

tional Parallel and Distributed Processing Symposium Workshop, 1143–1151.

• Liu Z., Rajkumar K., Leyffer S., Palkar, P. and Foster, I., 2017, “A Math-

ematical Programming-and Simulation-Based Framework to Evaluate Cy-

berinfrastructure Design Choices,” 2017 IEEE 13th International Conference

on e-Science (e-Science), 148-157.

• Accelerating LP, NLP and MILP Based Algorithms for Convex MINLPs us-

ing Parallelization Schemes. 52nd Annual Convention of ORSI & International

Conference, IIM Ahmedabad, India, December 15-18, 2019.

• Parallel Algorithms for Convex Mixed-Integer Nonlinear Programming.

3rd International Conference and Summer School on Numerical Computations:

Theory and Algorithms (NUMTA) 2019, Calabria, Italy, June 15-21, 2019.

157

http://www.optimization-online.org/DB_FILE/2020/05/7793.pdf
http://www.optimization-online.org/DB_FILE/2020/05/7793.pdf

158 List of Publications, Posters and Talks

• Optimizing Convex Derivative Free Functions Over Integer Lattice. LANS

Summer Argonne Student Symposium (SASSy) Part II, Argonne National Labo-

ratory, Lemont, USA, August 08, 2018.

• A Globally Convergent Simulation-based Optimization Algorithm with In-

teger Constraints. 23rd International Symposium on Mathematical Program-

ming (ISMP), Bordeaux, France, July 01-06, 2018.

• Mixed-Integer Derivative-Free Optimization. Mixed Integer Programming

(MIP) Workshop 2018, Greenville, SC, USA, June 18-21, 2018.

• MINOTAUR: Mixed-Integer Nonlinear Optimization Toolkit - Algorithms,

Underestimators, Relaxations. OPTSUM 2017, Mumbai, India, September

14, 2017.

• Parallel Branch-and-Bound Algorithms For Convex Mixed-Integer Nonlin-

ear Programs. ORSI-2016, New Delhi, India, December 12-14, 2016.

• Towards global optimization of mixed integer nonlinear programming

problems. Innovation Day, JDA, Hyderabad, India, April 06, 2016.

Acknowledgements

First, I would like to thank my advisor Prof. Ashutosh Mahajan for always be-

ing supportive on both academic and personal fronts. The time spent with him

during research as well as during various teaching assistantships and system ad-

min activities has helped me a lot to develop and hone my technical and general

problem solving skills.

I would also like to thank the faculty at IEOR for their direct and indirect

inputs during this endeavour, by means of course instructions, interactions etc.

Similarly, I would like to thank my fellow research scholars and colleagues at the

IEOR office for always being supportive and helpful.

The work on Mixed-Integer Derivative-Free Optimization has been done in

collaboration with Dr. Jeffrey Larson, Dr. Sven Leyffer and Dr. Stefan Wild, all

from Argonne National Laboratory (ANL), Lemont, USA. 1 I would like to thank

all of them for their valuable guidance on this part of the thesis, especially Sven,

who provided me the opportunity to visit ANL in the summers of 2017 and 2018,

which were quite enriching, and also for always being there to help whenever

needed.

I am thankful to my family and friends for being supportive during my PhD

and always. At last, I would like to thank my wife for always being there with

me on this journey. Her presence made the sailing smooth and her contributions

towards this thesis are inseparable from mine.

Prashant Palkar

IIT Bombay

September 26, 2022

1Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL

60439; email ids: jmlarson@anl.gov, leyffer@anl.gov, wild@anl.gov, in respective order.

159

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	MINLP and Related Problems
	Nonlinear Programs
	Mixed-Integer Linear Programs
	Linear Programs

	Algorithms for Convex MINLP
	Nonlinear Branch-and-Bound (NLP-BB)
	Outer Approximation (OA)
	LP/NLP Based Branch-and-Bound (QG)

	Methods for Nonconvex MINLP
	Relaxations Using Factorable Functions
	Spatial Branch-and-Bound (SBB)

	Heuristic Approaches
	Mixed-Integer Derivative-Free Optimization
	Direct Search Methods
	Model Based Methods

	Shared-Memory Parallelism
	Solvers for MINLP and Minotaur
	Motivation for the Thesis and Outline

	Parallel Algorithms for Convex MINLP
	Background
	Experimental Setup
	Shared-Memory Parallel Search
	Parallel Extension of NLP-BB
	Sharing Pseudocosts in Branching
	Parallel Extension of QG

	Combined Effect of Linearization and Parallelization Schemes
	Outer Approximation
	Multitree OA with Parallel MILP
	QG Using MILP Solvers with Lazy Cuts Callback

	Comparison of Methods and Conclusions

	Anomalies in Parallel Branch-and-Bound Based Algorithms for MINLP
	Opportunistic Parallel Branch-and-Bound in Minotaur
	Parallel NLP-BB
	Parallel QG

	Parallel NLP-BB with No Detrimental Anomalies
	Unambiguous Branching Functions
	Unambiguous Reliability Branching Scheme
	Unambiguous Node Selection
	Nondetrimental NLP-BB

	Parallel QG with No Detrimental Anomalies
	Reproducibility in Parallel NLP-BB and Parallel QG
	Computational Results
	Conclusion and Future Research

	A Parallel Branch-and-Estimate Heuristic for Nonconvex MINLP
	The Branch-and-Estimate Heuristic
	Initial Point Generation Schemes
	Scheme-1
	Scheme-2
	Scheme-3
	Scheme-4
	Scheme-5

	Computational Results
	Experimental Setup
	Inferences

	Conclusions and Future Research

	Mixed-Integer Derivative-Free Optimization
	Background
	Underestimator of Convex Functions on Integer Lattice
	Secant Functions and Conditional Cuts
	Lower Bound for Objective Function
	Covering Entire Domain with Conditional Cuts

	Proposed Algorithm and Convergence Analysis
	Formulating (??) as an MILP Problem
	MILP Formulation
	Issues with MILP Formulation

	Enumerative Approach
	Other Implementation Details
	The SUCIL Method

	Numerical Experiments
	Discussion

	Conclusions and Future Work
	Appendix Test Problems and Numerical Results for MIDFO
	References
	List of Publications, Posters and Talks
	Acknowledgements

