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Abstract

Mixed-Integer Nonlinear Programs (MINLPs) constitute an important class of optimiza-

tion problems. Such problems are difficult to solve by current state-of-art algorithms

and solvers, and are known to be in the complexity class NP-Hard. This difficulty arises

mainly because (1) some of the functions in the description of the problem are nonconvex,

and (2) some or all the variables are required to assume integer values. The commonly

used algorithms for solving MINLP are the Branch-and-Cut Algorithm and its variants.

One crucial step in branch-and-cut algorithms is to find a tractable relaxation of the

problem. Solving a relaxation of a minimization problem provides lower bounds on the

optimal value. This relaxation, which is usually a convex optimization problem, is then

either subdivided (by branching) or further tightened (by adding more inequalities or

cuts) to obtain tighter bounds. A starting tighter relaxation to the feasible region of the

MINLP gives a lower bound closer to the optimal value of the MINLP and leads to faster

algorithms. Finding the tightest convex relaxation for the problem is often quite difficult,

and one has to resort to tight convex relaxations of individual constraints separately. In

this thesis, we derive the convex hull description of the mixed-integer bilinear covering set

and its variants. These nonconvex sets appear in models for trim-loss problem, pattern

minimization problem, pre-pack problem etc. We also study the effectiveness of the facet

defining inequalities of the convex hull in theoretical and computational sense.

In our first study, we derive the closed form description of the convex hull of mixed-

integer bilinear covering set with upper bounds on the integer variables. This convex

hull description is determined by considering some orthogonal disjunctive sets defined in

a certain way. This description does not introduce any new variables, but consists of

exponentially many inequalities. We then present an extended formulation with a few

extra variables and much smaller number of constraints. We also derive a linear time

separation algorithm for the facet defining inequalities of this convex hull. We study the

effectiveness of the new inequalities and the extended formulation computationally using

some examples.

i



Next, we derive the closed form description of the convex hull of mixed-integer bilinear

covering set with box constrained integer variables. We describe the extreme points and

extreme rays first and then find the facet defining inequalities of the convex hull with their

help. We then apply the facet defining inequalities to solve Pattern Minimization Problem

in a novel branch-and-cut type of algorithm. Unlike currently available algorithms, this

approach does not require column-generation or pricing. We also provide computational

experiments to show the effectiveness of our algorithm.

Lastly, we consider the mixed-integer bilinear covering set without any bounds on

the variables, and study the facet defining inequalities of its convex hull. In particular,

we study these inequalities as split cuts and more generally as disjunctive cuts. Our

motivation behind this approach is to find those inequalities which are computationally

more useful and easier to obtain. Viewing these facet defining inequalities through the lens

of split disjunctions, we see that some of them have split-rank one, and can be obtained

easily. We derive the necessary and sufficient condition on the linear objective functions

for which the facet defining inequalities with split-rank one are sufficient to give the same

optimal value as the convex hull. A particular relaxation of the trim loss problem has this

property. When the relaxation is slightly different and the necessary conditions do not

hold, our computational experiments showed that these rank-one inequalities still give the

same bound as all the facet defining inequalities of the convex hull. We further identify

facet defining inequalities that have split-rank more than one, but can be obtained using

other disjunctions.
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Chapter 1

Introduction

We study a mathematical set known as the bilinear covering set and its two variants.

The set is defined formally as

S =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r

}
,

and its two variants as

SU =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r, x ≤ u

}
, and

SB =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r, l ≤ x ≤ u

}
,

where n ∈ N, r > 0, l ∈ Zn+, u ∈ Nn+ are given. The inequality constraint
∑n

i=1 xiyi ≥ r

is known as bilinear covering constraint. These sets appear in modeling optimization

problems like the Trim-Loss Problem (or the Cutting Stock Problem) [66], Pattern Mini-

mization Problem [116] and the Pre-pack Problem [69]. Minimizing an objective function

over the set S, SU or SB is a special case of Mixed-Integer Nonlinear Optimization.

Mixed-Integer Nonlinear Optimization problems, including those with bilinear cover-

ing sets are known to be computationally difficult to solve; even small sized problems

may take hours or more time on a computer. As we describe later, these problems are

not ‘convex’, which makes these problems difficult. This thesis is devoted to analyzing

the structure of the above three sets, finding their convex approximations or relaxations,
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and deriving properties that make it easier to optimize over them.

We start this introductory chapter by describing optimization problems including the

specific problems of our interest: the trim-loss and the pattern minimization problems.

We then describe the commonly used terms and concepts like convexity that are used

in the thesis. Next we describe algorithms for solving these problems highlighting the

difficulties these algorithms face. Finally, we close this chapter with an outline of the rest

of the thesis and a summary of our contributions.

1.1 Mixed-Integer Nonlinear Optimization and Re-

lated Problems

A mathematical optimization problem is one where we want to find a point or a vector

where a given objective function assumes the minimum (or maximum) value amongst all

those that satisfy certain given constraints. An optimization problem can be classified

depending upon the type of the objective function and constraints it has. One such broad

class is that of Mixed-Integer Nonlinear Optimization Problems. We refer to a problem

of this class as an MINLP (Mixed-Integer Nonlinear Program).

An MINLP consists of one or more nonlinear constraints and objective function. In

addition, some or all of the variables (or unknowns) are required to assume integer values

in the solution. Mathematically, an MINLP can be written as

min
x,y

f(x, y)

subject to: gi(x, y) ≤ 0, for i ∈ I, (P)

x ∈ Zn1
+ , y ∈ Rn2

+ ,

where n1, n2 are given positive integers and I is a given index set. The functions f :

Rn1 × Rn2 → R and gi : Rn1 × Rn2 → R for i ∈ I are also given. In the MINLP (P),

x and y are called decision variables or just variables. We call x integer variables and y

continuous variables. The function f is the objective function and gi(x, y) ≤ 0, for all

i ∈ I are the constraints.
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MINLPs arise in a wide variety of real life problems in different sectors in industry,

business, sports, medicine, etc. In particular, MINLPs appear in telecommunication

network design [16], biological problems like molecular biology [81] and protein folding

[93], electricity transmission [89], gas network design [84], industrial problems like cutting

stock (or trim loss) problem [66, 110], pre-pack problem [69], supply chain design and

inventory management [117], facility layout problem [115], chemical process design [54,

63,72] and more.

The set of points satisfying all constraints of an optimization problem like MINLP (P)

SP =
{

(x, y) ∈ Zn1
+ × Rn2

+ : gi(x, y) ≤ 0, for i ∈ I
}

(SP )

is known as the feasible region of the MINLP (P). The problem (P) is infeasible when

SP is empty. MINLPs can be viewed as generalization of other classes of optimization

problems, and the solution methods for MINLP depend upon the methods for these

classes. Some of the important classes are described next.

1.1.1 Nonlinear Optimization

When the set I is empty and n1 = 0, the problem (P) is called a nonlinear unconstrained

optimization problem. When n1 = 0, but I is not empty, we get a general nonlinear

optimization problem (NLP) of the form

min
y

f(y)

s.t. gi(y) ≤ 0, for i ∈ I, (NLP)

y ∈ Rn+,

with feasible region SNLP = {y ∈ Rn+ : gi(y) ≤ 0, for i ∈ I}. In the context of NLPs,

there are two notions of optimal points.

Definition 1.1.1 (Local Minimum). A point ȳ ∈ SNLP is called a local minimum if there

exists an ε > 0 such that f(ȳ) ≤ f(y) for all y ∈ SNLP ∩ {y ∈ Rn2 : ||y − ȳ|| < ε} .

Definition 1.1.2 (Global Minimum). A point ȳ ∈ SNLP is called a global minimum if

3



f(ȳ) ≤ f(y) for all y ∈ SNLP .

Since our goal is to find a globally minimum solution to the problems, we use minimum

and global minimum interchangeably in the thesis. Clearly, every global minimum is also

a local minimum, but the converse is true only for some special cases.

1.1.2 Convex Nonlinear Optimization

The notion of convexity plays an important role in determining whether any local mini-

mum of a given NLP is also its global minimum. We introduce this notion through some

definitions next.

Definition 1.1.3 (Convex Set). A set C ⊆ Rn is called a convex set if for any λ ∈

[0, 1], λx1 + (1− λ)x2 ∈ C, for all x1, x2 ∈ C.

Definition 1.1.4 (Convex Combination). Let T = {x1, x2, . . . , xk} be a finite subset

in Rn. The element
∑k

i=1 λkx
k is called a convex combination of the elements in T if

λi ∈ [0, 1], i = 1, . . . , k and
∑k

i=1 λk = 1.

Definition 1.1.5 (Convex Hull). Let T be a subset of Rn (possibly uncountable). The

collection of all possible convex combinations of points in T is known as the convex hull

of T , and we denote it as conv(T ).

It can be easily proved that conv(T ) is the smallest convex set that contains the set

T . In other words, conv(T ) is the intersection of all convex sets containing T . Related

to the convex hull is the notion of a conic hull.

Definition 1.1.6 (Conic Combination). Let T = {x1, x2, . . . , xk} be a finite subset in

Rn. The element
∑k

i=1 λkx
k is called a conic combination of the elements in T if λi ≥

0, i = 1, . . . , k.

Definition 1.1.7 (Conic Hull). Let T be a subset of Rn (possibly uncountable). The

collection of all possible conic combinations of the points in T is known as the conic hull

of T , and we denote it as C(T ).

Definition 1.1.8 (Convex Function). Let C be a nonempty convex set in Rn. A function

f : C → R is called a convex function if f (λx1 + (1− λ)x2) ≤ λf(x1) + (1−λ)f(x2), for

all x1, x2 ∈ C and for any λ ∈ [0, 1].
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A function f is called a concave function if −f is a convex function. Only affine

functions are both convex and concave. A well known and important result for nonlinear

programs is the following.

Theorem 1.1.1 ( [99]). Let f : C → R be a convex function where C is a convex set in

Rn. Let w̄ ∈ C be a local minimum of f over C, then w̄ is also a global minimum of f .

Proposition 1.1.1. Let f : Rn → R be a convex function and δ ∈ R. Then the set

Sδ = {x ∈ Rn : f(x) ≤ δ} is convex.

The set Sδ is known as δ-Sublevel set of f . Thus, any sublevel set of a convex function

(or a superlevel set of a concave function) is a convex set. If for a given NLP gi, i ∈ I are

all convex functions, the feasible region SNLP is also convex. If such an NLP additionally

has a convex objective function f , it is called a convex nonlinear program (convex NLP).

1.1.3 Mixed-Integer Linear Optimization

Another important subclass of MINLPs is Mixed-Integer Linear Optimization. If the

functions f, gi, i ∈ I with I = {1, . . . ,m} are all linear (or affine) in the variables, and

n1 ≥ 1, then this optimization problem is known as a Mixed-Integer Linear Program

(MILP). An MILP can be written in the following form.

min
x,y

cTx+ dTy

s.t. Ax+By ≤ b, (MILP)

x ∈ Zn1
+ , y ∈ Rn2

+ ,

where A is an m× n1 rational matrix, B is an m× n2 rational matrix, c ∈ Rn1 , d ∈ Rn2

and b ∈ Rn1 × Rn2 are rational vectors. When n2 = 0, i.e., there are no continuous

variables in (MILP) then we call it Integer Program (IP). The feasible region of MILP or

IP is, in general, not convex.

5



1.1.4 Linear Optimization

In the problem (MILP), if n1 = 0, i.e., there are no integer constrained variables, then it

is called a Linear Program (LP). Mathematically, an LP is of the form

min
y

dTy

s.t. By ≤ b, (LP)

y ∈ Rn+.

Since all linear functions are convex, LPs are also a special and an important case of

convex NLPs.

1.2 Algorithms for Optimization Problems

An algorithm is a step-by-step recipe or procedure for solving a given problem. The design

of algorithms for solving optimization problems is largely dependent on the problem

class. MINLPs are known to be theoretically unsolvable [71], that is, there can not be

any algorithm which can solve MINLPs in finite time. The result is true even when we

restrict all functions in the MINLP (P) to the quadratic form. When the constraints

of the MINLP include explicit bounds on all variables, then there are algorithms that

can obtain an ε−optimal solution, that is, a point which is at most ε distance away

from the actual optimal solution. Even for such bounded MINLPs, there are no fast

or efficient algorithms. Since MINLPs include LPs, MILPs and NLPs as special cases,

they are at least as hard as solving these special cases. MILPs, in particular belong to

the complexity class NP-Hard [75]. That is, the time for solving them using any known

algorithm increases exponentially as the input size increases.

Methods for solving MINLPs are based on those used for solving LPs, MILPs and

NLPs. We briefly describe the main concepts and algorithms for solving these problems

first. We start by defining a few key terms. Readers are referred to books on convex

optimization (e.g. [28, 99]) for more details.

Definition 1.2.1 (Extreme Point). Let C be a convex set in Rn. A point x ∈ C is called

6



an extreme point of C if it can not be expressed as a convex combination of any other two

points in C.

Definition 1.2.2 (Recession Direction and Recession Cone). Let C be a convex set in

Rn. A vector d is called a recession direction if x + αd ∈ C for all x ∈ C and for all

α ≥ 0. The set of all recession directions of C is called the recession cone of C and in

this thesis we denote it as 0+(C).

Definition 1.2.3 (Half Space). Let f : Rn → R be a linear function, i.e., f(x) = cTx, x ∈

Rn for a given c ∈ Rn. Also let h ∈ R. Then the set H =
{
x ∈ Rn+ : cTx ≤ h

}
is known

as a half space.

Definition 1.2.4 (Polyhedron). A set Q in Rn is called a polyhedron (or a polyhedral

set) if Q can be expressed as an intersection of finite number of half spaces.

Any polyhedron Q can be written in the form

Q =
{
x ∈ Rn+ : Ax ≤ b

}
,

where A is an m × n real matrix, Rn+ = {x ∈ Rn : x ≥ 0} and b ∈ Rm. Thus, Q

is an intersection of m + n half spaces (m inequalities in Ax ≤ b and n inequalities in

x ≥ 0). A bounded polyhedron is known as a polytope. When a polyhedron in described

by specifying the half-spaces, the description (like the form above for Q) is called an

H-Description. On the other hand, any polyhedron with at least one extreme point

can be uniquely described by the sum of its recession cone and the convex hull of its

extreme points. A description which specifies the extreme rays of the recession cone and

the extreme points of the polyhedron is known as the V-Description of a polyhedron.

Consider the example

QE = {(x1, x2) ∈ R2
+ : x− 2y ≤ 2,−2x+ y ≤ 2, x+ y ≥ 1},

for illustration. The set of extreme points Ext(QE) is {(2, 0), (1, 0), (0, 1), (0, 2)}, and the

recession cone:

0+ (QE) = {(x1, x2) ∈ R2
+ : x− 2y ≤ 0,−2x+ y ≤ 0, x+ y ≥ 0}.
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Therefore, QE can be wrtten as:

QE = conv (Ext(QE)) + 0+ (QE) .

Figures 1.1 and 1.2 illustrate it graphically. We now describe algorithms for solving

optimization problems, starting with linear optimization.

1.2.1 Linear Optimization

The feasible region of a linear program is a polyhedron. The following property of a linear

programs makes it easier to solve than other convex programs.

Theorem 1.2.1 ( [22]). Suppose the problem (LP) has an optimal solution. Then one

of the extreme points of the feasible region of (LP) must be an optimal solution.

Further, every linear program has a finite number of extreme points. Dantzig [42]

exploited these properties to develop the simplex method for solving a linear program.

Since then the method and theory have been refined and improved in several ways. This

method iteratively jumps from one extreme point of the polyhedron to another in search

of an optimal solution. The topic of linear programming is rich in theory, and is an

important bridge between continuous and integer optimization problems. As we shall see

later, many other classes of optimization problems are solved by iteratively solving many

linear programs. More details on linear programming and its applications can be found
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in books like those by Chvátal [34] and Bertsimas and Tsitsiklis [22].

In theory, the simplex algorithm is not efficient, i.e., it does not run in time poly-

nomial in size of the input. For some cleverly designed instances this algorithm takes

exponentially many steps. Khachiyan [76] developed the first polynomial time algorithm

for linear programs. Though this algorithm does not perform well practically, it has some

useful theoretical properties. Karmarkar developed an interior point algorithm [74] that

runs in polynomial time and performs well computationally.

Several modern LP solvers, such as CLP [56], CPLEX [3], Gurobi [70] and XPRESS [1]

can solve large linear programs fast. They provide implementations of both, the simplex

algorithm and the interior point algorithm. They also provide useful routines to re-

optimize an LP if some of the inputs change or new constraints and variables are added.

Good theoretical properties of a linear programs, fast algorithms and availability of robust

solvers make it an useful component of algorithms for other classes of optimization, most

notably for integer optimization problems.

1.2.2 Convex Nonlinear Optimization

We need to find only a locally optimal solution of a convex NLP because such a solution

is also globally optimal. There are several algorithms available for solving these prob-

lems. For more details of such algorithms, see Nesterov and Nemirovskii [92] and Boyd

and Vandenberghe [29]. Two celebrated algorithms to solve convex programs are the

ellipsoidal method and the interior point method.

The ellipsoidal method was developed by Yudin and Nemirovski [118]. The basic

idea behind this method is to generate a sequence of ellipsoids of decreasing volumes

containing an optimal solution. At each iteration it divides the current ellipsoid into

halves and determines the half that contains an optimal solution and discards the other

half. In the next iteration, a new ellipsoid is constructed having smaller volume covering

the selected half of the ellipsoid of the previous iteration, and the process is continued.

Though this algorithm runs in polynomial time in the size of the input, implementing

this algorithm for practical computational purpose is not that easy.

Nesterov and Nemirovskii [92] extended the interior point method of Karmarkar [74]
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for solving linear programs to more general convex nonlinear programs, and showed that

polynomial time convergence can be achieved for convex programs also using a barrier

function. An interested reader is referred to the book [92] for details. Other practical

methods for solving convex NLPs are based on Sequential Quadratic Programming [51,95]

and Augmented Lagrangians [23]. Solvers for NLPs include ALGENCAN [24], FilterSQP

[53] etc, IPOPT [111], Knitro [32], and several others.

An important subclass of nonlinear convex optimization is that of Conic Optimization.

This class includes second-order conic programs (SOCP), semidefinite programs (SDP),

and even linear programs. Readers are referred to [20] and [21] for more details. Solvers

like MOSEK [9], SeDuMi [105], CSDP [27] are available for such problems. While these

problems are easier to solve as compared to general convex NLPs, the solvers are not as

fast and robust as LPs.

1.2.3 Mixed-Integer Linear Optimization

The additional restriction of integrality on certain variables makes MILP more difficult

to solve than an LP. In fact, the problem (MILP) is an NP-Hard problem [37], and all

known algorithms take time exponential in the size of the input. When the number of

variables is fixed, MILPs can be solved in theoretically polynomial time using Lenstra’s

[79] algorithm.

The most commonly used algorithm to solve an MILP is the Branch-and-Cut Algo-

rithm. A linear program obtained by removing the integer restrictions on the variables is

first solved. This LP is a relaxation of the MILP as every feasible point to the MILP is

also feasible to the LP. If the LP relaxation is infeasible, then the MILP is also infeasible.

If we find an optimal solution to LP in which the integer variables assume integer val-

ues, then it is also an optimal solution to the MILP. Otherwise, the LP optimal solution

has a fractional (non-integer) value on at least one integer variable. The branch-and-cut

algorithm proceeds further in one of the two broad ways:
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Branch and Bound

Let (x̄, ȳ) denote the solution of the LP relaxation. Then one can divide the problem into

two or more subproblems in a way that (x̄, ȳ) is not feasible to any of the subproblems,

but each solution to the MILP is feasible in at least one subproblem. This procedure is

called branching. Suppose x̄i is a fractional (non-integer) value for some i ∈ {1, . . . , n1}.

Then one possible branching is to have the additional constraint xi ≤ bx̄ic in one branch

and xi ≥ dx̄ie in the second.

The subproblems created after branching are restrictions of the original MILP, and

they are also MILPs. The above procedure can be continued applied again to these

subproblems. The process is continued until all the subproblems are explored. For each

subproblem, one needs to solve its LP relaxation. If the LP relaxation is infeasible,

the subproblem need not to be explored further. Similarly, if the LP relaxation of a

subproblem yields a solution that satisfies integer restrictions, it is a feasible solution

to the original MILP, and hence provides an upperbound to the optimal value. Such a

subproblem is also not explored further as we can not find a better solution by exploring

it further. A subproblem whose LP relaxation gives a value equal or higher than the best

known upperbound is also discarded as there are no better solutions to be found there.

This bounding procedure is often quite useful in eliminating many subproblems.

The above procedure is called Branch-and-Bound. Introduced by Land and Doig [78]

for pure integer programming problems, it was later extended by Driebeek [47] and Dakin

[41] for mixed-integer linear programs. The progress of this algorithm on a particular

instance of MILP can be denoted using a Branch-and-Bound tree. As the name suggests,

it is a tree graph where each node represents a subproblem. The root of the tree denotes

the original problem. Any children of a node correspond to the subproblems created by

branching on the problem associated with the node. Let us consider the following pure

integer problem as an example.

min − 8x1 − 11x2 − 6x3 − 4x4

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14,

xi ∈ {0, 1}, i = 1, 2, 3, 4.
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Figure 1.3: A Branch-and-Bound Tree

• The linear relaxation solution is x = (1, 1, 0.5, 0) with a value of -22. The solution

is not integral.

• The value x3 = 0.5 is fractional. Choose x3 to branch. The two new subproblems

will have the additional constraints x3 = 0 and x3 = 1 respectively. This process

can then be continued over each subproblem.

• Figure 1.3 illustrates the rest of the branch-and-bound algorithm on this instance.

While branch-and-bound still remains the main underlying method in solving MILPs

today, it has seen several augmentations, most notably in the form of generating cuts.

Cutting Plane Algorithm

Given a non-integer solution (x̄, ȳ) of the LP relaxation of a given MILP, if we can add

a linear constraint that is violated by (x̄, ȳ), but satisfied by all feasible points to MILP,

then we do not need to branch. Such an inequality that is satisfied by all feasible points of

MILP is called a ‘valid inequality’ or a ‘cutting plane’. See Figure 1.4 for an illustration.

The LP obtained by adding such a cut is still a relaxation to the MILP, but tighter

than the original LP relaxation. Gomory [61] developed a Cutting Plane algorithm to

solve integer programs (without continuous variables) that progressively added cuts to an

LP. The method stops when the LP is found to be infeasible or when it gives an integer

solution. Several classes of cuts have been introduced over the years and many theoretical
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insights on their properties gained [39]. We will revisit this topic in more detail later in

this chapter.

Most modern solvers for MILP combine branch-and-bound with cutting planes to

get what is called a Branch-and-Cut algorithm [90, 113]. These solvers also implement

advanced presolving techniques for automatically simplifying problems, heuristic methods

for finding good upper bounds, and intelligent search routines to speed up the algorithm.

CBC [55], CPLEX [3], Gurobi [70], SCIP [114], XPRESS [1] are some of the solvers

available for MILP today.

1.2.4 Mixed-Integer Nonlinear Optimization

Solving MINLPs is difficult mainly because of two reasons: (1) some of the functions in

the description of (P) are nonconvex (defined in the next section), and (2) some variables

are required to assume integer values.

When the objective function f and all the constraint functions gi, i ∈ I are convex

in MINLP (P), we call it a Convex MINLP. Methods for solving Convex MINLPs are

quite similar to those of MILP because, like MILP, one can get a convex relaxation by

removing integer restrictions on the variables. The continuous relaxation obtained can

be solved relatively easily using algorithms for convex NLPs. Thus a branch-and-bound

method based on convex NLPs can be used to solve convex MINLPs. Cutting planes for
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convex MINLPs can also be derived by first creating LP relaxations of the convex feasible

region and then applying the machinery developed for MILP cutting planes. Developing

procedures that exploit convexity to generate tighter relaxations that also are practically

faster to solve have received considerable attention [48,52,97]. Solvers for convex MINLP

include Bonmin [26], FilMINT [4] and MINOTAUR [83].

When some of the functions in the MINLP (P) are not convex, then the problems

become even harder to solve. Relaxing integer constraints in such problems creates a

nonconvex nonlinear problem which is difficult to solve. In words of Rockafellar, “In fact

the great watershed in optimization isn’t between linearity and nonlinearity, but convexity

and nonconvexity.” [100].

In order to use a branch-and-bound based procedure, we require a tractable relaxation

to solve. Finding such a relaxation for general nonlinear problems is difficult. Instead,

the problem is first reformulated by adding several new variables and constraints so that

all nonconvex relations are restricted to atomic functions (like product of two variables,

or log of a variable). These constraints are then relaxed individually to obtain a convex

relaxation [19,50,85,101,107].

The solution of the relaxation obtained for a nonconvex MINLP may not be feasible to

the continuous relaxation, but it still provides a lower bound. In order to proceed with a

branch-and-bound algorithm, one may have to branch on continuous variables in addition

to branching on integer constraints. Hence, such a method is also sometimes called Spatial

Branch-and-Bound. For more detailed on the existing solution methods for MINLPs, an

interested reader may refer to surveys by Belotti et al. [18] and Neumaier [94], and books

by Horst and Pardalos [67] and Horst and Tuy [68]. Solvers implementing Branch-and-

Cut algorithms for nonconvex MINLP include BARON [108], Couenne [19], LINDO [2]

and SCIP [114].

The quality or tightness of the relaxation of a given MINLP determines the quality of

the lower bound on the problem and also the number of subproblems that are required

to solve it. We next discuss relaxation techniques.
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1.3 Relaxation Techniques

A relaxation that is not too large compared to the feasible region is important for de-

veloping fast algorithms for MINLP. Ideally, we would like the description of the convex

hull of the feasible region of the MINLP. However, that is quite hard, in fact, as hard as

finding the optimal solution. A more practical approach is to find a relaxation, which

may be weaker but is found relatively easily. We describe some of the main relaxation

techniques with some examples in this chapter. We start with some defninitions.

Definition 1.3.1 (Underestimator). Let D be a subset of Rn and f,
¯
f : D → R be two

functions. We say
¯
f is an underestimator of f over D if

¯
f(x) ≤ f(x) for all x ∈ D.

Now, consider the problem (P) and define the following related optimization problem.

zR = min
x,y ¯

f(x, y)

s.t. (x, y) ∈ R. (RP)

Definition 1.3.2 (Relaxation). The optimization problem (RP) defined above is called a

relaxation of the problem (P) if the following two conditions hold.

1.
¯
f is an underestimator of f over the feasible region SP , and

2. SP is a subset of R.

From the above definition we can see that the optimization problem (P) can be relaxed

in either or both of the following ways: (1) replacing the objective function f with some

of its underestimators over SP , (2) replacing the feasible region SP with some superset

of SP . From the definition of relaxation, it can be easily seen that zR is a lower bound

on z∗.

Proposition 1.3.1. Let (x̄, ȳ) ∈ R be an optimal solution for (RP). Then (x̄, ȳ) is an

optimal solution for (P) if (x̄, ȳ) ∈ SP and f(x̄, ȳ) =
¯
f(x̄, ȳ). Moreover, we have the

optimal value z∗ = zR = f(x̄, ȳ).
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The relaxation (RP) of the problem (P) is useful when the problem (RP) is easier

to solve and the optimal value zR of (RP) is close to the optimal value z∗ of (P). Note

that when the underestimating function
¯
f is convex and the feasible region R of (RP)

is a convex set, then the problem (RP) becomes a convex program and can be solved

efficiently. This leads to the next definition.

Definition 1.3.3 (Convex Relaxation). The optimization problem (RP) defined above is

called a convex relaxation of the problem (P) if the following two conditions hold.

1.
¯
f is a convex underestimator of f over the feasible region SP , and

2. SP is a subset of R, and R is the feasible region of a convex NLP.

For a given nonconvex problem, there are uncountably many convex relaxations. If
¯
f

is a convex underestimator of the function f , then
¯
f − δ for any δ > 0 is also a convex

underestimator of the objective function. Moreover, there are uncountably many convex

supersets of the feasible region. Our goal is to find the highest such underestimator and

the smallest such superset.

Definition 1.3.4 (Convex Envelope). Let f : D → R be a function (possibly nonconvex)

where D ⊂ Rn is a convex and compact set. A convex function
¯
fCE is called convex

envelope of f over D if it satisfies the following conditions.

1. The function
¯
fCE is an underestimator of f over D, and

2. If h is another convex underestimator of f over D then
¯
fCE(x) ≥ h(x) for all

x ∈ D.

The above definition implies that
¯
fCE is the tightest possible convex underestimator

of f and
¯
fCE is unique in a given domain.

Recall that the tightest possible convex relaxation of a given set is called its convex

hull. Thus the tightest convex NLP relaxation of a MINLP is in the same space

zCR = min
x,y ¯

fCE(x, y)

s.t. (x, y) ∈ conv (SP ) , (CRP)
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where conv (SP ) is the convex hull of SP and
¯
fCE is the convex envelope of the objective

function of (P) over conv (SP ). In practice, obtaining convex hull of a nonconvex set is

difficult. One way to mitigate this difficulty is to relax each constraint separately, i.e.,

find the convex relaxation

min
x,y ¯

f(x, y)

s.t. (x, y) ∈ conv (Gi) , i ∈ I, (1.1)

where Gi = {(x, y) ∈ Zn1
+ ×Rn2

+ : gi(x, y) ≤ 0} denotes the feasible region of constraint i.

The feasible region of problem (1.1) is a convex set which is usually larger than conv(SP ).

The difference between the convex hull of the whole problem and the intersection of

convex hull of feasible region of individual constraints is illustrated in Figures 1.5 and

1.6. The illustrated problem consists of two equality constraints denoting the curves, and

the feasible region is only two discrete points. Taking the intersection of convex hulls of

the two constraints yields the hatched area.

Finding convex hull of a single constraint may also be a hard problem. Therefore,

simpler convex relaxations are typically derived to generate lower bounds. The methods

for creating such relaxations are called convexification methods. Convexification tech-

niques usually depend on the function defining a given set. Since our work is limited to

bilinear constraints, we discuss such techniques for quadratic constraints next.
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1.3.1 McCormick Relaxation of a Bilinear Constraint

Consider the following bilinear set in R3

B = {(w, y1, y2) : w = y1y2, l1 ≤ y1 ≤ u1, l2 ≤ y2 ≤ u2}. (1.2)

The set B is nonconvex. An example is shown in Figure 1.7. The convex hull of this set

is described by the McCormick Relaxation [85] consisting of four linear constraints:

w ≥ l2y1 + l1y2 − l1l2, (1.3)

w ≥ u2y1 + u1y2 − u1u2, (1.4)

w ≤ l2y1 + u1y2 − u1l2, (1.5)

w ≤ l1y2 + u2y1 − l1u2. (1.6)

The McCormick Relaxation has some nice properties. It is linear, and hence can be

solved using state-of-the-art LP solvers. Further, the relaxation becomes tighter when

the difference between lower and upper bounds is reduced. In fact, if one of the variables

y1, y2 assumes a value at one of the bounds, the McCormick constraints ensure that the

original w = y1y2, must be satisfied. As we shall see next, these relaxations can be applied

to any general quadratic constraints. These properties make McCormick relaxations a

popular choice in Branch-and-Cut algorithms for nonconvex MINLPs.
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Figure 1.7: w = y1y2 in the domain y1 ∈ [0, 1], y2 ∈ [0, 1]

1.3.2 Relaxations of Quadratically Constrained Sets

McCormick inequalities can be used to obtain a polyhedral relaxation of other bounded

quadratically constrained sets as well. For example, let B = {(w, y) ∈ R×R : w = y2, 0 ≤

y ≤ 1} be a nonconvex set. One can apply McCormick relaxation to the constraint w = y2

to obtain the following polyhedral relaxation of B

w ≥ 0

w ≥ 2y − 1,

w ≤ y,

0 ≤ y ≤ 1.
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{(w, y) ∈ R× R : w = y2, 0 ≤ y ≤ 1}.

As seen from Figures 1.8 and 1.9, we do not get the convex hull from McCormick re-

laxation. McCormick relaxation can be applied to any quadratic constraint, for example,

consider the general set

Q =

{
y ∈ Rn :

n∑
i=1

n∑
j=i

aijyiyj +
n∑
i=1

biyi ≤ h, l ≤ y ≤ u

}
, (1.7)

where a, b, h, l, u are given. First introduce new variables wij to model the relation wij =

yiyj and then apply McCormick relaxation on each term. The constraints of the relaxation

obtained in this manner are:

wij ≥ ljyi + liyj − lilj, i = 1, . . . , n, j = 1, . . . , n, (1.8)

wij ≥ ujyi + uiyj − uiuj, i = 1, . . . , n, j = 1, . . . , n, (1.9)

wij ≤ ljyi + uiyj − uilj, i = 1, . . . , n, j = 1, . . . , n, (1.10)

wij ≤ liyj + ujyi − liui, i = 1, . . . , n, j = 1, . . . , n, (1.11)∑
i,j

aijwij +
∑
i

biyi ≤ h, (1.12)

l ≤ y ≤ u, (1.13)

Again, the above constraints do not yield the convex hull of Q, in fact the above relaxation
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is quite weak. Moreover, if bounds on variables are not available, one can not construct

this relaxation. Some results on strengths of McCormick relaxations have be obtained by

Luedtke et al. [82].

In order to obtain stronger relaxations, several other schemes have been proposed.

Semidefinite Relaxation (SDP) [103], Lagrangian Relaxation based on duality [112], Re-

laxation Based on KKT Optimality Conditions [6,31], Completely Positive Matrix (CPP)

based relaxations [30], Doubly Non-negative Matrix (DNN) based relaxations [7, 8] are

some such examples. For more description of such relaxation techniques, one may refer

to a review by Bao et al. [15].

1.3.3 Valid Inequalities

Relaxations of MILPs and MINLPs can be strengthened or tightened by adding valid

inequalities.

Definition 1.3.5 (Valid Inequalities). Let C be a subset of Rn1×Rn2. A linear inequality

cTx+ dTy ≥ b is called a valid inequality for C if cT x̄+ dT ȳ ≥ b for all (x̄, ȳ) ∈ C.

As discussed above, finding convex hull descriptions of feasible regions of an MILP or

MINLP is difficult, and we have to resort to weaker relaxations. By adding inequalities

valid for the feasible region of the MINLP, we can get tighter relaxations. Often these

inequalities are generated algorithmically to cut off the current solution of the relaxation.

Some types of valid inequalities can be generated for all problems of a general class.

Examples include Chvátal-Gomory cuts [60] for pure IPs and Gomory Mixed-Integer

cuts [62], lift and project cuts [14], and mixed-integer rounding cuts [91]. The above

cuts can also be used for polyhedral relaxations of MINLP. Recently, new classes of cuts

for quadratic constraints have been introduced and some classes of cuts for MILP, like

disjunctive cuts [77, 104] and lift and project cuts [25] have been extended to MINLPs.

Valid inequalities can also be derived from specific types of constraints. If such con-

straints are present in a problem, these inequalities may be used. Examples include

covering inequalities for knapsack constraints [11], comb inequalities for traveling sales-

person problem [65] and perspective cuts [57] for convex MINLPs. Our thesis is focussed

on deriving tight relaxations specific for the bilinear covering sets by exploiting geometric
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and algebraic properties of the constraints defining these sets. The valid inequalities we

find are therefore structure-specific cuts. While they are not generally applicable to all

MINLPs, they are strong and provide tight relaxations.

We also study the cuts for bilinear sets under the lens of general purpose cuts to see

whether they can be obtained using these general methods. One of the most general

classes of cuts is that of disjunctive cuts which includes split cuts. Many classes of valid

inequalities for MILP including all the general classes listed above for MILP are known

to be special cases of split cuts [39]. We describe disjunctive and split cuts next.

Let P ⊂ Zn1 × Rn2 be the feasible set of a convex MINLP of the form

min
x,y

f(x, y)

s.t. gi(x, y) ≤ 0, i = 1, . . . ,m, (MINLPCV)

x ∈ Zn1 , y ∈ Rn2 ,

where f, gi, i = 1, . . . ,m are convex functions. Let PC be the continuous relaxation of P

obtained by removing integer restrictions on the x variables. Assume the convex set PC

is closed.

Definition 1.3.6 (Disjunction [13]). Let Dk =
{

(x, y) ∈ Rn1 × Rn2 : Akx ≤ bk
}

for k ∈

K, where K is an index set (not necessarily finite). Define D =
⋃
k∈K Dk. If Zn1×Rn2 ⊆

D, then we call D a disjunction (or a valid disjunction) and each Dk, k ∈ K is known as

an atom of the disjunction D.

Definition 1.3.7 (Disjunctive Cut). A linear inequality is called a disjunctive cut for P

obtained from the disjunction D = ∪i∈KDk, if it is valid for PC ∩Dk for all k ∈ K.

We say that a linear inequality is valid for the disjunction D if it is valid for PC ∩Dk

for all k ∈ K. For some positive integer m, let us define the set notation:

[
G1x ≤ h1, . . . , G

mx ≤ hm
]

=
{

(x, y) ∈ Rn1+n2 : G1x ≤ h1, . . . , G
mx ≤ hm

}
,

where Gi, i = 1, . . . ,m are rational matrices of suitable dimension and hi, i = 1, . . . ,m are

rational numbers. Split cuts are a special class of the disjunctive cuts which are obtained
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from a split disjunction, a special type of disjunction with only two atoms.

Definition 1.3.8 (Split Disjunction). Given a non-zero integer vector π ∈ Zn1 and an

integer π0, the disjunction
[
πTx ≤ π0

]
∨
[
πTx ≥ π0 + 1

]
is known as Split Disjunction.

In a simpler way we write this disjunction as (π, π0).

Note that any (x, y) ∈ Zn1 × Rn2 satisfies either πTx ≤ π0 or πTx ≥ π0 + 1. Without

loss of generality we can assume gcd(π, π0) = 1. Let us define the two sets as follows.

PL = PC ∩
[
πTx ≤ π0

]
, and PR = PC ∩

[
πTx ≥ π0 + 1

]
.

Clearly P ⊂ PL ∪ PR. Therefore, P ⊆ PL ∪ PR ⊆ conv (PL ∪ PR).

Definition 1.3.9 (Split Cut). An inequality cTx+ dTy ≥ b that is valid for both the sets

PL and PR (or consequently valid for conv (PL ∪ PR)) is known as a split cut.

Let us consider a linear inequality cTx + dTy ≥ b. In order to check whether the in-

equality cTx+dTy ≥ b is valid for PR and PL, one can solve the following two optimization

problems

ζR = min
x,y

cTx+ dTy ζL = min
x,y

cTx+ dTy

s.t. (x, y) ∈ PR s.t. (x, y) ∈ PL.

Clearly the inequality cTx+ dTy ≥ b is valid for conv (PR ∩ PL) if and only if ζR ≥ b and

ζL ≥ b.

The subset of PC obtained by adding all possible split cuts to PC is known as the first

split closure or the elementary split closure of PC . Let us denote it by P1. Clearly, P1 is

closed since PC is closed. Similarly applying the split closure procedure to the set P1 will

give the second split closure P2. Let Pt be the tth split closure. Cook et al. [38] showed

that, if PC is a polyhedral set, then Pt is also polyhedral, for all t ∈ N. For more results

on this can be found in [40,44,45].

Definition 1.3.10 (Split Rank). For a valid inequality cTx+dTy ≥ b for the set conv(P ),

the split rank of the inequality is defined as the smallest integer t such that the inequality

is valid for Pt but not for Pt−1.
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Before describing the bilinear covering sets, we close this section by defining facet-

defining inequalities, i.e., valid inequalities that are the tightest for a given polyhedral

set.

Definition 1.3.11 (Affinely Independent Points). The points w1, . . . , wn are called affinely

independent if the n− 1 points w2 − w1, . . . , wn − w1 are linearly independent.

Definition 1.3.12 (Facet Defining Inequality). A vallid inequality cTx+dTy ≥ b is called

a facet defining inequality for P , if there exist n(= n1 + n2) affinely independent points

in P that are active at the inequality, i.e., lie on the hyperplane cTx+ dTy = b.

If all facet defining inequalities of the convex hull of a set are known, then we can

optimize over these inequalities to find the minimum value of a linear function over this

set. Sometimes the number of facet-defining inequalities for a set may be prohibitively

large, as is the case for the bilinear covering sets we consider. Algorithms for selecting

only those inequalities that may be useful (or are violated by a given point) are required

for such cases.

1.4 Trim-Loss and Pattern Minimization Problems

Trim-loss and pattern minimization problems are encountered in industry where smaller

pieces of a certain material need to be cut from large sheets. In a trim-loss (or a cutting-

stock) problem, we want to determine the best way to cut large rolls of raw materials

into smaller pieces (or finals) using different patterns, so that the demand of finals is met

and as few rolls as possible are used. Let N = {1, . . . , n} be the index set that denotes

the cutting patterns used, and F be the index set of different sizes of the finals that are

to be cut. Let L be the size of each large roll and lj, j ∈ F be the lengths of the finals.

The demands of the finals, say dj, j ∈ F are known. Let xij be the number of final j cut

according in the pattern i, i ∈ N, j ∈ F , and yi be the number of rolls cut with cutting
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Figure 1.10: Few Possible Patterns

pattern i, i ∈ N . Therefore, we have the following formulation:

min
n∑
i=1

yi

subject to:
∑
i∈N

xijyi ≥ dj, j ∈ F, (CS)

∑
j∈F

ljxij ≤ L, i ∈ N,

xij ∈ Z+, yi ∈ R+,∀i ∈ N, j ∈ F,

In the above formulation we considered the variable y to be continuous. When the

demands are large, we can let y be continuous without much affecting the optimal value.

To understand it in a better way, consider the following example. Let the final lengths

be 2, 4, and 6 with demands 2, 3, and 2 respectively. The length of the large roll is 10.

Firgure 1.10 shows few patterns to meet the demand and the scrap amount of the sheet

(shaded in gray).

Pattern Minimization Problem (PMP) is an extension of the trim-loss problem and is

much more difficult. Many times an optimal solution to a trim-loss problem may require

many patterns. Each pattern corresponds to setting up the equipment to make the finals,

and hence having too many patterns may not be beneficial. Pattern minimizing problem

tries to find as few patterns for cutting as possible while limiting the wastage of raw

material.

Let η denote the number of rolls that we are allowed to use for making the finals. This
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input parameter can be found by first solving a trim-loss problem like the one above. Let

zi, i ∈ N be a decision variable which takes value 1 if pattern i is used (i.e., yi ≥ 1), and

0 otherwise. Then the problem may be formulated as:

min
x,y,z

n∑
i=1

zi

s.t.
n∑
i=1

xijyi ≥ dj, j ∈ F,∑
j∈F

µjxij ≤ ziL, i ∈ N, (PMP)

yi ≤ vzi, i ∈ N,
n∑
i=1

yi ≤ η,

xij, yi ∈ Z+, zi ∈ {0, 1}, i ∈ N, j ∈ F,

In the Figure 1.10, we see that three patterns are required to meet the demands with

three finals. If we allow more finals, we can meet the demands but the waste will be

higher (Solution 1 in Figure 1.10).

Several studies [66,69,110] to solve these problems have been carried out in the past.

Recently, Yaodong et al. [116] presented a sequential grouping procedure to generate the

patterns and to minimize material and setup cost. Kallrath et al. [73] have developed

polylithic techniques including a heuristic and column-generation based approaches to

solve cutting stock problems. Theoretical bounds on the number of patterns that may

be required in an optimal solution have been obtained only recently [49,59].
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Figure 1.11: The points in positive orthant satisfying x1y1 + x2y2 ≥ 1 in the box x1 ∈
[0, 1.5], y1 ∈ [0, 1.5]x2 ∈ [0, 1] with y2 = 1.

1.5 Outline of Thesis and Summary of Contributions

In this thesis, we consider the following three variants of bilinear covering set.

S =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r

}
, r > 0,

SU =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r, x ≤ u

}
, r > 0, u ∈ Nn+,

SB =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r, l ≤ x ≤ u

}
, r > 0, l ∈ Z+, u ∈ Nn+.

The continuous relaxation of S obtained by ignoring integer restrictions on x is nonconvex

(see Figure 1.11), and hence problems like PMP that include this constraint are nonconvex

MINLPs.

Tawarmalani et al. [106], derived the convex hull description of the set S. It consists

of countably infinite number of linear inequalities and consequently conv(S) is not a

polyhedron. In practical problems, the variables x and y have bounds, either defined

explicitly or determined implicitly. The description of conv(S) along with the bounds

on the variables x does not give the description of conv
(
SU
)

or conv
(
SB
)
, instead it

gives weaker convex relaxation. We discuss this issue in the Chapter 2 and extend the
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approach of using orthogonal disjunctions to include the upper bounds on the variables.

In Chapter 3, we find convex hull of the set SB and use this description to solve the

PMP problem in a novel way. Chapter 4 analyses the valid inequalities for conv(S) as

split cuts and disjunctive cuts. The contributions of this thesis are enumerated below.

1. We derive the closed form description of the convex hull of the mixed-integer bi-

linear covering set SU using orthogonal disjunctive technique. The set conv
(
SU
)

is a polyhedron. We give both the H-Description (linear inequality or intersec-

tion of finite number half spaces) and V-Description (description by vertex and the

recession) of conv
(
SU
)
.

2. We also provide an exact extended formulation of conv
(
SU
)

that consists of much

less number of linear inequalities than the description of conv
(
SU
)
.

3. We derive separation algorithms for the facet defining inequalities for both the sets

conv
(
SU
)

and conv(S) which runs in O(n) times in the input size. Computational

results show the effectiveness of our approach on real life and artificially generated

cutting stock (or trim-loss) instances.

4. Next, we extend our results of conv
(
SU
)

to derive the description of conv
(
SB
)
.

Here also we derive the V-Description and H-Description of conv
(
SB
)
.

5. We describe a new algorithm the inequalities for solving Pattern Minimization Prob-

lem and show the effectiveness of our algorithm.

6. We study the facet defining inequalities of conv(S) as split and disjunctive cuts and

identify all the split rank-one facet defining inequalities.

7. We also study the gap between the set that is constructed by the facet defining

inequalities with split rank-one and conv(S), and then derive the necessary and

sufficient condition for the gap to be zero.

8. Finally, we show the effectiveness of the rank-one split facet defining inequalities

using some real life and randomly generated cutting stock instances.
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1.6 Notation

Unless otherwise mentioned, we use the following notation throughout this thesis. For a

given set A, we use cl(A) to denote the closure of A, conv(A) to denote the convex hull

of A, C(A) to denote the conic hull of A and 0+(A) to denote the recession cone of A.

Rn+ = [0,∞)n = {x ∈ Rn : x ≥ 0}. We use N to denote the set {1, 2, . . . , n}. We use

Sn to denote the set of all n × n symmetric matrices. For a point (x, y) ∈ Rn+ × Rn+,

we write (x, y) in the form (x1, y1, x2, y2, . . . , xn, yn). We use L(i, xi, yi) to denote the

point (0, 0, . . . , xi, yi, . . . , 0, 0), i.e., xj = 0, yj = 0,∀j ∈ N, j 6= i. The sign ∨ means

“or” and ∧ means “and”. For an integer vector µ ∈ Zn and an integer µ0, we use

gcd(µ, µ0) = gcd(µ1, . . . , µn, µ0) to denote the greatest common divisor of µ1, . . . , µn and

µ0.
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Chapter 2

Mixed-Integer Bilinear Covering Set

With Upper Bounds on Variables

2.1 Introduction

In this chapter we consider the mixed-integer bilinear covering sets

S =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r

}
, and

SU =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r, x ≤ u

}
, where r > 0 and u ∈ Nn are given.

Both S and SU are nonconvex, even their continuous relaxation is nonconvex for n ≥ 2.

Recall the following two sets of constraints from the cutting stock problem (CS) defined

in Chapter 1:

∑
i∈N

xijyi ≥ dj, j ∈ F, (2.1)

∑
j∈F

ljxij ≤ L, i ∈ N, (2.2)

where xij ∈ Z+, yi ∈ R+. Bounds on the variables xij, i ∈ N, j ∈ F can be either given

explicitly or be implicit from the knapsack constraints (2.2).

Tawarmalani et al. [106] developed a scheme to get a tight convex relaxation using
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orthogonal disjunctive subsets for a class of sets including S. They applied the scheme

to obtain the convex hull description of S consisting of countably infinite number of

facet defining inequalities. But these facet defining inequalities of conv(S) along with the

bound constraints are not sufficient to describe conv
(
SU
)
. Consider, for example,

min− x1 + 10y1 − 2x2 + 12y2

s.t. x1y1 + x2y2 ≥ 20,

x1 ≤ 5, x2 ≤ 6, (E)

xi ≥ 0, yi ≥ 0, xi ∈ Z+, i = 1, 2.

Here, r = 20, n = 2, u = (5, 6). The point (x1, y1, x2, y2) = (5, 4, 6, 0) is a global optimal

solution with optimal value 23. But, if we solve the relaxation defined by the facet defining

inequalities of conv(S) (which we describe later), along with the bound constraints on

x, we get the solution ω =
(
5, 1, 6, 5

6

)
with objective value 3. As expected, ω is not

feasible for S but lies in conv(S) because this point is the mid point of the two points

(10, 2, 0, 0) ,
(
0, 0, 12, 5

3

)
∈ S. Therefore, no facet defining inequality of conv(S) can cut

off the point ω from conv
(
SU
)
. We will see later that the inequality 5y1

20
+ 6y2

20
≥ 1 is

valid for SU , and it cuts off the point w. In fact we show that this inequality is a facet

defining inequality for conv
(
SU
)
.

In this chapter, we derive the closed form description of the convex hull of the mixed-

integer bilinear covering set SU . We note that, the orthogonal disjunctive technique of

Tawarmalani et al. [106] is not directly applicable for the set SU to find conv
(
SU
)
. So,

we relax the orthogonal subsets of SU in such a way that the result is applicable. Our

work mainly addresses the following issues of the model of Tawarmalani et al. Their

model has infinitely many facet defining inequalities and these inequalities along with the

bound constraints gives us a weak relaxation of our set. We show that conv
(
SU
)

is a

polyhedron. We derive both V-Polyhedron (i.e., description by sum of convex hull of the

extreme points and its recession cone) and H-Polyhedron (i.e., description by intersection

of finite number of half spaces) description of conv
(
SU
)
. We provide fast separation

algorithms to find a violated facet defining inequality for both the sets conv
(
SU
)

and

conv(S). We also provide an extended formulation of conv
(
SU
)
. Lastly, we provide
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some computational results that show the effectiveness of our cuts and the extended

formulation.

2.2 Convexification via Orthogonal Disjunction

We start by a general result derived by Tawarmalani et al. [106] for which some more

notations are required. We use the same notation as in [106] for convenience. Let (z, u) ∈

R
∑n
i=1 di × R

∑n
i=1 d

′
i , where zi ∈ Rdi and ui ∈ Rd

′
i . Moreover, let us define the functions

tj : R
∑n
i=1 di × R

∑n
i=1 d

′
i → R for j ∈ J , vk : R

∑n
i=1 di × R

∑n
i=1 d

′
i → R for k ∈ K and

wl : R
∑n
i=1 di ×R

∑n
i=1 d

′
i → R for l ∈ L where J,K and L are some index sets. Let us also

define the sets A
(
tJ , vK , wL

)
and C

(
tJ , vK , wL

)
as below:

A
(
tJ , vK , wL

)
=
{

(z, u) : tj(z, u) ≥ 1,∀j ∈ J, vk(z, u) ≥ −1,∀k ∈ K,wl(z, u) ≥ 0,∀l ∈ L
}
,

C
(
tJ , vK , wL

)
=
{

(z, u) : tj(z, u) ≥ 0,∀j ∈ J, vk(z, u) ≥ 0,∀k ∈ K,wl(z, u) ≥ 0, ∀l ∈ L
}
.

To describe the results, we need to additionally define positively-homogeneous func-

tions. The following definition is taken from Rockafellar [99] (1970).

Definition 2.2.1 (Positively Homogeneous Function). Let f : Rn → [−∞,∞] be a

function. f is said to be a positively homogeneous function if, f(λx) = λf(x), ∀λ > 0.

For example, f(x, y) =
√
xy is positively homogeneous. Also, any linear function is

positively homogeneous.

Theorem 2.2.1 (Tawarmalani et al. [106]). Let z = (z1, ..., zi, ..., zn) ∈ R
∑n
i=1 di, where

zi ∈ Rdi and Z ⊆ R
∑n
i=1 di. Let Zi ⊆ Z for i ∈ N = {1, ..., n}. Now let us consider the

following assumptions:

A1: (z1, ..., zi, ..., zn) ∈ Zi ⇒ zj = 0 ∀j ∈ N, j 6= i,

A2: conv(Z) = conv (
⋃n
i=1 Zi),

A3: conv(Zi) ⊆ projz(Ai) ⊆ cl(conv(Zi)), where

Ai =
{
L(i, zi, ui) : (zi, ui) ∈ A

(
tJii , v

Ki
i , wLii

)}
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such that tjii , ∀ji ∈ Ji, v
ki
i , ∀ki ∈ Ki and wlii , ∀li ∈ Li are positively-homogeneous

functions for all i ∈ N for some index sets Ji, Ki and Li, and L(i, zi, ui) =

(0, ..., 0, zi, ui, 0, ..., 0) ∈ R
∑n
i=1 di × R

∑n
i=1 d

′
i,

A4: For all i = 1, ..., n, projz(Ci) ⊆ 0+ (cl (conv (Z))), where

Ci =
{
L(i, zi, ui) : (zi, ui) ∈ C

(
tJii , v

Ki
i , wLii

)}
,

Then, conv(Z) ⊆ projz(X) ⊆ cl(conv(Z)), where,

X =



(z, u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑n
i=1 t

ji
i (zi, ui) ≥ 1, ∀(ji)i∈N ∈

∏n
i=1 Ji,

∑
i∈I v

ki
i (zi, ui) ≥ −1, ∀I ⊆ N,∀(ki)i∈I ∈

∏
i∈I Ki,

tjii (zi, ui) + vkii (zi, ui) ≥ 0,∀i ∈ N, ∀ji ∈ Ji,∀ki ∈ Ki,

tjii (zi, ui) ≥ 0,∀i ∈ N, ∀ji ∈ Ji,

wlii (zi, ui) ≥ 0,∀i ∈ N, ∀li ∈ Li


Using the above theorem, we can derive the convex hull for those sets which satisfy

assumptions A1 - A4. Checking whether A1, A3 and A4 are satisfied by a given set

is relatively easy. Verifying A2 might be difficult in practice. To overcome this diffi-

culty, Tawarmalani et al. [106] have used an alternative criterion, called convex extension

property which is more general than assumption A2.

Definition 2.2.2 (Convex Extension Property). Let Z be a set in Rn and Zi ⊆ Z, i ∈ N .

The convex extension property holds for Z if it satisfies the following two properties.

(i) If z ∈ Zi, then zj = 0 for all j ∈ N, j 6= i.

(ii) If z ∈ Z, then z can be expressed as a sum of a convex combination of some points

χi ∈ cl(conv(Zi)), i ∈ N and a conic combination of rays ψi ∈ 0+(cl(conv(Zi))), i ∈
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N , i.e.

z =
∑
i∈N

λiχi +
∑
i∈N

µiψi (CE)

where µi ∈ R+, i ∈ N and λi ∈ R+, i ∈ N with
∑

i∈N λi = 1.

A collection of sets Zi, i ∈ N that satisfy condition (i) in Definition 2.2.2 are known

as orthogonal sets. By definition a union of orthogonal sets satisfies the convex extension

property. Some other sets that are not defined as union of orthogonal sets, for example,

bilinear mixed-integer and pure-integer covering sets without variable bounds also satisfy

this property. The convex extension property (CE) is equivalent to the following criterion

given in Tawarmalani et al. [106].

cl(conv(Z)) = cl

(
conv

(
n⋃
i=1

Zi

))
(CE-P)

Now, if we assume (CE) or (CE-P) instead of the assumption A2 in Theorem 2.2.1,

we get cl (projzX) = cl (conv (
⋃n
i=1 Zi)) = cl(conv(Z)) (Tawarmalani et al. [106]). Since

in many cases we only need cl(conv(Z)), it is useful to consider (CE) or (CE-P) instead

of the assumption A2.

2.3 On The Mixed-Integer Bilinear Covering Set S

We start by revisiting the set S =
{

(x, y) ∈ Zn+ × Rn+ :
∑n

i=1 xiyi ≥ r
}
, r > 0, and the

facet defining inequalities of its convex hull. Then we derive a property of extreme points

of conv(S) that we will later extend to conv
(
SU
)
.

2.3.1 The Convex Hull Description of S

Tawarmalani et al. [106] showed that the set S satisfies the assumptions A1, A3 and A4

of Theorem 2.2.1 and the convex extension property (CE) with respect to the orthogonal

disjunctive subsets Si, i ∈ N , where,

Si =
{
L(i, xi, yi) ∈ Zn+ × Rn+ : xiyi ≥ r

}
.
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Therefore, we can apply Theorem 2.2.1 to construct the description of conv(S). For

this, first, we have to find the description of conv (Si). The continuous relaxation of the

set Si is a convex set and the points of the form L
(
i, k, r

k

)
, k ∈ N are the extreme points

of conv (Si). The convex hull description conv(Si) can be given as

conv (Si) = {L(i, xi, yi) : akxi + bkyi ≥ 1, k ∈ N} , (2.3)

where akxi + bkyi = 1 is the line passing through
(
k, r

k

)
and

(
k − 1, r

k−1

)
for k ∈ N \ {1}

and a1 = 1, b1 = 0. Hence, we have ak = 1
2k−1

and bk = k(k−1)
r(2k−1)

for all k ∈ N. We

note that conv(Si) has countably infinite number of extreme points and facet defining

inequalities. Consequently, conv(Si) is not a polyhedral set. Note that the recession cone

0+(conv(Si)) of conv (Si) is the following set

{
(x, y) ∈ Rn+ × Rn+ : xj = 0, yj = 0, j ∈ N, j 6= i

}
.

All sets Si, i ∈ N are identical to each other except for relabeling of indices. Thus, the

coefficients ak and bk, k ∈ N are identical for each conv (Si) , i ∈ N . Therefore, finding

the coefficients ak, bk, k ∈ N for conv (S1) is sufficient to get all the facets of conv(S).

The following collection of columns (M) with countably infinite number of rows can be

used to generate all the facet defining inequalities of conv(S).



x1 x2 x3 . . . xn

a2x1 + b2y1 a2x2 + b2y2 a2x3 + b2y3 . . . a2xn + b2yn

a3x1 + b3y1 a3x2 + b3y2 a3x3 + b3y3 . . . a3xn + b3yn

. . . . . . . . . . . . . . .

akx1 + bky1 akx2 + bky2 akx3 + bky3 . . . akxn + bkyn

. . . . . . . . . . . . . . .


(M)

Theorem 2.2.1 states that a facet defining inequality of conv(S) is constructed by

adding n terms from (M) taking exactly one term from each column and constraining

their sum to be greater than or equal to one. All the facet defining inequalities are

constructed this way. It is also clear that conv(S) also has countably infinite number of

facet defining inequalities. Since ak, bk ≥ 0, ∀k ∈ N, the recession cone 0+(conv(S)) of
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conv(S) is the entire non-negative orthant Rn+ × Rn+.

2.3.2 Properties of The Extreme Points of conv(S)

Here we derive the description of the extreme points of conv(S) that we use later. We

first note that conv(S) is a closed set. This is because, if (x, y) /∈ conv(S), there exists a

facet defining inequality of conv(S) that strongly separates the point (x, y) from conv(S).

Therefore, the point (x, y) can not be a limit point of conv(S), and consequently conv(S)

is a closed set. The convex extension property (CE-P) applied to S gives conv(S) =

conv
(⋃

i∈N Si
)
.

Theorem 2.3.1. (x̄, ȳ) is an extreme point of conv(S) if and only if (x̄, ȳ) is an extreme

point of conv (Si) for some i ∈ N .

Proof. Let (x̄, ȳ) be an extreme point of conv(S). If (x̄, ȳ) belongs to Si for some i ∈ N ,

then it has to be an extreme point of conv (Si) as Si ⊂ S. On the other hand, if (x̄, ȳ)

does not belong to any Si, i ∈ N , then by convex extension property (CE-P), (x̄, ȳ) can be

written as a convex combination of points in Si, i ∈ N which contradicts the extremality

of the point (x̄, ȳ).

Conversely, let (x̄, ȳ) be an extreme point of conv (Si) for some i ∈ N . Then, x̄j =

0, ȳj = 0,∀j ∈ N, j 6= i. For contradiction, let (x̄, ȳ) be expressed as a convex combination

of two distinct points (x̄, ȳ)1 and (x̄, ȳ)2 in S. Since S ⊂ Rn+ × Rn+, then x̄tj = 0, ȳtj =

0,∀j ∈ N, j 6= i, t = 1, 2. This implies that (x̄, ȳ)1 and (x̄, ȳ)2 belong to Si. This is a

contradiction to the fact that (x̄, ȳ) is an extreme point of conv (Si). Therefore, (x̄, ȳ)

must be an extreme point of conv(S).

It is clear from Theorem 2.3.1 that any point of the form L
(
i, k, r

k

)
, k ∈ N is an

extreme point of conv(S) and vice versa, for all i ∈ N .

2.4 On The Mixed-Integer Bilinear Covering Set SU

In this section we obtain a description of the convex hull of SU defined in Section 2.1 and

show that, unlike conv(S), conv
(
SU
)

is a polyhedron.

Proposition 2.4.1. The set conv
(
SU
)

is a polyhedron.
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Proof. Since there is an upper bound u on the integer variable x, we have finitely many

choices for x in SU . For each i ∈ N , we have ui + 1 different choices for xi. Since

x = 0 is not a feasible choice for SU , the total number of different choices for x is∏n
i=1(ui + 1) − 1 = η (say). Let us denote them by xk, k = 1, . . . , η. Now, define the

following polyhedral sets:

Fk =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r, x = xk

}
, k = 1, . . . , η.

Note that the set Fk is constructed from SU by fixing x = xk, and SU =
⋃η
k=1 Fk.

Further, the recession cone of Fk is the set {(0, y) ∈ Rn × Rn : y ≥ 0} for all k =

1, . . . , η. Therefore, SU is a union of finite number of nonempty polyhedra with identical

recession cones. So, from Corollary 4.44 in Conforti et al. [36], we have conv
(
SU
)

is a

polyhedron.

2.4.1 The Extreme Point Description of conv
(
SU
)

Since conv
(
SU
)

is a polyhedron, it is closed and, therefore, it contains all its extreme

points. In this section we give a closed form description of the extreme points of

conv
(
SU
)
.

Theorem 2.4.1. Let (x̄, ȳ) be an extreme point of conv
(
SU
)
. Then, x̄t = pt, ȳt = r

pt
for

some t ∈ N , where pt ∈ {1, . . . , ut}, and x̄j ∈ {0, uj}, ȳj = 0,∀j ∈ N, j 6= t, i.e., (x̄, ȳ)

has the following form,

(
x̄1, 0, x̄2, 0, . . . , x̄t−1, 0, pt,

r

pt
, x̄t+1, 0, . . . , x̄n, 0

)

where pt ∈ {1, . . . , ut} for some t ∈ N, x̄j ∈ {0, uj},∀j ∈ N, j 6= t.

Proof. Let (x̄, ȳ) be an extreme point of conv
(
SU
)
. Then (x̄, ȳ) ∈ SU . Therefore,

(x̄, ȳ) ∈ Fk for some k ∈ {1, . . . , η}, and is an extreme point of Fk where Fk is defined

in the proof of Proposition 2.4.1. Note that in the description of F k, there are n bound

constraints: yi ≥ 0, i ∈ N and one linear constraint:
∑

i∈N x̄iyi ≥ r.

Since (x̄, ȳ) is an extreme point of Fk, n linear constraints of Fk must be active at
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(x̄, ȳ). One can not choose the n constraints given by y ≥ 0, otherwise
∑

i∈N x̄iyi ≥ r

will be violated. So, the constraint
∑

i∈N x̄iyi ≥ r must be active. Therefore, there exists

a t ∈ N such that x̄tȳt = r and yj = 0, j ∈ N, j 6= t.

We now show that x̄j ∈ {0, uj} for ∀j 6= t. Since j 6= t, then ȳj = 0. Therefore, if x̄j ∈

(0, uj), j ∈ N , then (x̄, ȳ) can be written as a convex combination of the two points (x̄, ȳ)1

and (x̄, ȳ)2 having the exact same components as (x̄, ȳ), except for the jth components

of the variable x, and x̄1
j = 0, x̄2

j = uj. Multipliers 1 − λ and λ respectively provide the

convex combination of (x̄, ȳ)1 and (x̄, ȳ)2, where λ =
x̄j
uj

. This is a contradiction to the

supposition that (x̄, ȳ) is an extreme point of conv
(
SU
)
.

Moreover, if x̄j ∈ {0, uj} for j 6= i, then we can not write (x̄, ȳ) as a convex combi-

nation of two different points in SU . This is because, if two such points exist, one of the

points’ jth component of the variable x has to be more than uj or less than 0, neither of

which is allowed.

Corollary 2.4.1. conv
(
SU
)

has 2n−1
∑n

i=1 ui extreme points and n extreme rays.

Proof. We see from the proof of Theorem 2.4.1, for a single choice of x̄i ∈ {1, . . . , ui},

we have 2n−1 different extreme points, and we have
∑n

i=1 ui distinct such choices. There-

fore, the total number of extreme points of conv
(
SU
)

is 2n−1
∑n

i=1 ui, which is finite.

Consequently, conv
(
SU
)

is a polyhedral set.

On the other hand, we see that the recession cone 0+
(
conv

(
SU
))

of conv
(
SU
)

is the

set {(x, y) ∈ Rn+ × Rn+ : x = 0} which has n extreme rays.

Note that Theorem 2.4.1 and Corollary 2.4.1 give us the V-Description of conv
(
SU
)
.

We now turn our attention to the H-Description of conv
(
SU
)
.

2.4.2 The Convex Hull Description of SU

We have orthogonal disjunctive subsets of SU ,

SUi =
{
L(i, xi, yi) ∈ Zn+ × Rn+ : xiyi ≥ r, xi ≤ ui

}
, i = 1, . . . , n.
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We note that SUi ⊂ SU , and the recession cone of cl
(
conv

(
SUi
))

is the set:

{
(x, y) ∈ Rn+ × Rn+ : x = 0, yj = 0,∀j ∈ N, j 6= i

}
.

We see that the assumption A1 of Theorem 2.2.1 is satisfied by the set SU with respect

to the orthogonal disjunctive subsets SUi . The polyhedral description of conv
(
SUi
)

is

conv
(
SUi
)

=
{
L(i, xi, yi) ∈ Rn+ × Rn+ : akxi + bkyi ≥ 1, xi ≤ ui,∀k ∈ Ki

}
,

where Ki = {1, . . . , ui}, and as defined earlier, ak = 1
2k−1

, bk = k(k−1)
r(2k−1)

, k ∈ Ki. Therefore,

assumption A3 of Theorem 2.2.1 is satisfied by the set SU with respect to its orthogonal

subsets SUi , i ∈ N .

On the other hand, the assumption A2 and convex extension property are not satisfied

by the set SU with respect to the subsets SUi , i ∈ N . An extreme point of conv
(
SU
)

can

have all x components nonzero which does not belong to SUi for any i ∈ N . So, if it were

in conv
(⋃

i∈N S
U
i

)
, then it has to be a convex combination of two points in SU which

contradicts the extremality of the point.

In order to find the description of conv
(
SU
)
, we use the following approach. The two

inequalities xiyi ≥ r and xi ≤ ui in the description of SUi together imply yi ≥ r
ui

. Let

r
ui

= ūi. Let us now define the following sets:

SLi =
{
L(i, xi, yi) ∈ Zn+ × Rn+ : xiyi ≥ r, yi ≥ ūi

}
, i = 1, . . . , n.

By adding the lower bound on yi and ignoring the upper bound on xi, we have a

relaxation of SUi . The two sets conv
(
SUi
)

and conv
(
SLi
)

have exactly the same set of

extreme points that are ui in number. Figure 2.1 and 2.2 illustrate this observation.

We have the description of conv
(
SLi
)

as following:

conv
(
SLi
)

=
{
L(i, xi, yi) ∈ Rn+ × Rn+ : akxi + bkyi ≥ 1, yi ≥ ūi,∀k ∈ Ki

}
, (2.4)

where Ki = {1, . . . , ui}, and ak, bk, k ∈ Ki are defined earlier. We also note that the
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Figure 2.1: conv
(
SUi
)

for r = 8, xi ≤ 6
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Figure 2.2: conv
(
SLi
)

for r = 8, yi ≥ 8
6

recession cone of conv
(
SLi
)

is the set:

{
(x, y) ∈ Rn+ × Rn+ : xj = 0, yj = 0, j ∈ N, j 6= i

}
.

Let us now define a new set

SL =
n⋃
i=1

SLi .

We will later derive the description of conv
(
SU
)

using cl
(
conv

(
SL
))

. We first observe

that, since SL =
⋃n
i=1 S

L
i , we have,

cl
(
conv

(
SL
))

= cl

(
conv

(
n⋃
i=1

SLi

))
,

i.e., the set SL satisfies the condition (CE-P) with respect to the orthogonal disjunctive

subsets SLi , i ∈ N .

Proposition 2.4.2. The set SL satisfies all the assumptions A1 - A4 of Theorem 2.2.1

with respect to the orthogonal disjunctive subsets SLi , i ∈ N .

Proof. We see that the assumption A1 holds from the definition of SL. For the assumption

A2, we have the convex extension property that is satisfied as noted above. Since we have

the polyhedral description of conv
(
SLi
)
, the assumption A3 is satisfied. Lastly, we see

that 0+
(
cl
(
conv

(⋃n
i=1 S

L
i

)))
is the entire non-negative orthant Rn+ ×Rn+, which implies
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that the assumption A4 is also satisfied.

We can now apply Theorem 2.2.1 to obtain a description of cl
(
conv

(
SL
))

. We have

conv
(
SLi
)

=
{
L(i, xi, yi) ∈ Rn+ × Rn+ : akxi + bkyi ≥ 1, yi ≥ ūi, k ∈ Ki

}
, where, as defined

earlier Ki = {1, . . . , ui}. Let us write it using a single index set as following:

conv
(
SLi
)

=
{
L(i, xi, yi) ∈ Rn+ × Rn+ : lki(xi, yi) ≥ 1, ki ∈ K̄i

}
,

where, K̄i = Ki

⋃
{ui + 1}, lki(xi, yi) = akixi + bkiyi, where aki = 1

2ki−1
, bki = ki(ki−1)

r(2ki−1)
, ki ∈

Ki and l(ui+1)i(xi, yi) = yi
ūi

. Note that the extreme points of conv
(
SLi
)

are L
(
i, xi,

r
xi

)
, xi =

1, . . . , ui. Therefore, we have

conv
(
SLi
)

= conv

({
L
(
i, xi,

r

xi

)
: xi = 1, . . . , ui

})
+ C (L(i, 1, 0),L(i, 0, 1)) , (2.5)

where C (L (i, 1, 0) ,L(i, 0, 1)) is the conic hull of {L (i, 1, 0) ,L(i, 0, 1)}. Now applying

Theorem 2.2.1 we have,

cl
(
conv

(
SL
))

=

{
(x, y) ∈ Rn+ × Rn+ :

n∑
i=1

lki(xi, yi) ≥ 1,∀ (ki)
n
i=1 ∈

n∏
i=1

K̄i

}
. (2.6)

The set cl
(
conv

(
SL
))

is a polyhedral set as it has finite number of facet defining

inequalities in its description, and the number of facets is
∏n

i=1 |K̄i| =
∏n

i=1(ui+1) (which

is exponentially large). Also, 0+
(
cl
(
conv

(
SL
)))

is the entire non-negative orthant Rn+×

Rn+. Let us now derive some properties of the set cl
(
conv

(
SL
))

.

Proposition 2.4.3. The set cl
(
conv

(
SL
))

is a polyhedral relaxation of SU .

Proof. Since SL =
⋃n
i=1 S

L
i , from (2.5) using Lemma 4.41 in [36] we have

cl
(
conv

(
SL
))

= conv

(⋃
i∈N

{
L
(
i, xi

r

xi

)
: xi = 1, . . . , ui

})
+ Rn+ × Rn+ (2.7)

Since 0+
(
conv

(
SU
))

is a subset of Rn+ × Rn+ = 0+
(
cl
(
conv

(
SL
)))

, it is sufficient to

show that all the extreme points of conv
(
SU
)

belong to cl
(
conv

(
SL
))

. Let (x̄, ȳ) be an
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extreme point of conv
(
SU
)
, then from Theorem 2.4.1 we have

(x̄, ȳ) = L
(
i, x̄i,

r

x̄i

)
+ (x̄1, 0, . . . , x̄i−1, 0, 0, 0, x̄i+1, 0, . . . , x̄n, 0)

for some i ∈ N . This clearly shows that (x̄, ȳ) ∈ cl
(
conv

(
SL
))

.

Theorem 2.4.2. (x̄, ȳ) is an extreme point of cl
(
conv

(
SL
))

if and only if (x̄, ȳ) is an

extreme point of conv
(
SLi
)

for some i ∈ N .

Proof. The statement follows from (2.7).

Corollary 2.4.2. (x̄, ȳ) is an extreme point of cl
(
conv

(
SL
))

if and only if (x̄, ȳ) is an

extreme point of conv
(
SUi
)

for some i ∈ N .

Proof. Since conv
(
SUi
)

and conv
(
SLi
)

have exactly same set of extreme points, the result

follows from Theorem 2.4.2.

Here we observe that cl
(
conv

(
SL
))

is a polyhedral relaxation of SU such that each

extreme point of cl
(
conv

(
SL
))

lies in SU . Now we prove our main result.

Theorem 2.4.3. Let S̄ = {(x, y) ∈ cl
(
conv

(
SL
))

: x ≤ u}. Then, conv
(
SU
)

= S̄.

Proof. Minkowski Resolution Theorem (Theorem 4.15 in [22]) states that any polyhedral

set having at least one extreme point can be described by its extreme points and recession

cone. The polyhedral sets conv
(
SU
)

and S̄ have the same recession cone {(x, y) ∈

Rn+ × Rn+ : x = 0}.

The constraint xi ≤ ui passes through only one extreme point L
(
i, ui,

r
ui

)
of cl

(
conv

(
SL
))

and does not cut off any of its extreme points. Therefore, adding this constraint to

cl
(
conv

(
SL
))

only creates new extreme points of the form

(
w1, 0, w2, 0, . . . , wi−1, 0, pi,

r

pi
, wi+1, 0, . . . , wn, 0

)
,

where wj ∈ {0, uj}, j ∈ N, j 6= i, pi ∈ {1, . . . , ui}, i ∈ N . From Theorem 2.4.1, we see

that such points lie in SU , in fact, they are extreme points of conv
(
SU
)
. Again, since

conv
(
SU
)
⊆ S̄, we have S̄ = conv

(
SU
)
.
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2.4.3 Facet Defining Inequalities of conv
(
SU
)

We now focus our attention on the new inequalities that are generated by our proce-

dure and their effectiveness. We have seen from Theorem 2.4.3 that each facet defining

inequality of conv
(
SU
)

is either a bound constraint xi ≤ ui for some i ∈ N or a facet

defining inequality of cl
(
conv

(
SL
))

of the following form:

n∑
i=1

lki(xi, yi) ≥ 1, (ki)
n
i=1 ∈

n∏
i=1

K̄i (FSL)

where, K̄i = Ki

⋃
{ui + 1}, Ki = {1, . . . , ui}, lki(xi, yi) = akixi + bkiyi, aki = 1

2ki−1
, bki =

ki(ki−1)
r(2ki−1)

, ki ∈ Ki and l(ui+1)i(xi, yi) = yi
ūi
, ūi = r

ui
. The inequality

∑n
i=1 l

ki(xi, yi) ≥ 1 is

identical to one of the facet defining inequalities of conv(S) if (ki)
n
i=1 ∈

∏n
i=1Ki. Now

let Q ⊆ N be a non-empty index set such that ki = (ui + 1)i for all i ∈ Q. Then, the

inequalities of the form

∑
i∈Q

yi
ūi

+
∑
i∈N\Q

lki(xi, yi) ≥ 1, (ki)
n
i=1 ∈

n∏
i=1

K̄i (NF)

are generated by applying our approach and they are not valid for conv(S).

2.4.4 An Extended Formulation of conv
(
SU
)

We saw that the description of conv
(
SU
)

consists of exponentially many facet defining

inequalities. Let us consider the following set:

SE =

{
(x, y, w) ∈ Rn+n+n

+ :
∑
i∈N

wi ≥ 1, wi ≤ lki(xi, yi), ki ∈ K̄i, i ∈ N, x ≤ u

}
.

Proposition 2.4.4. The set SE is an extended formulation of conv
(
SU
)
.

Proof. If (x, y, w) ∈ SE, then clearly (x, y) ∈ conv
(
SU
)
. Now let (x, y) ∈ conv

(
SU
)

and

define wi = minki{lki(xi, yi), ki ∈ K̄i}, i ∈ N . Since the point (x, y) is feasible for the set

conv
(
SU
)
,
∑

i∈N minki{lki(xi, yi), ki ∈ K̄i} ≥ 1, and consequently
∑

i∈N wi ≥ 1. Thus

SE is an extended formulation of conv
(
SU
)
.

Even though the description of SE consists of far fewer number of constraints than
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conv
(
SU
)
, it has

∑
i∈N ui + n + 1 linear inequalities in addition to the the bound con-

straints, which is pseudopolynomial in the input size because of its dependency on u.

This extended formulation can be solved as a linear program to optimize a linear

function over conv
(
SU
)
. When the components of u are small (as in some cutting stock

problems), this linear program can be solved fast.

2.5 The Separation Problem

We now describe a linear time separation algorithm to separate a given point (x̄, ȳ)

from conv
(
SU
)
. Let (x̄, ȳ) be a point in Rn × Rn. If x̄ � u, then a bound constraint

is sufficient to separate (x̄, ȳ). We thus consider the separation problem for the facet

defining inequalities of cl
(
conv

(
SL
))

.

The facet defining inequalities of cl
(
conv

(
SL
))

given by (FSL) can be listed in a

different way for easier understanding. Consider the following collection of columns.
l11(x1, y1) l12(x2, y2) l13(x3, y3) . . . l1n(xn, yn)

l21(x1, y1) l22(x2, y2) l23(x3, y3) . . . l2n(xn, yn)

. . . . . . . . . . . . . . .

l(u1+1)1(x1, y1) l(u2+1)2(x2, y2) l(u3+1)3(x3, y3) . . . l(un+1)n(xn, yn)

 (MU)

Note that (MU) may have a different number of elements in each column depending

upon u, and thus it is not a matrix. The facet defining inequalities of cl
(
conv

(
SL
))

can

be constructed by adding n terms from (MU), taking exactly one term from each column

and constraining the sum to be at least one.

Let us revisit the example (E) in Section 2.1. As discussed in Section 2.1, the point(
5, 1, 6, 5

6

)
lies in conv(S). But we see that this point is violated by the inequality 5y1

20
+

6y2

20
≥ 1 which is of the form (NF). Note that the inequalities 5y1

20
≥ 1 and 6y2

20
≥ 1 are valid

for S1 and S2, respectively and combining them in the way described above we obtain the

inequality 5y1

20
+ 6y2

20
≥ 1. Adding this inequality to conv(S), we get the optimal solution

(5, 4, 6, 0) with optimal value 23.

If (x̄, ȳ) /∈ conv
(
SU
)
, then it must be violated by at least one inequality of the form

(FSL). In order to find such a violated inequality, we have to find one term from each

45



column of (MU) so that the sum of these is less than 1.

2.5.1 Efficient Separation for conv
(
SU
)

In order to separate a point (x̄, ȳ) from conv
(
SU
)
, we find a minimum element from each

column of (MU) at (x̄, ȳ) and add them. Clearly, if the the sum is greater than or equal

to 1, the point (x̄, ȳ) is feasible to conv
(
SU
)
. Otherwise, adding the corresponding terms

from each column and setting it to greater than or equal to 1, will give us a violated facet

defining inequality.

Column i of (MU) has (ui + 1) terms, i ∈ N . To solve the separation problem, we

need to find the minimum value at (x̄, ȳ) from each column. This step takes O(ui) time

which is pseudo-polynomial in the size of input. We now present a linear time algorithm

for the separation problem.

Proposition 2.5.1. There exists an efficient separation of the facet defining inequalities

of conv
(
SU
)
.

Proof. Since the bound constraints can be checked easily, let (x̄, ȳ) ∈ Rn+×Rn+ such that

x̄ ≤ u be a given point. For each column of (MU), we want to find the term that gives

the minimum evaluation at the point (x̄, ȳ). Let

ξi = min

{
x̄i

2w − 1
+
ȳiw(w − 1)

r(2w − 1)
,
ȳi
ūi
, w = 1, . . . , ui

}
, where ūi =

r

ui
.

Note that ξi ≥ 0. To find ξi, we consider the following cases:

Case 1: If ȳi = 0, then clearly ξi = 0 at the last term, i.e., at yi
ūi

since ȳi
ūi

= 0.

Case 2: If x̄i = 0, then again ξi = 0 at w = 1.

Case 3: x̄i > 0 and ȳi > 0. Let us consider the following function:

f(w) =
x̄i

2w − 1
+
ȳiw(w − 1)

r(2w − 1)
, w ≥ 1.

Our goal is to find a positive integer q that minimizes f(w) among all the integers in
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[1, ui]. The function f is continuously differentiable in the domain w ≥ 1 with

f ′(w) = − 2x̄i
(2w − 1)2

+
ȳi
r
· 2w2 − 2w + 1

(2w − 1)2
and f ′′(w) =

2(4x̄ir − ȳi)
r(2w − 1)3

.

We have the following two subcases:

Case 3.1: When 4x̄ir − ȳi > 0, the function f is strictly convex and has unique

minimizer, say w̄i. Now f ′(w̄i) = 0 occurs at

w̄i =
1

2
+

√
4x̄ir
ȳi
− 1

2
. (2.8)

When w̄i ≤ 1, the integer minimizer of f is q = 1. When ui > w̄i > 1, q = dw̄ie or

bw̄ic whichever gives a lower f(q) is the required q. Finally, q = ui when w̄i > ui.

Case 3.2: When 4x̄ir − ȳi ≤ 0, the function f is concave for w ≥ 1. Therefore, the

minimum value will be attained at a boundary point, i.e., either at 1 or at ui. Moreover,

we see that

f ′(w) = − 2x̄i
(2w − 1)2

+
ȳi
r
· 2w2 − 2w + 1

(2w − 1)2

=
2ȳiw(w − 1) + ȳi − 2x̄ir

r(2w − 1)2
> 0.

Thus, f is strictly increasing function, and is minimized at q = 1. Now one more

comparison is required to find the value of ξi. If x̄i
2q−1

+ ȳiq(q−1)
r(2q−1)

≤ ȳi
ūi

then ξi = x̄i
2q−1

+ ȳiq(q−1)
r(2q−1)

,

else ξi = ȳi
ūi

.

The term corresponding to any column of (MU) can be computed in O(1) time, and

since there are n columns, a violated inequality can be found in O(n) time.

If
∑n

i=1 ξi ≥ 1, the point (x̄, ȳ) is feasible to conv
(
SU
)
. In Algorithm 1 we provide

the separation algorithm in pseudocode.

Corollary 2.5.1. The optimization problem having a linear objective function over the

set conv
(
SU
)

can be solved in time polynomial in size of the input.

Proof. Since there is a polynomial time separation algorithm of the facet defining inequal-

ities of conv
(
SU
)
, the optimization of a linear function over conv

(
SU
)

can also be done
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Algorithm 1 Separation of the facet defining inequalities of conv
(
SU
)

1: Input : A point (x̄, ȳ) ∈ Rn+ × Rn+, x ≤ u
2: Output : Decide whether (x̄, ȳ) ∈ conv

(
SU
)
, and if not then provide a facet defining

inequality of conv
(
SU
)

that cuts off (x̄, ȳ)
3: for i = 1, . . . , n do
4: if ȳi = 0 then
5: ŵi = ui + 1
6: else if x̄i = 0 then
7: ŵi = 1
8: else
9: q = 0

10: if 4x̄ir > ȳi then

11: if 1
2

+

√
4x̄ir

ȳi
−1

2
> 1 then

12: if 1
2

+

√
4x̄ir

ȳi
−1

2
< ui then

13: p =

⌊
1
2

+

√
4x̄ir

ȳi
−1

2

⌋
14: if x̄i

2p−1
+ ȳip(p−1)

r(2p−1)
≤ x̄i

2(p+1)−1
+ ȳip(p+1)

r(2(p+1)−1)
then

15: q = p
16: else
17: q = p+ 1
18: end if
19: else
20: q = ui
21: end if
22: else
23: q = 1
24: end if
25: else
26: q = 1
27: end if
28: if x̄i

2q−1
+ ȳiq(q−1)

r(2q−1)
≤ ȳi

ūi
then

29: ŵi = q
30: else
31: ŵi = ui + 1
32: end if
33: end if
34: end for
35: R =

∑
i∈N :ŵi≤ui

x̄i
2ŵi−1

+ ȳiŵi(ŵi−1)
r(2ŵi−1)

+
∑

i∈N :ŵi=ui+1
ȳi
ūi

36: if R ≥ 1 then
37: The point (x̄, ȳ) is feasible to conv

(
SU
)
.

38: else
39: The inequality

∑
i∈N :ŵi≤ui

xi
2ŵi−1

+ yiŵi(ŵi−1)
r(2ŵi−1)

+
∑

i∈N :ŵi=ui+1
yi
ūi
≥ 1 separates (x̄, ȳ).

40: end if
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in polynomial time (Grötschel et al. [64]). We present an algorithm in Appendix B.

2.5.2 Efficient Separation for conv(S)

The separation problem in the case of conv(S) can also be solved in similar way with

some modification. We use this algorithm to compare the effectiveness of our new cuts

derived for conv
(
SU
)

in computational experiments.

Proposition 2.5.2. There exists an efficient separation of the facet defining inequalities

of conv(S).

Proof. Given a point (x̄i, ȳi) ∈ Rn+ × Rn+, let

ξi = min

{
x̄i

2w − 1
+
ȳiw(w − 1)

r(2w − 1)
, w ∈ N

}
.

Note that ξ ≥ 0 for w ≥ 1. Our goal is to find a positive integer that minimizes f(w).

We consider the following cases.

Case 1: When x̄i = 0, then clearly ξi = 0 at ŵi = 1.

Case 2: When ȳi = 0, x̄i 6= 0, then inf
{

x̄i
2k−1

+ ȳik(k−1)
r(2k−1)

, k ∈ N
}

= 0, since x̄i
2k−1

→ 0

as k →∞. Therefore ξi can be taken as 0 in this case.

Case 3: When x̄i > 0, ȳi > 0, the same logic used for conv
(
SU
)

can be deployed.

Let ŵi be the desired integer value. Then

ŵi =



1, when 4x̄ir − ȳi > 0 and w̄i ≤ 1,

dw̄ie, when 4x̄ir − ȳi > 0, w̄i > 1 and f (dw̄ie) ≤ f (bw̄ic) ,

bw̄ic, when 4x̄ir − ȳi > 0, w̄ > 1 and f (dw̄ie) ≥ f (bw̄ic) ,

1, when 4x̄ir − ȳi ≤ 0,

where w̄i is defined by (2.8). If
∑n

i=1 ξi ≥ 1, the point (x̄, ȳ) is feasible to conv(S).

Otherwise, it is infeasible, and we have to find a violated facet defining inequality. We

know the required value of ŵi for Case 1 and 3. Let t ∈ N such that the following holds,

n∑
i=1

ξi +
∑

i∈N :x̄i>0,ȳi=0

x̄i
2t− 1

< 1. (2.9)
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Such a t can always be found by the Archimedian property. A simple calculation

shows that any integer greater than
⌊

1−ξ+v
2(1−ξ)

⌋
where ξ =

∑n
i=1 ξi, v =

∑
i∈N :x̄i>0,ȳi=0 x̄i is

sufficient. Therefore, the following inequality is violated by the point (x̄, ȳ):

∑
i∈N :x̄i=0

xi +
∑

i∈N :x̄i>0,ȳi>0

[
xi

2ŵi − 1
+
yiŵi(ŵi − 1)

r(2ŵi − 1)

]
+

∑
i∈N :x̄i>0,ȳi=0

[
xi

2t− 1
+
yit(t− 1)

r(2t− 1)

]
≥ 1,

where t ∈ N such that t ≥
⌊

1−ξ+v
2(1−ξ)

⌋
+ 1. In Algorithm 2, we provide the pseudocode of

the separation algorithm.

Note that for any positive integer t ≥
⌊

1−ξ+v
2(1−ξ)

⌋
+ 1, we get a violated inequality. From

(2.9) we see that as t increases, the violation also increases and equals 1 −
∑n

i=1 ξi in

the limiting case. Following this argument, one may conclude that the best inequality

is the one with t arbitrarily large. However, this conclusion may not be correct because

our measure of violation is not normalized properly. Ideally we should find an inequality

farthest from the given point. Such a measure can be considered in future studies.

Corollary 2.5.2. The optimization problem having a linear objective function over the

set S (or equivalently over conv(S)) can be solved in polynomial time.

We present a polynomial time algorithm to optimize a linear function over conv(S)

in Appendix A.

2.6 Computational Results

We now study the effectiveness of the cuts obtained for SU by doing computational exper-

iments on cutting stock instances. Recall from Chapter 1 the formulation of cutting stock
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Algorithm 2 Separation of the facet defining inequalities of conv(S)

1: Input : A point (x̄, ȳ) ∈ Rn+ × Rn+
2: Output : Decide whether (x̄, ȳ) ∈ conv(S), and if not then provide a facet defining

inequality that cuts off (x̄, ȳ)
3: for i = 1, . . . , n do
4: if x̄i = 0 then
5: ŵi = 1, ξi = 0
6: else if x̄iȳi > 0 then
7: if 4x̄ir > ȳi then

8: if 1
2

+

√
4x̄ir

ȳi
−1

2
> 1 then

9: p =

⌊
1
2

+

√
4x̄ir

ȳi
−1

2

⌋
10: if x̄i

2p−1
+ ȳip(p−1)

r(2p−1)
≤ x̄i

2(p+1)−1
+ ȳip(p+1)

r(2(p+1)−1)
then

11: ŵi = p
12: else
13: ŵi = p+ 1
14: end if
15: else
16: ŵi = 1
17: end if
18: else
19: ŵi = 1
20: end if
21: ξi = x̄i

2ŵi−1
+ ȳiŵi(ŵi−1)

r(2ŵi−1)

22: else
23: ξi = 0
24: end if
25: end for
26: ξ =

∑
i∈N ξi

27: if ξ ≥ 1 then
28: The point (x̄, ȳ) is feasible to conv(S).
29: else
30: v =

∑
i∈N :ȳi=0 x̄i

31: t =
⌊

1−ξ+v
2(1−ξ)

⌋
+ γ, where γ can be taken as any positive integer.

32: for i = 1, . . . , n do
33: if x̄i > 0 and ȳi = 0 then
34: ŵi = t
35: end if
36: end for
37: The inequality

∑n
i=1

xi
2ŵi−1

+ yiŵi(ŵi−1)
r(2ŵi−1)

≥ 1 cuts off the point (x̄, ȳ).
38: end if
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problem (CS). In the following formulation we consider the variable y to be continuous.

min
n∑
i=1

yi∑
i∈N

xijyi ≥ dj, j ∈ F,∑
j∈F

ljxij ≤ L, i ∈ N,

xij ∈ Z+, yi ∈ R+,∀i ∈ N, j ∈ F,

where the notation is the same as that in Chapter 1. These instances have stocks of

one length L from which n different sizes of finals are to be cut. So, there are n mixed-

integer bilinear covering constraints modeling demand satisfaction. The upper bounds

xij ≤
⌊
L
lj

⌋
= νj(say),∀i ∈ N, j ∈ F of the integral variables are implicit from the

knapsack constraints present in the formulation. Here, our objective is to minimize the

total number of stocks that are used. Since not more than n finals are usually seen in

solutions to (CS), we assume |N | = |F | = n.

We have selected for our experiments ten instances used in Umetani et al. [109] taken

from applications in a chemical fiber company in Japan (Fiber-xx-xxxx), six instances

generated by CUTGEN (Gau and Wascher [58]) (CutGen-xx-xx) and five randomly gen-

erated instances (Rand-xx). These random instances were generated by fixing L to 1030

and selecting specifc problem size n (denoted as ‘xx’ in the name). The final lengths lj

were generated randomly between 75 and 600, and dj between 300 and 5000.

We perform three sets of experiments. In all three we have used PuLP (Mitchell et

al. [86]) version 1.6.2 (installed in Python 2.7.12) to model the linear programs and CBC

(Forrest et al. [55]) solver to solve them. The system we used to run our code has Linux

(Ubuntu 16.04) operating system with 4x Intel(R) Core(TM) i5-3570 CPU@3.40 GHz

processor and 8 GB of RAM. All experiments were carried out on a single core.

In our first study we compare the bounds generated by our cuts for conv
(
SU
)

to

those by Tawarmalani et al. [106] for conv(S). In both the cases we consider the facet

defining inequalities of each mixed-integer bilinear covering constraint. Adding facet

defining inequalities for each mixed-integer bilinear covering constraint together gives a
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polyhedral relaxation for the actual problem. For each instance, in both the cases, we

start our iterations with the facet defining inequalities
∑n

i=1 xij ≥ 1, for all j ∈ F , the

bound constraints and the knapsack inequalities, i.e., we start our iterations by solving

the following linear program.

min
n∑
i=1

yi

s.t.
n∑
i=1

xij ≥ 1,∀j ∈ F,

0 ≤ xij ≤ νj,∀i ∈ N, j ∈ F, (LP-I)∑
j∈F

ljxij ≤ L, i ∈ N,

y ≥ 0.

Then, we add violated inequalities (if any) obtained from our separation procedures

and resolve (LP-I). This process is continued until we can not find any more violated

inequalities, or the number of LPs solved exceeds a predefined limit of 800, or the total

time used exceeds two hours. If we can not find any more violated inequalities, then the

solution of the current LP lies in the convex hull of the set SU associated with each of

the bilinear constraints. This solution may not be feasible to the original problem (CS).

We run the above experiment in two different settings using facet defining inequalities

derived (i) for conv
(
SU
)

and (ii) for conv(S). We consider the sets SU and S by looking

at each bilinear covering constraint separately and add one most violated cut for each

such constraint using Algorithm 1 and Algorithm 2 respectively. So, we add at most n

cuts in every iteration (LP solve) which are not deleted in further iterations. This means,

at iteration k, we solve an LP relaxation of the instance with at most k|F | number of

linear inequalities in addition to those in (LP-I).

Table 2.1 compares the effects of new cuts for SU to the cuts derived for S. We observe

that cuts for conv
(
SU
)

improve the lower bounds with fewer cuts and in lesser time as

compared to cuts for conv(S). In the Figures 2.3, 2.4 and 2.5, we present iteration-

wise bound comparisons for three instances Fiber-15-5180, CutGen-01-25 and Rand16

respectively. We see that the cuts for conv
(
SU
)

improve bounds faster than those for
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conv(S).

We also study the time taken to solve the extended formulations (both LP and MILP)

of Section 2.4.4. While the LP defines the set conv
(
SU
)
, the MILP is an even tighter

relaxation of cutting stock problem. Recall that the extended formulation has 2n2 + n

variables, that means n2 more variables than the original formulation. Table 2.2 lists the

bounds and time taken to solve the two relaxations. We set computational time limit

to two hours. We write “7200*” for the instances where this time limit is reached, and

for such instances we report the relative gap ub−lb
lb

of the MILP. The lb of the MILP is a

lower bound for the optimal value of (CS). We also compute an upper bound to optimal

solution of (CS) obtained by fixing the variable x to the MILP solution in (CS) and

solving a linear program in y only. This bound is reported in the last column (“UB”) of

Table 2.2.

We see that the extended formulation LP takes much less time compared to the cutting

plane algorithm using cuts for conv
(
SU
)
, and even the MILP is often faster than the

cut based iterative LP approach. This observation suggests that extended formulation is

quite good for these instances when the implied bounds ν on x are small. The extended

MILP for randomly generated instances seems to be unusually difficult for the solver.

The bounds given by the LP and MILP of the extended formulation are the same for

all instances except for Rand10. We do not have an explanation of this phenomenon

currently.

Lastly, we consider an exact MILP formulation of (CS). Let wijh = 1 if xij = h

and wijh = 0 otherwise for i ∈ N, j ∈ F and h ∈ {0, 1, . . . , νj}. Replacing the terms

wijhyi with zijh and using the linear inequalities to model the products zijhyi we have the
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Table 2.1: Comparison of iterations taken to optimize over the convex hull and the lower
bounds obtained. (Here “Iter” means number of LP iterations, and “LB” means Lower
Bound obtained after termination, “Cuts” column indicates the number of cuts added,
Time is in seconds). A * mark indicates time or iteration limit is reached

Instance n
Using inequalities for conv

(
SU
)

Using inequalities for conv(S)
Iter Cuts LB Time Iter Cuts LB Time

Fiber10-5180 10 156 1212 27.00 18.23 226 1917 6.88 55.09

Fiber10-9080 10 215 1663 15.00 23.86 223 2045 3.85 46.15

Fiber11-5180 11 118 939 26.00 9.22 288 2673 6.10 89.22

Fiber11-9080 11 463 3151 14.44 137.83 335 2946 3.40 162.3

Fiber14-5180 14 147 1343 22.00 17.27 473 5417 3.34 547.81

Fiber14-9080 14 136 1522 11.00 19.22 476 6211 1.90 658.27

Fiber15-5180 15 335 2350 28.80 98.96 560 7219 3.74 1412.46

Fiber15-9080 15 623 2861 16.00 317.27 800* 8890 2.09 1881.71

Fiber16-5180 16 800* 2393 27.20 282.51 756 9763 5.17 3086.56

Fiber16-9080 16 223 2566 15.11 63.9 723 10330 2.93 2692.61

CutGen01-01 10 211 1359 2.43 30.79 252 2244 1.24 95.33

CutGen01-02 10 235 1888 2.57 43.86 270 2443 0.97 103.32

CutGen01-25 10 180 1238 3.40 21.95 246 2157 0.99 77.18

CutGen01-100 10 194 1276 3.80 18.82 244 2131 1.25 52.82

CutGen02-40 10 186 1292 26.00 22.48 262 2272 10.41 92.60

CutGen02-60 10 186 1322 33.80 24.05 275 2480 10.10 76.32

Rand10 10 64 557 1520.50 3.06 185 1601 697.22 28.86

Rand15 15 114 1272 2122.00 18.15 792 8485 576.69 3786.64

Rand16 16 800* 2293 2724.00 257.04 800* 8780 686.27 4611.77

Rand20 20 173 2698 2250.00 66.91 725 13131 631.02 7200*

Rand25 25 800* 9835 1437.00 3382.22 686 17175 517.15 7200*

Figure 2.3: Bound comparisons for Fiber-15-5180
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Table 2.2: Comparison for Extended Formulation. (“Const.” column contains total num-
ber of constraints in the extended formulation)

Instance Const.
Extended LP Extended MILP

UB
LB Time LB(Rel. Gap) Time Nodes

Fiber10-5180 610 27.00 0.17 27.00 1.64 41 135.00

Fiber10-9080 1010 15.00 0.25 15.00 2.99 61 68.06

Fiber11-5180 792 26.00 0.22 26.00 6.21 91 75.28

Fiber11-9080 1331 14.44 0.37 14.44 3.55 4 45.20

Fiber14-5180 1274 22.00 0.34 22.00 4.32 176 66.00

Fiber14-9080 2114 11.00 0.59 11.00 1.68 1 40.86

Fiber15-5180 1470 28.80 0.57 28.80 5.80 91 88.00

Fiber15-9080 2430 16.00 0.86 16.00 8.54 91 35.02

Fiber16-5180 1648 27.20 0.69 27.20 9.09 615 136.00

Fiber16-9080 2800 15.11 0.74 15.11 7.38 171 82.50

CutGen01-01 1740 2.43 0.68 2.43 18.78 635 13.25

CutGen01-02 1300 2.57 0.55 2.57 9.76 208 10.77

CutGen01-25 1550 3.40 0.44 3.40 6.19 91 17.00

CutGen01-100 1190 3.80 0.32 3.80 7.62 146 19.00

CutGen02-40 2170 26.00 0.67 26.00 13.56 116 149.00

CutGen02-60 1780 33.80 0.53 33.80 6.58 80 117.36

Rand10 320 1520.50 0.11 1557.87(1.46) 7200* 7562839 7407.00

Rand15 720 2122.00 0.27 2122.00(1.89) 7200* 3818886 9688.00

Rand16 832 2724.00 0.30 2724.00(1.58) 7200* 2392670 12899.00

Rand20 1440 2250.00 0.53 2250.00(2.59) 7200* 1758597 13990.00

Rand25 3750 1437.00 1.67 1437.00(3.67) 7200* 681074 15041.25

Figure 2.4: Bound comparisons for CutGen-01-25
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Figure 2.5: Bound comparisons for Rand16

following formulation:

min
n∑
i=1

yi

∑
i∈N

νj∑
h=0

hzijh ≥ dj, j ∈ F,∑
j∈F

ljxij ≤ L, i ∈ N,

νj∑
h=0

wijh = 1, i ∈ N, j ∈ F, (RCS)

νj∑
h=0

hwijh = xij, i ∈ N, j ∈ F,

zijh ≥ yi +Bwijh, i ∈ N, j ∈ F, h ∈ {0, 1, . . . , νj} ,

zijh ≤ yi, i ∈ N, j ∈ F, h ∈ {0, 1, . . . , νj} ,

zijh ≤ Bwijh, i ∈ N, j ∈ F, h ∈ {0, 1, . . . , νj} ,

wijh ∈ {0, 1}, zijh ∈ R+, xij ∈ Z+, yi ∈ R+,∀i ∈ N, j ∈ F,∈ {0, 1, . . . , νj} .

The formulation (RCS) is an exact reformulation of (CS) because wijh are binary.

Here B is an upper bound for the variables y. For our experiment, we used the UB value

reported in Table 2.2 for B.
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Table 2.3: Bounds generated by Binary MILP (RCS) after two hours of computational
time.

Instance LB UB Rel. Gap Nodes LB
(conv(SU ))

LB
(conv(S))

Fiber10-5180 9.00 69.80 6.76 754875 27.00 6.88

Fiber10-9080 3.00 39.19 12.06 232134 15.00 3.85

Fiber11-5180 8.67 67.15 6.75 651330 26.00 6.10

Fiber11-9080 2.89 39.79 12.77 216931 14.44 3.40

Fiber14-5180 11.00 48.83 3.44 311882 22.00 3.34

Fiber14-9080 3.14 32.44 9.32 91340 11.00 1.90

Fiber15-5180 9.60 60.73 5.33 220926 28.80 3.74

Fiber15-9080 3.20 34.51 9.78 51267 16.00 2.09

Fiber16-5180 9.50 85.97 8.05 347264 27.20 5.17

Fiber16-9080 3.39 66.67 18.65 78161 15.11 2.93

CutGen01-01 0.62 13.56 20.90 215080 2.43 1.24

CutGen01-02 0.64 10.62 15.52 138215 2.57 0.97

CutGen01-25 1.13 10.69 8.43 119516 3.40 0.99

CutGen01-100 1.27 13.40 9.58 210161 3.80 1.25

CutGen02-40 8.67 117.97 12.61 114179 26.00 10.41

CutGen02-60 11.27 114.66 9.18 136551 33.80 10.10

Rand10 1013.67 7101.50 6.01 1501923 1520.50 697.22

Rand15 2122.00 8834.67 3.16 554079 2122.00 576.69

Rand16 2724.00 10876.00 2.99 1310800 2724.00 686.27

Rand20 2250.00 13608.83 5.05 183486 2250.00 631.02

Rand25 958.00 14200.16 13.82 103304 1437.00 517.15

In Table 2.3, we list both lower and upper bounds to the objective value of (CS) by

solving the MILP reformulation (RCS). We also report the lower bounds obtained from

cuts for conv(SU) and conv(S) from the earlier tables for comparison. The time limit was

again set to two hours. We observe that the solver reached the time limit for all instances.

Further the lower bound at the root relaxation was the same as the lower bound after

two hours for all instances. From the table we see that the lower bounds generated by

solving (RCS) are smaller than the lower bounds generated by the facets of conv
(
SU
)

in

all instances except Rand15, Rand16 and Rand20 for which they are equal. On the other

hand, the bounds from conv(S) are sometimes weaker than that from the MILP (RCS).
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2.7 Conclusion

When bounds on integer variables in a bilinear covering set are finite, we are able to

obtain the polyhedral description of the convex hull. Even though one can not directly

apply the orthogonal disjunctive procedure here, we are still able to compute the convex

hull by first creating a suitable relaxation and then applying the procedure. It would

be interesting to see if similar procedures can be applied to other restrictions of the set

as well. Our examples and experiments show that the new facet defining inequalities of

conv
(
SU
)

improve the bounds as compared to the case when bounds are not considered.

The extended formulation for many cutting stock problem can be solved fast, even the

MILP can be solved fast. Also the procedure of finding facet defining inequalities to

separate a given point from the convex hull is fast.

Our results for the set SU can be applied in a straight-forward manner to the following

set also:

Sδ =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

δixiyi ≥ r, x ≤ u

}
,

where r > 0, u ∈ N and δi > 0 for all i ∈ N . Using our analysis, we can show that

the facet defining inequalities of conv
(
Sδ
)

also can be separated in O(n) time. Some

questions related to our results are still open and can be considered as future work.

These are discussed in Chapter 5.
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Chapter 3

Convex Hull of SB and an Algorithm

to Solve PMP

3.1 Introduction

In this chapter, we consider the following variant of mixed-integer bilinear covering set

with box constraint on the integer variables.

SB =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r, l ≤ x ≤ u

}
,

where r > 0, l ∈ Zn+, u ∈ Nn are given. While solving these problems using Branch-and-

Cut framework, we deal with nonzero lower bounds, and this motivated us to extend

our work of previous chapter to derive tighter linear relaxation. Here, we present the

V-Description and H-Description of the set conv
(
SB
)
.

Unlike, the description of conv
(
SU
)
, here we do not use the orthogonal disjunctve

approach. Extreme points and extreme rays of conv
(
SB
)

are first identified. Using these

points and rays, we obtain a description of all facet defining inequalities. The number of

these inequalities grows exponentially fast with n. An extended formulation of conv
(
SB
)

which has a structure similar to that of conv
(
SU
)

is derived. The advantage of a smaller

formulation is that, it can be deployed in a Branch-and-Cut algorithm based on linear

programming for solving the Pattern Minimization Problem (PMP) [116]. Unlike the

existing approach of [110], the new algorithm does not require any column generation or
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decomposition, and hence is easier to implement.

We implemented the algorithm by overriding branching and cutting-plane functions

of Branch-and-Cut solver and performed tests on some real life instances. This algorithm

obtains tighter bounds and solves the problem faster than the global optimization solver

SCIP [114].

3.2 The Convex Hull Description of SB

First we derive the description of conv
(
SB
)

as V-Description and then we construct the

H-Description with the help of the V-Description.

3.2.1 The V-Description

Proposition 3.2.1. The set conv
(
SB
)

is a polyhedral set.

Proof. The proof is similar to that of Proposition 2.4.1 in Chapter 2.

Proposition 3.2.2. Let (x̄, ȳ) be an extreme point of conv
(
SB
)
. Then x̄t = pt, ȳt = r

pt

for some t ∈ N , where pt ∈ {lt, . . . , ut} \ {0}, and x̄j ∈ {lj, uj} for all j ∈ N, j 6= t, i.e.,

(x̄, ȳ) is of the following form:

(
x̄1, 0, x̄2, 0, . . . , x̄t−1, 0, pt,

r

pt
, x̄t+1, 0, . . . , x̄n, 0

)

where pt ∈ {lt, . . . , ut} \ {0} for some t ∈ N, x̄j ∈ {lj, uj}, ∀j ∈ N, j 6= t.

Proof. Since (x̄, ȳ) is an extreme point of conv
(
SB
)
, by the same arguments as in the

proof of Theorem 2.4.1 in Chapter 2, there exists t ∈ N such that x̄t = pt, ȳt = r
pt
, pt ∈

{lt, . . . , ut}\{0} and ȳj = 0 for all j ∈ N, j 6= t, i.e., only one y component of ȳ is nonzero.

Now we have to show that x̄j ∈ {lj, uj} for all j ∈ N, j 6= t.

If possible, let x̄j ∈ (lj, uj) for some j ∈ N, j 6= t. Now consider two points (x̄1, ȳ1)

and (x̄2, ȳ2) in SB having exactly same components as (x̄, ȳ) except the jth components

of x variable, and x̄1
j = lj and x̄2

j = uj. Therefore, we have

(x̄, ȳ) = λ(x̄1, ȳ1) + (1− λ)(x̄2, ȳ2)

62



where λ =
uj−x̄j
uj−lj . This contradicts the extremality of (x̄, ȳ).

Moreover, if x̄j ∈ {lj, uj} for j 6= t, then we can not write (x̄, ȳ) as a convex combi-

nation of two different points in SU . This is because, if two such points exist, one of the

points’ jth component of the variable x has to be more than uj or less than lj, neither of

which is allowed.

Note that the recession cone of conv
(
SB
)

is {(x, y) ∈ Rn+ × Rn+ : x = 0}. Therefore,

form Proposition 3.2.2, we have the V-Description of conv
(
SB
)
. Now we give the H-

Description of conv
(
SB
)

following.

3.2.2 The H-Description

We construct the description of conv
(
SB
)

without using orthogonal disjunctive proce-

dure. Consider the following collection of columns:
θ(l1+1)1(x1, y1) θ(l2+1)2(x2, y2) . . . θ(ln+1)n(xn, yn)

θ(l1+2)1(x1, y1) θ(l2+2)2(x2, y2) . . . θ(ln+2)n(xn, yn)

. . . . . . . . . . . .

θ(u1+1)1(x1, y1) θ(u2+1)2(x2, y2) . . . θ(un+1)n(xn, yn)

 (MB)

where,

θki(xi, yi) =


xi−li

2ki−1−li + yiki(ki−1)
r(2ki−1−li) , ki ∈ {li + 1, . . . , ui},

yiui
r
, ki = ui + 1,

i ∈ N. (3.1)

Note that different columns of (MB) have different number of elements. Let us define

the index set Ti = {li + 1, . . . , ui + 1}, i ∈ N . Now define the following set:

SBR =

{
(x, y) ∈ Rn+ × Rn+ :

n∑
i=1

θki(xi, yi) ≥ 1, (ki)
n
i=1 ∈

n∏
i=1

Ti

}
.

The inequalities of SBR are constructed adding n terms taking exactly one term from

each column of (MB) and constraining the sum to greater than or equal to one. Clearly,

SBR is a polyhedral set. Define the set S̄B =
{

(x, y) ∈ SBR : l ≤ x ≤ u
}

. We show that

S̄B = conv
(
SB
)
. First we need two small results for the proof.
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Proposition 3.2.3. Let f : R → R be function of t defined as f(t) = t−h
2k−1−h +

k(k−1)
r(2k−1−h)

r
t
, t > 0 where h, k ∈ Z+, u ∈ N are given parameters such that h ≤ u and

k ≥ h+ 1. Then the minimum value of f for t ∈ {h, . . . , u} \ {0} is 1.

Proof. Consider t as a continuous variable. Note that for t > 0, f is continuously differ-

entiable. Therefore, we have

f ′(t) =
1

2k − 1− h
− k(k − 1)

2k − 1− h
1

t2
.

Now, f ′(t∗) = 0 =⇒ t∗ =
√
k(k − 1). Note that f ′′(t) ≥ 0, and therefore, t∗ minimizes

f . Since, t is restricted to be integer, f attains the minimum value at bt∗c = k − 1 or

dt∗e = k and the minimum value is 1.

Proposition 3.2.4. Let (x̂, ŷ) be a solution to the following system of equations,

x− h
2k1 − 1− h

+
k1(k1 − 1)

r(2k1 − 1− h)
y = α (3.2)

x− h
2k2 − 1− h

+
k2(k2 − 1)

r(2k2 − 1− h)
y = α (3.3)

where h, k1, k2 ∈ Z+, k1 ≥ h+ 1, k2 ≥ k1 + 2 and 0 < α ≤ 1 are given parameters. Then,

x̂− h
2(k1 + 1)− 1− h

+
(k1 + 1)((k1 + 1)− 1)

r(2(k1 + 1)− 1− h)
ŷ < α. (3.4)

Proof. The solution to the system of equations (3.2) and (3.3) is,

x̂ = α

[
2k1k2

k1 + k2 − 1
− 1− h

]
+ h (3.5)

ŷ =
2rα

k1 + k2 − 1
(3.6)

Then we have,

x̂− h
2(k1 + 1)− 1− h

+
(k1 + 1)((k1 + 1)− 1)

r(2(k1 + 1)− 1− h)
ŷ = α

[
1 +

2(k1 − k2 + 1)

(2k1 + 1− h)(k1 + k2 − 1)

]
.

Since k2 ≥ k1 + 2, equation (3.4) holds.

Theorem 3.2.1. The set conv
(
SB
)

is a subset of S̄B.
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Proof. It is sufficient to show that the inequalities of SBR are valid for conv
(
SB
)
. In fact

we show that the inequalities of SBR are facet defining inequalities for conv
(
SB
)
. Since,

it can be generalized for general n, we prove our result for n = 2. The inequalities of SBR

for n = 2 are of the form
∑2

i=1 θ
ki(xi, yi) ≥ 1 for all (ki)

2
i=1 ∈

∏2
i=1 Ti. We consider the

following cases:

Case 1: l1 +1 ≤ k1 ≤ u1 and l2 +1 ≤ k2 ≤ u2. The corresponding inequality is following:

x1 − l1
2k1 − 1− l1

+
y1k1(k1 − 1)

r(2k1 − 1− l1)
+

x2 − l2
2k2 − 1− l2

+
y2k2(k2 − 1)

r(2k2 − 1− l2)
≥ 1. (3.7)

From Proposition 3.2.2, an extreme point (x̄, ȳ) of conv
(
SB
)

when n = 2 is of the

form either
(
t, r

t
, x̄2, 0

)
where t ∈ {l1, . . . , u1}\{0} and x̄2 ∈ {l2, u2}, or

(
x̄1, 0, t,

r
t

)
where

t ∈ {l2, . . . , u2} \ {0} and x̄1 ∈ {l1, u1}. So, using Proposition 3.2.3, we can see that

at (x̄, ȳ), either x̄1−l1
2k1−1−l1 + ȳ1k1(k1−1)

r(2k1−1−l1)
≥ 1 or x̄2−h2

2k2−1−l2 + ȳ2k2(k2−1)
r(2k2−1−l2)

≥ 1. Since, (x̄, ȳ) is

arbitrary, the inequality (3.7) is valid for conv
(
SB
)
.

The points
(
k1,

r
k1
, l2, 0

)
,
(
k1 − 1, r

k1−1
, l2, 0

)
,
(
l1, 0, k2,

r
k2

)
and

(
l1, 0, k2 − 1, r

k2−1

)
lie in SB and are affinely independent and the inequality (3.7) is active at these points.

Therefore, the inequality (3.7) is a facet defining inequality of conv
(
SB
)
.

Case 2: l1 + 1 ≤ k1 ≤ u1 and k2 = u2 + 1. The corresponding inequality is following:

x1 − l1
2k1 − 1− l1

+
y1k1(k1 − 1)

r(2k1 − 1− l1)
+
y2u2

r
≥ 1. (3.8)

From Proposition 3.2.2, at any extreme point (x̄, ȳ) of conv
(
SB
)
, if ȳ2 > 0, then

ȳ2 ≥ r
u2

. Again, if ȳ2 = 0, then by Proposition 3.2.3, we have x̄1−l1
2k1−1−l1 + ȳ1k1(k1−1)

r(2k1−1−l1)
≥ 1.

Therefore, in either case, the inequality (3.8) is valid for conv
(
SB
)
.

Now, the points
(
k1,

r
k1
, h2, 0

)
,
(
k1,

r
k1
, u2, 0

)
,
(
k1 − 1, r

k1−1
, l2, 0

)
and

(
l1, 0, u2,

r
u2

)
lie in SB and are affinely independent and the inequality (3.8) is active at these points,

and consequently, the inequality (3.8) is a facet defining for conv
(
SB
)
.

Case 3: k1 = u1 + 1 and l2 + 1 ≤ k2 ≤ u2. This case is similar as Case 2.

Case 4: k1 = u1 + 1 and k2 = u2 + 1. The corresponding inequality is following:

y1u1

r
+
y2u2

r
≥ 1. (3.9)
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By similar logic as Case 2, we can show that the inequality (3.9) is valid for conv
(
SB
)
.

Again, the points
(
u1,

r
u1
, h2, 0

)
,
(
u1,

r
u1
, u2, 0

)
,
(
l1, 0, u2,

r
u2

)
and

(
u1, 0, u2,

r
u2

)
lie in

SB and are affinely independent. Therefore, the inequality (3.9) is facet defining for

conv
(
SB
)
.

Therefore, all the inequalities of SBR are valid for conv
(
SB
)
, and consequently we

have conv
(
SB
)
⊆ S̄B.

Theorem 3.2.2 ( [98]). The set S̄B is a subset of conv
(
SB
)
.

Proof. It is sufficient to show that each extreme point of S̄B lies in SB, because S̄B and

conv
(
SB
)

have the same recession cone. To create an extreme point of S̄B, four facet

defining inequalities of SB should intersect at a point and the intersection point should

be feasible to S̄B. We consider the following cases.

Case 1: Let the extreme point is constructed by the intersection of four simple facets.

Then we must have its y components be zero. Such points can not be feasible for S̄B as

it will violate the inequality y1u1

r
+ y2u2

r
≥ 1. So, intersection of simple facets can not give

any extreme point of S̄B.

Case 2: Let at least one of the four intersecting facets at an extreme point of S̄B be

a non-simple one, say θk1(x1, y1) + θk2(x2, y2) ≥ 1. We show that at the extreme point,

either θk1(x1, y1) = 0 or θk1(x1, y1) = 1.

Consider the case when θk1(x1, y1) = α and θk2(x2, y2) = 1− α where 0 < α < 1. To

find the exact values of x1, y1 and α, two more equations are needed. Let θk3(x1, y1) +

θk4(x2, y2) = 1 be the second intersecting facet. If θk3(x1, y1) < α, then θk3(x1, y1) +

θk2(x2, y2) < 1. If θk3(x1, y1) > α, then θk1(x1, y1) + θk4(x2, y2) < 1. i.e., in either case

the intersecting point is not feasible to S̄B. Therefore, θk3(x1, y1) = α and θk4(x2, y2) =

1− α. Also, from Proposition 3.2.3, we know that if k3 ≥ k1 + 2, θk1+1(x1, y1) < α and,

consequently, θk1(x1, y1) + θk2(x2, y2) < 1. Therefore, k3 = k1 + 1. Similarly, one can

argue that k4 = k2 + 1. The extreme point defined by system of equations θk1(x1, y1) = α

and θk1+1(x1, y1) = α is x1 = α(k1 − l1) + l1 and y1 = r
k1
α. The third interesting facet

has to be either x1 = l1, x1 = u1 or y1 = 0. Therefore, α has to be either 0 or 1, i.e., at

an extreme point of S̄B either θ(k1)1(x1, y1) = 0 or θk1(x1, y1) = 1. Now we show that,

when θk1(x1, y1) = 0 or 1, the extreme point that is created lies in SB.
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If θk1(x1, y1) = 0, then we have x1 = l1 or u1 (depending on the value of k1) and

y1 = 0. Further, θk2(x2, y2) = 1 at the extreme point. So, we need one more inequality

to fix the values of x2 and y2 at the extreme point.

Let the intersecting facet be x2 = l2( 6= 0). If k2 ≥ l2 + 2 then it is easy to verify

that θk2(x2, y2) < 1, and therefore the extreme point violates the inequality θk1(x1, y1) +

θk2(x2, y2) ≥ 1 as θk1(x1, y1) = 0, a contradiction. So, we must have k2 = l2 + 1,

and consequently the extreme point in this case is
(
l1(or u1), 0, l2,

r
l2

)
which lies in SB.

Similarly we can show that if the intersecting facet is x2 = u2, then it will create the

extreme point
(
l1(or u1), 0, u2,

r
u2

)
of S̄B which again lies in SB.

Let the intersecting facet be of the form θk5(x1, y1)+θk6(x2, y2) = 1. Since, θk1(x1, y1) =

0, we ave θk5(x1, y1) = 0. This is because, if θk1(x1, y1) > 0 at the intersecting point, we

have θk6(x2, y2) < 1 and consequently θk1(x1, y1) + θk6(x2, y2) < 1, i.e., the intersecting

point is not feasible to S̄B. Without loss of generality, assume that k6 ≥ k5. If k6 ≥ k2+2.

By Proposition 3.2.4 we know that θk2+1(x2, y2) < 1. But by the definition of S̄B, we

know that θk1(x1, y1) + θk2+1(x2, y2) ≥ 1, a contradiction. Therefore, k6 = k2 + 1 and the

extreme point of S̄B is x2 = k2 and y2 = r
k2

. Clearly this extreme point lies in SB.

Since each extreme point of S̄B lies in SB and the recession cones of set S̄B and

conv
(
SB
)

are same, we have S̄B ⊆ conv
(
SB
)
.

Corollary 3.2.1. S̄B = conv
(
SB
)
.

Proof. The proof directly follows from Theorem 3.2.1 and 3.2.2.

3.2.3 An Extended Formulation of conv
(
SB
)

Like the description of conv
(
SU
)
, (i.e., conv

(
SB
)

when l = 0) in the previous chap-

ter, here also we give an extended formulation of conv
(
SB
)

in a straightforward way

introducing n new variables, say wi, i ∈ N . Consider the following set:

SBE =

{
(x, y, w) ∈ Rn+n+n

+ : wi ≤ θki(xi, yi), ki ∈ Ti, i ∈ N,
∑
i∈N

wi ≥ 1, l ≤ x ≤ u

}
,

where θki(xi, yi) is defined in (3.1) and Ti = {li + 1, . . . , ui + 1}, i ∈ N which is also

defined earlier. The same way as in Proposition 2.4.4, we can show easily that SBE
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is an exact extended formulation of conv
(
SB
)
. Note that, whereas the description of

conv
(
SB
)

consists of exponentially many linear constraints, the description of SBE con-

sists of
∑

i∈N (ui + 1− li) + 1 number of linear constraints other than the bound con-

straints which is pseudopolynomial in the input size because of its dependency on the

parameters l and u. So, when the value of u is small (as in the case of Pattern Minimiza-

tion Problem), we can solve the problem efficiently using the extended formulation.

3.3 Solving PMP Using Inequalities for conv
(
SB
)

In this section we present a Branch-and-Cut algorithmic framework to solve Pattern

Minimization Problem (PMP) using the extended formulation of conv
(
SB
)
.

3.3.1 The Mathematical Model

Recall the following mathematical formulations of Pattern Minimization Problem (PMP)

and the associated Cutting Stock (or trim-loss) problem (CS) defined on Chapter 1.

min
x,y,z

n∑
i=1

zi

s.t.
n∑
i=1

xijyi ≥ dj, j ∈ F,∑
j∈F

µjxij ≤ ziL, i ∈ N,

yi ≤ vzi, i ∈ N,
n∑
i=1

yi ≤ η,

xij, yi ∈ Z+, zi ∈ {0, 1}, i ∈ N, j ∈ F,
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and

min
n∑
i=1

yi∑
i∈N

xijyi ≥ dj, j ∈ F,∑
j∈F

µjxij ≤ L, i ∈ N,

xij ∈ Z+, yi ∈ R+,∀i ∈ N, j ∈ F.

We determine the value of η solving the above associated Cutting Stock problem (CS).

Since in this chapter we are using “l” to denote lower bound on the varibale x, to avoid

confusion, in this chapter we use µj, j ∈ F to denote the length of the finals unlike

Chapter 1.

3.3.2 McCormick Relaxation

Recall from Chapter 1 that, for a bilinear term w = xy, we have the following McCormick

inequalities:

w ≥ uyx+ uxy − uxuy, w ≥ lyx+ lxy − lxly,

w ≤ lyx+ uxy − uxly, w ≤ uyx+ lxy − lxuy,
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where x ∈ [lx, ux], y ∈ [ly, uy]. Now, the McCormick relaxation of (PMP) can be given as:

min
x,y,z,w

n∑
i=1

zi

s.t.
n∑
i=1

wij ≥ dj, j ∈ F

wij ≥ vxij + ujyi − ujv, i ∈ N, j ∈ F,

wij ≤ vxij, i ∈ N, j ∈ F, (PMPMC)

wij ≤ ujyi, i ∈ N, j ∈ F,∑
j∈F

µjxij ≤ ziL, i ∈ N,

yi ≤ vzi, i ∈ N,
n∑
i=1

yi ≤ η,

wij, xij, yi ∈ R+, zi ∈ [0, 1], i ∈ N, j ∈ F.

Proposition 3.3.1 ( [98]). The optimal value of the problem (PMPMC) is given by

max

{∑
j∈F

µjdj
vL

,
1

v

dj
uj

: j ∈ F

}
.

3.3.3 A Branch-and-Cut Algorithm

We solve the PMP using a Branch-and-Cut framework. We start with solving the MILP

version of the extended formulation of the convex hull of each bilinear constraint along

with the other linear inequalities that are there in the PMP. This extended formulation

is a relaxation of the original PMP. If the solution satisfies all the demand constraints,

then the solution is an optimal solution to the PMP. Otherwise we branch on the integer

variables in the following way.

Let (x̄, ȳ, z̄, w̄) be an integer optimal solution to the extended MILP for which the

demand constraint for the jth item is not satisfied, i.e., an integer infeasible solution to

the problem PMP. Then we choose a branching variable xij and we branch xij ≤ x̄ij and

xij ≥ x̄ij+1 when x̄ij < uj, and we branch xij ≤ x̄ij−1 and xij = uj when x̄ij = uj. Then
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for the children nodes, we add the facet defining inequalities for the updated bounds on

the variable xij. For the node, xij ≤ x̄ij we need to add only one new inequality and for

the node xij ≥ x̄ij + 1, we need to add uj − x̄ij − 1 (as all the terms of the corresponding

columns of (MB) get updated) new inequalities and then we repeat the procedure. We

select branching variables lexicographically for the item for which the demand is not

satisfied.

3.3.4 Computational Results

For our experiments, we used a system with Intel(R) Xenon(R) CPU E5-2670 v2 @

2.50GHz processor with 128 GB of RAM and Linux Debian 8.1 operating system. We

did our experiments using CPLEX Python API (Python 3 with CPLEX 12.8). We

compare our algorithm with the global optimization solver “Solving Constraint Integer

Programs (SCIP)” [114]. All experiments are carried out in a single core.

We did our experiments with twenty instances. Among them, ten instances used

in Umetani et al. [109] taken from applications in a chemical fiber company in Japan

(Fiber-xx-xxxx) and other ten instances generated by CUTGEN (Gau and Wascher [58])

(CutGen-xx-xx). We determined the values of η for each instance solving the binary

reformulation of the accociated cutting stock problem (CS) for two hours using CBC [55]

solver.
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Instance n η MC LB-R LB UB Time Nodes Solved

Fiber10-5180 10 70 0.50 0.43 2.25 NFS 3600* 417533 No

Fiber10-9080 10 40 0.28 0.42 2 NFS 3600* 517499 No

Fiber11-5180 11 68 0.50 0.38 2.21 NFS 3600* 366448 No

Fiber11-9080 11 40 0.29 0.36 2 NFS 3600* 520649 No

Fiber14-5180 14 61 0.70 0.32 3 3 9.95 3942 Yes

Fiber14-9080 14 33 0.40 0.00 2 2 0.15 1 Yes

Fiber15-5180 15 61 0.38 0.47 2 NFS 3600* 187569 No

Fiber15-9080 15 35 0.22 0.46 1.97 NFS 3600* 334860 No

Fiber16-5180 16 86 0.60 0.39 2 NFS 3600* 139885 No

Fiber16-9080 16 67 0.34 0.28 3 3 935.08 1632145 Yes

CutGen01-01 10 14 0.73 0.26 2 2 4.97 1551 Yes

CutGen01-02 10 11 0.54 0.25 2 2 1.85 364 Yes

CutGen01-25 10 11 0.53 0.33 3 3 60.59 150870 Yes

CutGen01-100 10 14 0.62 0.31 3 3 20.44 38971 Yes

CutGen02-16 10 92 0.49 0.30 2 2 10.52 4514 Yes

CutGen02-32 10 109 0.68 0.28 3 3 57.59 136379 Yes

CutGen02-40 10 118 0.68 0.00 2 2 0.41 2 Yes

CutGen02-50 10 119 0.63 0.29 2 NFS 3600* 423614 No

CutGen02-60 10 115 0.60 0.34 2 2 1.84 258 Yes

CutGen02-64 10 136 0.44 0.31 3 3 67.22 148478 Yes

Table 3.1: Computational results using SCIP. Here ‘LB-R’ means the lower bound at the
root node.
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Instance LB UB Nodes Cuts Int. Inf. Time Solved

Fiber10-5180 4 4 857080 2882875 45433 1208.72 Yes

Fiber10-9080 3 3 83731 423064 2119 127.62 Yes

Fiber11-5180 4 7 2691000 9378412 115135 3600* No

Fiber11-9080 3 3 17957 103607 742 32.73 Yes

Fiber14-5180 3 3 123 455 0 0.90 Yes

Fiber14-9080 2 2 262 1664 1 1.28 Yes

Fiber15-5180 4 5 1589539 6309819 747 3600* No

Fiber15-9080 3 3 63470 331390 317 167.83 Yes

Fiber16-5180 4 11 1662411 6833527 3485 3600* No

Fiber16-9080 3 3 43 310 0 0.90 Yes

CutGen01-01 2 2 368 2645 7 0.97 Yes

CutGen01-02 2 2 365 2391 8 1.02 Yes

CutGen01-25 3 3 6656 51120 106 14.03 Yes

CutGen01-100 3 3 384 2244 0 0.94 Yes

CutGen02-16 2 2 4765 52472 793 14.04 Yes

CutGen02-32 3 3 6827 66369 1249 16.70 Yes

CutGen02-40 2 2 147 1622 1 0.84 Yes

CutGen02-50 3 3 1051 7301 12 2.36 Yes

CutGen02-60 2 2 326 2739 4 1.29 Yes

CutGen02-64 3 3 1187 5874 27 2.06 Yes

Table 3.2: Computational results using our algorithm. ‘Int. Inf.’ means the number of
infeasible integer solution found

We observe form the Tables 3.1 and 3.2 that our algorithm hits the time limit for only

three instances, whereas SCIP hits the time limit for eight instances, i.e., Our algorithm

solves thirteen out of twenty instances, whereas SCIP solve twelve instances. For those

instances, our algorithm hits the time limit, so do for SCIP, and for all such instances our

algorithm gives better lower bounds. We also see that SCIP solved only three instances

faster than our algorithm, and for rest of the instances, our algorithm is faster. We also

observe that McCormick bound is weak for all the instances.
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3.4 Conclusion

In this article we derived closed form description of conv
(
SB
)

without using orthogo-

nal disjunctive procedure, but used the concepts of the derivation of conv
(
SU
)
. Like

conv
(
SU
)
, we also provide an extended formulation of conv

(
SB
)
. We used this ex-

tended formulation to do our experiments and provided a Branch-and-Cut algorithm to

solve PMP. Our proof-of-concept implementation of the algorithm showed that it per-

forms better as compared to an off-the-shelf general purpose global optimization solver.

Implementing a faster version of the algorithm and testing on larger instances of PMP

can be taken up in the future.
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Chapter 4

Facet Defining Inequalities of conv(S)

as Disjunctive Cuts

4.1 Introduction

In this chapter, we study the facet defining inequalities of the convex hull of the mixed-

integer bilinear covering set

S =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

xiyi ≥ r

}
,

where r > 0. As discussed earlier, the set S is a nonconvex set, even the continuous

relaxation R of S defined as

R =

{
(x, y) ∈ Rn+ × Rn+ :

n∑
i=1

xiyi ≥ r

}
,

is nonconvex for n ≥ 2. Tawarmalani et al. [106] obtained the convex hull of R with the

help of their orthogonal disjunctive procedure. This convex hull, which we call R̂, can be

described using only one constraint:

R̂ = conv(R) =

{
(x, y) ∈ Rn+ × Rn+ :

n∑
i=1

√
xiyi
r
≥ 1

}
.

As discussed earlier, Tawarmalani et al. [106] obtained the description of conv(S) with
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the help of the orthogonal disjunctive procedure. However, unlike R̂, the description of

conv(S) consists of countably infinite number of facet defining inequalities.

Recall the definitions of Disjunctions, Split-Cut, Split-Rank etc. for valid inequalities

in Section 1.3.3 in Chapter 1. We study the facet defining inequalities of conv(S) using

the framework of split disjunctions when applied to R̂ in an attempt to find those which

might be computationally more useful and easy to obtain. Viewing these facet defining

inequalities through the lens of split disjunctions, we see that some of them have split-

rank one, and can be obtained easily. Further, when minimizing the objective function

of trim-loss problems, these rank-one inequalities give the same bound as the conv(S).

Some other facet defining inequalities are seen to have split-rank more than one, but can

be obtained using other disjunctions. None of the remaining facet-defining inequalities

can be obtained by applying any disjunctive procedure on R̂, in fact each of them cuts off

an integer point from R̂. These inequalities can not be derived from R̂, but disjunctions

can still be applied on the nonconvex set R to derive them. We observe that all facet

generating disjunctions have a similar form.

The problem of finding facet defining inequalities of a general nonconvex mixed-integer

set is difficult, and there are no general algorithms for finding all facets of such sets. One

has to exploit specific structures and properties of the given set in order to find facets,

like is done in the orthogonal disjunctive procedure. A more common approach in these

methods (see for example, [17, 80, 102]) is to first find a suitable disjunction, and then

obtain an inequality that is valid for each subset of the disjunction.

The principle of obtaining disjunctive inequalities [12, 13, 43, 96], in particular split

inequalities, has been quite useful for the case of integer linear optimization. Gomory

Mixed Integer inequalities [60, 62], Mixed-Integer Rounding (MIR) [90, 91] inequalities,

lift-and-project inequalities [14] and several others are all known to be special cases of

split cuts [39]. While some of them are equivalent theoretically, they still provide their

own computational advantages and insights.

The general approach of obtaining disjunctive inequalities for integer linear opti-

mization has been extended to the class convex-MINLP consisting of MINLPs whose

continuous relaxation is convex. Several studies on theoretical aspects of split inequali-

ties [5, 10, 40, 87, 88] and on using them for solving convex MINLPs [25, 33, 77, 104] have
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been performed recently. Given the relatively well established foundations of convex in-

teger sets, it is tempting to exploit it for nonconvex MINLPs as well. This is the main

motivation for our work.

In general, determining the split-rank for a given linear inequality belongs to the hard

class of problems, even for MILP. Determining the bounds on the split-rank is relatively

easy. Split-rank of an inequality can be finite or infinite [35]. A valid inequality having

finite split-rank indicates that the inequality can be obtained by recursively applying the

split cuts finite number of times.

4.2 Few properties of the sets R̂ and R

It is easy to see that the set R̂ is a closed convex set in the positive orthant. In this

section we analyze few more properties of the sets R̂ and R that are necessary for our

further discussion. Some similar results can be found in [46].

Proposition 4.2.1. Suppose the following optimization problem has an optimal solution.

min c
n∑
i=1

xi + d
n∑
i=1

yi

s.t.
n∑
i=1

xi ≤ (≥)k, (P1)

n∑
i=1

√
xiyi
r
≥ 1.

Then there exists an optimal solution (x∗, y∗) to (P1) such that only one pair of its

component is non zero, i.e., there exists t ∈ N such that x∗i = 0, y∗i = 0 for all i ∈ N \{t}.

Proof. Since the proof can be easily generalized for any positive integer n, we prove our

result for n = 2 only. Let (x̄, ȳ) ∈ R2
+ × R2

+ be an optimal solution to the optimization

problem. Therefore, we have

n∑
i=1

x̄i ≤ (≥)k, and (4.1)

√
x̄1ȳ1 +

√
x̄2ȳ2 ≥

√
r. (4.2)
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The objective value at this point is c
∑2

i=1 x̄i + d
∑2

i=1 ȳi. Now consider the point

(x∗, y∗) such that

x∗1 = x̄1 + x̄2, x
∗
2 = 0,

y∗1 = ȳ1 + ȳ2, y
∗
2 = 0.

At this point the objective value is same as the optimal value. Now it is sufficient to

show that (x∗, y∗) is feasible for (P1). Clearly, from (4.1) we see that, the point (x∗, y∗)

satisfies the first constraint. Now we have

x∗1y
∗
1 = (x̄1 + x̄2)(ȳ1 + ȳ2)

=
(√

x̄1ȳ1 +
√
x̄2ȳ2

)2
+
(√

x̄1ȳ2 −
√
x̄2ȳ1

)2

≥ r, using (4.2) and
(√

x̄1ȳ2 −
√
x̄2ȳ1

)2 ≥ 0

⇒
√
x∗1y

∗
1 ≥
√
r

This implies that (x∗, y∗) ∈ R̂, and thus feasible for (P1).

Proposition 4.2.2. Consider the following optimization problem,

z∗ = min akx1 + bky1

s.t.
√
x1y1 ≥

√
r,

x1, y1 ≥ 0.

where ak = 1
2k−1

, bk = k(k−1)
r(2k−1)

, k ∈ N \ {1}. Then the unique optimal solution of the above

problem is

(√
k(k − 1), r√

k(k−1)

)
, and 1

2
< z∗ < 1.

Proof. Note that the above problem is a convex problem as the curve y1 = r
x1

is strictly

convex. Therefore, by elementary KKT condition, we have the unique optimal solution

is

(√
k(k − 1), r√

k(k−1)

)
.

Therefore, the optimal value is

√
k(k−1)

2k−1
+ k(k−1)

r(2k−1)
r√

k(k−1)
=

2
√
k(k−1)

2k−1
=
√

4k2−4k
4k2−4k+1

< 1.
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Now the following function

f(v) =
4v2 − 4v

4v2 − 4v + 1
, v ≥ 2

is continuously differentiable in the domain, and f ′(v) = 8v−4
(4v2−4v+1)2 > 0 for v ≥ 2.

Therefore, f and hence
√
f is strictly increasing for v ≥ 2. Now,

√
f(2) =

√
8
9
> 1

2
.

Thus the result follows.

Corollary 4.2.1. Let us consider the problem z∗ = min(x,y)∈R̂
∑n

i=1(akixi + bkiyi) where

n ∈ N, aki = 1
2ki−1

, bki = ki(ki−1)
r(2ki−1)

, ki ∈ N \ {1}. Then z∗ < 1.

Proof. Note that the point

(
0, 0, · · · ,

√
ki(ki − 1), r√

ki(ki−1)
, · · · , 0, 0

)
is feasible for R̂.

The objective value at this point is

√
ki(ki−1)

2ki−1
+ ki(ki−1)

r(2ki−1)
r√

ki(ki−1)
which is less than one

from the proof of Proposition 4.2.2. This implies z∗ < 1.

Proposition 4.2.3. Let n ≥ 2. Consider the set R along with some additional linear

constraints on the variables x. Let us call it RX . Let (x̄, ȳ) be an extreme point of the

set conv (RX). Then there exists t ∈ N such that x̄tȳt = r, yi = 0,∀i ∈ N, i 6= t, i.e., only

one pair of (x̄i, ȳi), i = 1, . . . , n can have both the non zero value.

Proof. Let (x̄, ȳ) be an extreme point of conv (RX), then the point (x̄, ȳ) lies on the

surface
∑n

i=1 xiyi = r. If possible, let there exist two pairs of components of (x̄, ȳ) that

are strictly greater than zero. Without loss of generality let (x̄1, ȳ1) and (x̄2, ȳ2) have all

their components greater than zero. Also let x̄1ȳ1 + x̄2ȳ2 = α. Without loss of generality

let us assume x̄1ȳ1 ≥ α
2
. Now we have (x̄, ȳ) = 1

2
(x̄, ȳ)1 + 1

2
(x̄, ȳ)2, where

(x̄, ȳ)1 =

(
x̄1,

α

x̄1

, x̄2, 0, x̄3, ȳ3, . . . , x̄n, ȳn

)
and

(x̄, ȳ)2 =

(
x̄1, 2ȳ1 −

α

x̄1

, x̄2, 2ȳ2, x̄3, ȳ3, . . . , x̄n, ȳn

)
.

Clearly (x̄, ȳ)1, (x̄, ȳ)2 ∈ Rn+×Rn+. Since the x components of the points (x̄, ȳ), (x̄, ȳ)1

and (x̄, ȳ)2 are same. Therefore, the points (x̄, ȳ)1 and (x̄, ȳ)2 satisfy the additional linear
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constraints on x that are present in RX . Now we have,

x̄1
α

x̄1

+ x̄20 + x̄3ȳ3 + . . .+ x̄nȳn = α + x̄3ȳ3 + . . .+ x̄nȳn

= x̄1ȳ1 + x̄2ȳ2 + x̄3ȳ3 + . . .+ x̄nȳn ≥ r.

Again,

x̄1

(
2ȳ1 −

α

x̄1

)
+ x̄22ȳ2 + x̄3ȳ3 + . . .+ x̄nȳn

= 2(x̄1ȳ1 + x̄2ȳ2)− α + x̄3ȳ3 + . . .+ x̄nȳn

= x̄1ȳ1 + x̄2ȳ2 + x̄3ȳ3 + . . .+ x̄nȳn ≥ r.

Thus, (x̄, ȳ)1 and (x̄, ȳ)2 lie in RX . This shows that (x̄, ȳ) can not be an extreme point

of conv (RX). Therefore, our assumption must be wrong which proves that x̄iȳi = 0 for

all i ∈ N, i 6= t. We still have to show that ȳi = 0 for all i ∈ N, i 6= t.

Now let x̄tȳt = r. If possible, let there exist j ∈ N, j 6= t such that ȳj > 0. Therefore,

using the above arguments, x̄j = 0. Let ε > 0 be such that ȳj − ε > 0. Then (x̄, ȳ) lies

in the middle of two points (x̄, ȳ)3 and (x̄, ȳ)4 such that (x̄, ȳ)3 and (x̄, ȳ)4 have the same

components as (x̄, ȳ) except the jth component of the variable y and ȳ3
j = ȳj − ε and

ȳ4
j = ȳj + ε. Since (x̄, ȳ)3, (x̄, ȳ)4 ∈ S, this contradicts the extremality of (x̄, ȳ).

4.3 The facet defining inequalities of conv(S)

Recall from Chapter 2, the facet defining inequalities of conv(S) can be constructed using

the following collection of columns:



x1 x2 x3 . . . xn

a2x1 + b2y1 a2x2 + b2y2 a2x3 + b2y3 . . . a2xn + b2yn

. . . . . . . . . . . . . . .

akx1 + bky1 akx2 + bky2 akx3 + bky3 . . . akxn + bkyn

. . . . . . . . . . . . . . .


(M)
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where aj = 1
2j−1

and bj = j(j−1)
r(2j−1)

, j ∈ N as defined earlier in Chapter 2. Note that the

coefficients aj, bj, j ∈ N are independent of i ∈ N .

To construct the facet defining inequalities for conv(S), we add exactly n terms from

(M) taking one term from each column and constraining their sum to greater than or

equal to one [106]. Conversely, each facet defining inequality of conv(S) is constructed

in this way.

Note that, in general the facet defining inequalities of conv(S) can be written in the

following form:

∑
i∈J1

(aj1xi + bj1yi) +
∑
i∈J2

(aj2xi + bj2yi) + . . .+
∑
i∈Jp

(ajpxi + bjpyi) ≥ 1, (IG)

where j1, j2, . . . , jp are different row numbers of (M) for some p ∈ N. Without loss of

generality we can assume j1 < j2 < . . . < jp. The index sets J1, J2, . . . , Jp define a

partition on the set N . Note that, for any such partition, we get one facet defining

inequality of conv(S) and vice versa.

4.4 Split-rank of the facet defining inequalities of

conv(S)

In this section, we derive the ranks of the facet defining inequalities of conv(S). We first

analyze the simpler cases for n = 1, and then we generalize it for any positive integer n.

4.4.1 When n = 1

For n = 1, we have the set S = {(x1, y1) ∈ Z+ × R+ : x1y1 ≥ r}. In this case the convex

hull of S can be written as,

conv(S) = {(x1, y1) ∈ R+ × R+ : x1 ≥ 1, ajx1 + bjy1 ≥ 1,∀j ∈ N \ {1}}

where, ajxi + bjyi = 1 is the straight line joining the two points (xi, yi) =
(
j − 1, r

j−1

)
and

(
j, r

j

)
,∀j ∈ N \ {1}. Moreover, in this case we have R̂ = R.
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Lemma 4.4.1. Let n = 1. Consider a point (u, v) on the boundary of R̂(= R), i.e.,

uv = r. Then the point (u, v) is cut off by the facet defining inequality ajx1 + bjy1 =

x1

2j−1
+ y1j(j−1)

r(2j−1)
≥ 1 of conv(S) if and only if u ∈ (j − 1, j). In other words, the optimal

value of the optimization problem min(x1,y1)∈R(=R̂) ajx1 + bjy1 is less than one if and only

if u ∈ (j − 1, j).

Proof. For j = 1, we have the facet defining inequality x1 ≥ 1 and therefore, the proof

is straightforward. For j ≥ 2, since the facet defining inequality x1

2j−1
+ y1j(j−1)

r(2j−1)
≥ 1 is

constructed by joining the points
(
j − 1, r

j−1

)
and

(
j, r

j

)
, and since the curve y1 = r

x1
is

strictly convex in the positive orthant, the result follows.

In our further discussion, we consider the following convex mixed-integer relaxation

Ŝ of S obtained by adding integer constraints to R̂.

Ŝ =

{
(x, y) ∈ Zn+ × Rn+ :

n∑
i=1

√
xiyi
r
≥ 1

}
.

We study the facet defining inequalities of conv(S) as split cuts for Ŝ and determine their

split-ranks.

Theorem 4.4.1. For n = 1, every facet defining inequality of conv(S) is a rank-one split

inequality for Ŝ.

Proof. Consider the facet defining inequality x1 ≥ 1 of conv(S). The point
(

1
2
, 2r
)
∈ R̂

which is cut off by this facet defining inequality of conv(S), and therefore it can not have

split-rank zero. Now, the inequality x1 ≥ 1 is valid for both the sets R̂ ∩ [x1 ≤ 0](= φ)

and R̂∩ [x1 ≥ 1], i.e., the inequality x ≥ 1 is valid for the disjunction [x1 ≤ 0]∨ [x1 ≥ 1].

Therefore, the split-rank of this inequality is one.

Now consider a facet defining inequality ajx1 + bjy1 = x1

2j−1
+ y1

r(2j−1)
≥ 1, j ∈ N, j 6= 1

of conv(S). Since 2j−1
2
∈ (j− 1, j), by Lemma 4.4.1, the point

(
2j−1

2
, 2r

2j−1

)
∈ R̂ is cut off

by this inequality. Therefore, it has split-rank at least one. Since the facet ajx1 +bjy1 = 1

is constructed by joining the two points
(
j − 1, r

j−1

)
and

(
j, r

j

)
and the curve y1 = r

x1

is concave, the inequality ajx1 + bjy1 ≥ 1 is valid for both the sets R̂ ∩ [x1 ≤ j − 1] and

R̂ ∩ [x1 ≥ j], and consequently it is valid for the disjucntion [x1 ≤ j − 1] ∨ [x1 ≥ j], and

its split rank is 1. The following figure illustrates this geometrically.
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x1

y1
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x1 ≤ 2 x1 ≥ 3

x
15

+
3y

120 ≥
1

Figure 4.1: The split disjunction [x ≤ 2] ∨ [x1 ≥ 3] and the split cut x1

5
+ 3y1

20
≥ 1, r = 8

4.4.2 Split-ranks for higher dimension

In this section we discuss about the split ranks for general positive integer n.

Proposition 4.4.1. Any facet defining inequality of conv(S) that is constructed using

exactly one row of (M), i.e., of the form aj
∑n

i=1 xi + bj
∑n

i=1 yi ≥ 1 for any j ∈ N is a

rank-one split inequality for Ŝ.

Proof. The point (x, y) =
(

2j−1
2
, 2r

2j−1
, 0, 0, . . . , 0, 0

)
lies in R̂ but violates the given in-

equality for any j ∈ N. Therefore, this inequality has split-rank at least one. Consider the

disjunction [
∑n

i=1 xi ≤ j − 1]∨[
∑n

i=1 xi ≥ j] and the following two optimization problems.

min
(x,y)∈R̂

aj

n∑
i=1

xi + bj

n∑
i=1

yi min
(x,y)∈R̂

aj

n∑
i=1

xi + bj

n∑
i=1

yi

s.t.
n∑
i=1

xi ≥ j, s.t.
n∑
i=1

xi ≤ j − 1.

Consider the first optimization problem. From Proposition 4.2.1, there exists an

optimal solution say (x̄, ȳ) and an index t ∈ N such that xi = 0, yi = 0 for all i ∈ N \{t}.

Because of symmetry, we assume t = 1. Therefore, the problem reduces to the following
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optimization problem

min
(x1,y1)∈R̂

ajx1 + bjy1

s.t. x1 ≥ j.

From Lemma 4.4.1 the optimal value of this optimization problem is at least one. In

fact the optimal value is exactly one as (j, r
j
) is a feasible point with objective value one.

Thus the inequality aj
∑n

i=1 xi + bj
∑n

i=1 yi ≥ 1 is valid for R̂ ∩ [
∑n

i=1 xi ≥ j].

Similarly we can show that the inequality aj
∑n

i=1 xi + bj
∑n

i=1 yi ≥ 1 is valid for

R̂ ∩ [
∑n

i=1 xi ≤ j − 1]. Consequently it is rank-one split inequality for Ŝ.

The following results give us lower bound on the split-ranks for rest of the facet

defining inequalities.

Theorem 4.4.2. Consider a facet defining inequality of conv(S) that is constructed us-

ing two or more rows of (M). For any such inequality, there does not exist any split

disjunction (π, π0) ∈ Zn+1, π 6= 0 of Ŝ for which it is valid.

Proof. Without loss of generality we assume that two different rows of (M) are used for

the variables with the first two indices, i.e., we consider the facet defining inequality

ajx1 + bjy1 + akx2 + bky2 +
n∑
i=3

(apixi + bpiyi) ≥ 1 (IS)

of conv(S) where j 6= k. Since the set R̂ lies entirely in the positive orthant, it is sufficient

to consider π0 ≥ 0 and those π that have at least one positive component. Consider the

two optimization problems:

min
(x,y)∈R̂

[
ajx1 + bjy1 + akx2 + bky2 +

n∑
i=3

(akixi + bkiyi)

]
s.t. πTx ≤ π0, (Q≤)

84



and

min
(x,y)∈R̂

[
ajx1 + bjy1 + akx2 + bky2 +

n∑
i=3

(akixi + bkiyi)

]
s.t. πTx ≥ π0 + 1. (Q≥)

We show that at least one of the above problems has optimal value strictly less than

one. We consider the following cases.

Case A: When π1 ≤ 0, the point
(

2j−1
2
, 2r

2j−1
, 0, 0, . . . , 0, 0

)
is feasible for (Q≤) with

objective value aj
2j−1

2
+ bj

2r
2j−1

. Since 2j−1
2
∈ (j − 1, j), by Lemma 4.4.1, the objective

value is strictly less than one, and so is the optimal value of (Q≤).

Case B: When π2 ≤ 0, we can similarly show that (Q≤) has optimal value less than

one.

Therefore, the inequality (IS) is not valid for (Q≤) for both the above cases.

Case C: Now the remaining case is when π1 and π2 are both positive integers. Sup-

pose that one of the following relations holds true.

π1

√
j(j − 1) ≤ π0, (4.3)

π2

√
k(k − 1) ≤ π0, (4.4)

π1

√
j(j − 1) ≥ π0 + 1, (4.5)

π2

√
k(k − 1) ≥ π0 + 1. (4.6)

If (4.3) is true then clearly the point

(√
j(j − 1), r√

j(j−1)
, 0, 0, . . . , 0, 0

)
is feasible for

(Q≤) and by Proposition 4.2.2 and its corollary, the objective value at this point is strictly

less than one. Again, if (4.4) is true then by the same arguments, (Q≤) has optimal value

less than one. Similarly, using the same arguments, the optimal value of (Q≥) is less than

one when (4.5) or (4.6) hold.

Finally, suppose none of the above four relations hold. Therefore we have,

π0 < π1

√
j(j − 1) < π0 + 1, and

π0 < π2

√
k(k − 1) < π0 + 1.

Therefore both the values of π1 and π2 can not be one from Proposition C.0.1 in
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Appendix C. Now by Proposition C.0.2 in Appendix C we have,

j − 1 <
π0 + 1

π1

≤ j (4.7)

k − 1 <
π0 + 1

π2

≤ k (4.8)

j − 1 ≤ π0

π1

< j (4.9)

k − 1 ≤ π0

π2

< k (4.10)

Since, π1, π2 ∈ N, not both equal to one, at least one of the values of π0+1
π1

, π0+1
π2

, π0

π1

and π0

π2
must be non-integral.

If π0

π1
is non-integral, then we have j − 1 < π0

π1
< j form (4.9). Now, the point

L
(

1, π0

π1
, rπ1

π0

)
=
(
π0

π1
, rπ1

π0
, 0, 0, . . . , 0, 0

)
is feasible for the optimization problem (Q≤).

Since at this point exactly one pair of components is positive, Lemma 4.4.1 is applica-

ble, and the objective value at this point is strictly less than one. Similarly, the point

L
(

2, π0

π2
, rπ2

π0

)
=
(

0, 0, π0

π2
, rπ2

π0
, 0, 0, . . . , 0, 0

)
is feasible for the optimization problem (Q≤)

with objective value strictly less than one if π0

π2
is non-integral.

Similarly, if π0+1
π1

(
or π0+1

π2

)
is non-integral, from (4.7) (or (4.8)) and Lemma 4.4.1, we

can say that the optimization problem (Q≥) has optimal value strictly less than one.

Therefore, for all the possible cases there does not exist any split disjunction (π, π0)

for which the facet defining inequality (IS) is valid.

Corollary 4.4.1. Any facet defining inequality of conv(S) that is constructed using two

or more number of rows of (M) is not a rank-one split cut for Ŝ.

Proof. Since a facet defining inequality for conv(S) can not be expressed as a linear

combination of any other valid inequalities for conv(S), it follows from Theorem 4.4.2

that its split-rank is at least two.

4.5 Disjunctions for the facet defining inequalities

In the proof of Theorem 4.4.2, we showed that there does not exist any split disjunction for

a class of inequalities that are valid. In this section we show that there exist facet defining

inequalities of conv(S) that can be derived using some other more general disjunctions
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on the set Ŝ. Furthermore, no other facet defining inequality, besides the above two

types can be derived by disjunctive procedure on Ŝ. Then we derive a closed convex

relaxation from which any given facet defining inequality of conv(S) can be derived by

the disjunctive procedure.

Proposition 4.5.1. A facet defining inequality of conv(S) that is constructed using two

rows of (M), one of which is the first row, is a disjunctive cut for Ŝ.

Proof. Such a facet defining inequalities of conv(S) is of the following form:

∑
i∈J

xi +
∑
i∈K

(akxi + bkyi) ≥ 1 (ID)

for some k ∈ N, k 6= 1, where J ∪ K = N, J ∩ K = φ, J 6= φ and K 6= φ. We

show that (ID) is valid for the disjunction
[∑

i∈J xi ≥ 1
]
∨
[∑

i∈J xi ≤ 0,
∑

i∈K xi ≥ k
]
∨[∑

i∈J xi ≤ 0,
∑

i∈K xi ≤ k − 1
]

applied to Ŝ.

Clearly the disjunction is valid. Like Proposition 4.4.1, we consider each atom sepa-

rately. Consider the optimization problem:

min
(x,y)∈R̂

∑
i∈J

xi +
∑
i∈K

(akxi + bkyi)

s.t.
∑
i∈J

xi ≥ 1.

Since
∑

i∈J xi ≥ 1 is a constraint, the optimal value has to be at least one. Therefore,

the inequality (ID) is valid for R̂∩
[∑

i∈J xi ≥ 1
]
. Now consider the following optimization

problem:

min
(x,y)∈R̂

∑
i∈J

xi +
∑
i∈K

(akxi + bkyi)

s.t.
∑
i∈J

xi ≤ 0,

∑
i∈K

xi ≥ k.

Clearly xi = 0 for all i ∈ J . Using the same logic as in the proof of Proposition 4.4.1

(treating it as n = |K|) it is clear that for any i ∈ K,L(i, k, r
k
) is an optimal solution with
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optimal value one, and consequently (ID) is valid for R̂ ∩
[∑

i∈J xi ≤ 0,
∑

i∈K xi ≥ k
]
.

Finally using the proof of Proposition 4.4.1 again, we can show that (ID) is valid for

R̂ ∩
[∑

i∈J xi ≤ 0,
∑

i∈K xi ≤ k − 1
]
.

The following result shows that there exists facet defining inequality of conv(S) that

can not be derived by any disjunctive procedure on Ŝ. In fact we show that many of the

facet defining inequalities of conv(S) are not valid for Ŝ.

Proposition 4.5.2. Let (I) be a facet defining inequality of conv(S) constructed form a

set of rows Γ from (M). If there exist two distinct j, k ∈ Γ and j 6= 1, k 6= 1, then (I) is

not valid for Ŝ.

Proof. We prove the result for the case when the inequality is constructed taking jth row

for first column and kth row for the second column such that j, k ≥ 2, j 6= k. Without

loss of generality we assume j < k. The proof for the general case is similar. Now we

have the inequality:

ajx1 + bjy1 + akx2 + bky2 +
n∑
i=3

(apixi + bpiyi) ≥ 1, (I)

where aj = 1
2j−1

, bj = j(j−1)
r(2j−1)

, ak = 1
2k−1

, bk = k(k−1)
r(2k−1)

, api = 1
2pi−1

, bpi = pi(pi−1)
r(2pi−1)

. Consider

the following point:

(x̄, ȳ) =

(
j − 1,

r(j − 1)b2
k(

(j − 1)bk + b2
j

)2 , 1,
rb2
j(

(j − 1)bk + b2
j

)2 , 0, 0, . . . , 0, 0

)

Clearly the point (x̄, ȳ) lies in Ŝ. Therefore it can not be cut off by applying any

disjunctive procedure on Ŝ. We will be done if we can show that the inequality (I) cuts

off (x̄, ȳ), i.e., if

j − 1

2j − 1
+

rbjb
2
k(j − 1)(

(j − 1)bk + b2
j

)2 +
1

2k − 1
+

rbkb
2
j(

(j − 1)bk + b2
j

)2 < 1.
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LHS =
j − 1

2j − 1
+
rbkbj

(
(j − 1)bk + b2

j

)(
(j − 1)bk + b2

j

)2 +
1

2k − 1

=
j − 1

2j − 1
+

r
j−1
bj

+ 1
bk

+
1

2k − 1

=
j − 1

2j − 1
+

1
2j−1
j

+ 2k−1
k(k−1)

+
1

2k − 1

= 1− 1

2− 1
j

+
1

2− 1
j

+ 2k−1
k(k−1)

+
1

2k − 1

= 1−
2k−1
k(k−1)(

2− 1
j

)(
2− 1

j
+ 2k−1

k(k−1)

) +
1

2k − 1

< 1 +
1

2k − 1
−

2k−1
k(k−1)(

2− 1
k

) (
2− 1

k
+ 2k−1

k(k−1)

) , since j < k

= 1.

Thus, applying disjunctive inequalities (or any other valid inequalities) of Ŝ is not

sufficient to obtain all the facet defining inequalities of conv(S). In order to obtain the

facet defining inequalities are disjunctive inequalities, we use the following approach.

Recall the from (IG) of the facet defining inequalities of conv(S).

Theorem 4.5.1. The facet defining inequality (IG) of conv(S) is valid for the following

disjunction on the nonconvex set R.[∑
i∈J1

xi ≥ j1

]
∨
[∑

i∈J1
xi ≤ j1 − 1,

∑
i∈J2

xi ≥ j2

]
∨ · · · ∨[∑

i∈J1
xi ≤ j1 − 1,

∑
i∈Jp xi ≥ jp

]
∨[∑

i∈J1
xi ≤ j1 − 1,

∑
i∈J2

xi ≤ j2 − 1, . . . ,
∑

i∈Jp xi ≤ jp − 1
]
.

Proof. Clearly the disjunction in the statement of the theorem is valid. We prove our

result for n = 2. It can be easily generalized to any n ≥ 2. For n = 2, the inequality (IG)

can be given as:

ajx1 + bjy1 + akx2 + bky2 ≥ 1 (4.11)

where j, k ∈ N, j < k (assuming j1 = j and j2 = k). We have to show that the inequality
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is valid for the following disjunction:

[x1 ≥ j] ∨ [x1 ≤ j − 1, x2 ≥ k] ∨ [x1 ≤ j − 1, x2 ≤ k − 1] .

Case 1: Suppose j = 1. Therefore aj = 1 and bj = 0. Consider the global optimization

problem:

min
x,y

x1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,

x1 ≥ 1, xi, yi ≥ 0, i = 1, 2.

Since we have x1 ≥ 1, (1, r, 0, 0) is an optimal solution with optimal value 1. Next consider

the global optimization problem:

min
x,y

x1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,

x1 ≤ 0,

x2 ≥ k,

xi, yi ≥ 0, i = 1, 2.

Since x1 = 0, the problem reduces the n = 1 case. It is clear to see that (0, 0, k, r
k
)

is an optimal solution with optimal value 1. In an exactly similar way we can show that

the optimal value is 1 for R∩ [x1 ≤ 0, x2 ≤ k − 1] also. Thus the inequality (4.11) is valid

for all the three atoms.

Case 2: When j ≥ 2. We consider the global optimization problem:

min
x,y

ajx1 + bjy1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,

x1 ≥ j,

xi, yi ≥ 0, i = 1, 2.
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The point
(
j, r

j
, 0, 0

)
is feasible with objective value one. Since the objective function

is linear, it is equivalent to optimize over the convex hull of the feasible region of the

above problem. Let (x̄, ȳ) be an an extreme point optimal solution. Therefore either

x̄1ȳ1 = r or x̄2ȳ2 = r by Proposition 4.2.3. Suppose x̄1ȳ1 = r. Then x̄1 can not be more

than j because the value of ajx̄1 + bj ȳ1 will be strictly greater than one (Lemma 4.4.1).

If x̄2ȳ2 = r, then by Theorem 4.2.3 we have y1 = 0. At this point the objective value

is t
2t−1

+akx̄2 + bkȳ2 for some t ≥ j. Since we are minimizing the objective function, from

Proposition 4.2.2 and its corollary, the minimum value of akx2 + bky2 subject to the given

constraints will be more than 1
2

as k ≥ 2. Also t
2t−1

> 1
2
, since t ≥ j ≥ 2. Therefore, the

objective value is more than one. Therefore, the optimal value of the above optimization

problem is one and the inequality (4.11) is valid for R ∩ [x1 ≥ j].

We can show similarly that the inequality is valid for R ∩ [x2 ≥ k] and consequently

for its subsets. Since [x1 ≤ j − 1, x2 ≥ k] is a subset of [x2 ≥ k], the inequality is valid

for the set R ∩ [x1 ≤ j − 1, x2 ≥ k].

Finally consider the global optimization problem:

min
x,y

ajx1 + bjy1 + akx2 + bky2

s.t. x1y1 + x2y2 ≥ r,

x1 ≤ j − 1,

x2 ≤ k − 1,

xi, yi ≥ 0, i = 1, 2.

Let (x̄, ȳ) be an extreme point optimal solution of the convex hull of the feasible region.

Therefore, either x̄1ȳ1 = r or x̄2ȳ2 = r (by Proposition 4.2.3). Suppose x̄1ȳ1 = r. If

x̄1 < j − 1, then by Lemma 4.4.1, the value of ajx̄1 + bj ȳ1 is strictly greater than one,

and therefore, the point
(
j − 1, r

j−1
, 0, 0

)
gives the least objective value with objective

value one. If x̄2ȳ2 = r, then by the same logic the point
(
0, 0, k − 1, r

k−1

)
gives the least

objective value with objective value one. Therefore, the optimal solution of the above

optimization problem is one. Thus the inequality (4.11) is valid for all the nonconvex

atoms.
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Let us now define the set Sj1j2...jp to be the closure of the convex hull of the unions of

the atoms of Theorem 4.5.1.

Sj1j2...jp = cl

(
conv

(
p+1⋃
q=1

SJq

))
,

where SJq , q = 1, . . . , p+ 1 is defined below:

SJq =


SC ∩

[∑
i∈Jt xi ≥ jt

]
, q = t,

SC ∩
[∑

i∈J1
xi ≥ jq,

∑
i∈Jt xi ≤ jt − 1

]
, q = 1, . . . , p, q 6= t,

SC ∩
[∑

i∈J1
xi ≤ j1 − 1,

∑
i∈J2

xi ≤ j2 − 1, . . . ,
∑

i∈Jp xi ≤ jp − 1
]
, q = p+ 1,

where t ∈ {1, . . . , p} such that jt < jq for all q ∈ {1, . . . , p} \ {t}. Now we have the

following result.

Corollary 4.5.1. The facet defining inequality (IG) of conv(S) can be constructed using

disjunctive procedure on the closed convex set Sj1j2...jp.

Corollary 4.5.2. Consider the set SCC defined below:

SCC =
⋂

j1,...,jp∈N,for some p∈N,
∀Jq⊆N,∪pq=1Jq=N,

For q 6=s,Jq∩Js=φ,∀q,s=1,...,p.

Sj1j2...jp .

Then SCC = conv(S).

Proof. The set SCC is constructed intersecting Sj1j2...jp over all possible partitions of the

index set N . Since each facet defining inequality of conv(S) is associated with some

partition on the index set N and vice versa, any facet defining inequality of conv(S) is

valid for the set SCC .

Since the set Sj1j2...jp is a convex relaxation of S, the set SCC also a convex relaxation

of the set S. Again, since any facet defining inequality of conv(S) is valid for the set SCC ,

we have SCC = conv(S).
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4.6 The gap between rank one facet defining inequal-

ities of Ŝ and conv(S)

Let S1 be the set of points that satisfy all the facet defining inequalities of conv(S) that

have split-rank one for Ŝ. Therefore, S1 can be given as below:

S1 =

{
(x, y) ∈ Rn+ × Rn+ :

1

2k − 1

n∑
i=1

xi +
k(k − 1)

r(2k − 1)

n∑
i=1

yi ≥ 1, k ∈ N

}
.

In this section we study the “gap” between the set S1 and conv(S). Here, by the “gap”

we mean the difference between the optimal objective values of a linear objective function

cTx+ dTy over S1 and conv(S). Since both the sets S1 and conv(S) are unbounded, we

can not compare them in terms of their volumes. Note that S1 may not be the first split

closure of Ŝ. Let

Z = min
(x,y)∈conv(S)

cTx+ dTy, and

Z1 = min
(x,y)∈S1

cTx+ dTy.

We derive some conditions for which the gap between S1 and conv(S) is zero. We

also give an example with an arbitrarily large gap.

Proposition 4.6.1. Consider the optimization problem min(x,y)∈S1 cTx+dTy. Let λ, µ ∈

N such that cλ ≤ ci for all i ∈ N and dµ ≤ di for all i ∈ N . Then this optimization

problem has the same optimal value as the optimization problem min(xλ,yµ)∈Q cλxλ+dµyµ,

where

Q =

{
(xλ, yµ) ∈ R+ × R+ :

xλ
2k − 1

+
k(k − 1)yµ
r(2k − 1)

≥ 1, k ∈ N
}
.

Proof. We see that if (xλ, yµ) ∈ Q then L(1, xλ, yµ) = (xλ, yµ, 0, 0, . . . , 0, 0) ∈ S1. Again,

if (x, y) ∈ S1 then we have (
∑n

i=1 xi,
∑n

i=1 yi) ∈ Q. Therefore, the two sets S1 and Q are

feasibility wise equivalent in the sense that if one has a feasible solution, we can construct

a feasible solution to the other with the same objective value and vice versa. Note that

the set Q is the convex hull of the two dimensional mixed-integer bilinear covering set

{(xλ, yµ) ∈ Z+ × R+ : xλyµ ≥ r}. We consider the following cases.
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Case 1: One of the values of cλ and dµ is negative. Then clearly both the optimization

problems are unbounded.

Case 2: When cλ = 0. Then for both the optimization problems, the optimal value

of the objective function is cλ if dµ = 0, and infimum is zero if dµ > 0 (from Appendix A).

Case 3: When cλ > 0 and dµ = 0, then for both the optimization problems the

optimal value is cλ (from Appendix A).

Case 4: cλ > 0 and dµ > 0. We see that the constraints in the descriptions of S1

are symmetric about the indices of the variables x and y, i.e., interchanging the variables

xi with xj (or yi with yj) for any i, j ∈ N is not going to affect the feasibility of S1.

Again since we are minimizing cTx + dTy over S1 which lies in the positive orthant, we

can always chose an optimal solution (x̄, ȳ) such that x̄λ > 0, x̄i = 0 for all in N, i 6= λ

and ȳµ > 0, ȳi = 0 for all in N, i 6= µ. Now it is clear that (x̄λ, ȳµ) is an optimal solution

to the problem min(xλ,yµ)∈Q cλxλ + dµyµ.

Note that Z1 = min(xλ,yµ)∈Q cλxλ+dµyµ from above proposition. Z is also unbounded

when mini∈N{ci, di} < 0, just like Z1. Therefore, we consider c ≥ 0, d ≥ 0. In Ap-

pendix A, the algorithm to derive the values of Z and Z1 are described with closed

form solutions for both and they are as follows. It is also described in Appendix A that

there exist q ∈ N such that Z = minL(q,xq ,yq)∈Sq cqxq + dqyq, where Sq is an orthogonal

disjunctive subset of S which is defined in the earlier section of this article.
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Z1 =



min

cλ ⌊√ rdµ
cλ

⌋
+ rdµ⌊√

rdµ
cλ

⌋ , cλ
⌈√

rdµ
cλ

⌉
+ rdµ⌈√

rdµ
cλ

⌉
when cλ > 0, dµ > 0,

cλ,when cλ ≥ 0, dµ = 0,

0 (actually infimum value), when cλ = 0, dµ > 0.

Z = min
i∈N

Zi, where

Zi =



min

ci ⌊√ rdi
ci

⌋
+ rdi⌊√

rdi
ci

⌋ , ci
⌈√

rdi
ci

⌉
+ rdi⌈√

rdi
ci

⌉
when ci > 0, di > 0,

ci,when ci ≥ 0, di = 0,

0 (actually infimum value), when ci = 0, di > 0.

We assume 1⌊√
rdi
ci

⌋ and 1⌊√
rdµ
cλ

⌋ are infinite if
⌊√

rdi
ci

⌋
and

⌊√
rdµ
cλ

⌋
are zeros respectively

with ci > 0, di > 0, cλ > 0 and dµ > 0.

4.6.1 When the gap is zero

It can be seen clearly that Z1 ≤ Z as S1 is a relaxation of conv(S). The following result

gives us the condition for Z1 = Z.

Proposition 4.6.2. Let Λ,∆ be two subsets of N such that cλ = ci for all i ∈ Λ and

dµ = di for all i ∈ ∆. Then Z1 = Z if and only if Λ ∩∆ is non empty.

Proof. Let p ∈ Λ ∩∆. Then by Proposition 4.6.1, there exists an optimal solution (x̄, ȳ)

of the form L(p, x̄p, ȳp) to the problem min(x,y)∈S1 cTx+ dTy. Therefore, (x̄p, ȳp) satisfies

x̄p
2k − 1

+
k(k − 1)ȳp
r(2k − 1)

≥ 1, k ∈ N.

If we show (x̄, ȳ) ∈ conv(S), we will have Z = Z1. We know that

conv (Sp) =

{
L(p, xp, yp) ∈ Rn+ × Rn+ :

xp
2k − 1

+
k(k − 1)yp
r(2k − 1)

≥ 1, k ∈ N
}

where, Sp =
{
L(p, xp, yp) ∈ Zn+ × Rn+ : xpyp ≥ r

}
is an orthogonal disjunctive subset of
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S. This implies that L(p, x̄p, ȳp) ∈ conv (Sp). Again, since conv(S) is closed and satisfies

the convex extension property, i.e., conv(S) = conv (
⋃n
i=1 Si) [106], where Si, i ∈ N are

orthogonal disjunctive subsets of S, the point L(p, x̄p, ȳp) ∈ conv(S). Therefore, we have

a point in conv(S) with objective value Z1, consequently Z1 = Z.

Conversely, let Λ ∩∆ be empty. We know that there exists q ∈ N such that ZCV =

minL(q,xq ,yq)∈Sq cqxq + dqyq = minL(q,xq ,yq)∈conv(Sq) cqxq + dqyq (from Appendix A). Since

Λ ∩∆ = φ, cλ ≤ cq, dµ ≤ dq with cλ < cq or dµ < dq. Again, since the two sets conv (Sq)

and Q (defined in Proposition 4.6.1) are feasibility wise equivalent, we have Z1 < Z.

4.6.2 When the gap is arbitrary large : An example

Let n = 2, r = 16 and consider the objective function x1 + η2y1 + η2x2 + y2 where η is a

positive integer.

We see that cλ = c1 = 1 and dµ = d2 = 1. Therefore, Z1 = 8 with optimal solution

(4, 0, 0, 4) which is not feasible for conv(S). Clearly, if we increase the value of η, the

value of Z1 is not going to change.

On the other hand, we see that Z = ηZ1. Since for any value of η ≥ 1, the value

of Z1 is constant, the value of Z increases by a factor of η with Z1, therefore, the gap

between the values of Z and Z1 can be arbitrary large.

4.7 Rank-one facets and the cutting stock problem

We now study the gap between the bounds that are obtained using the inequalities of S1

and the inequalities for conv(S) doing computational experiments on some cutting stock

problem instances, and as defined in Chapter 1, the mathematical formulation (CS) is
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following:

min
n∑
i=1

yi∑
i∈N

xijyi ≥ dj, j ∈ F,∑
j∈F

ljxij ≤ L, i ∈ N,

xij ∈ Z+, yi ∈ R+,∀i ∈ N, j ∈ F,

where all the notations have the same meaning as in Chapter 1. The knapsack constraints

implies xij ≤
⌊
L
lj

⌋
,∀i ∈ N, j ∈ F

Proposition 4.7.1. Consider the problem (CS) without the knapsack constraints. Then

the lower bound obtained by considering all the facet defining inequalities of each bilinear

constraint is equal to the lower bound obtained by considering only the rank one facet

defining inequalities for each bilinear constraint.

Proof. Let (x̄, ȳ) be an optimal solution when we consider only the rank one facet defining

inequalities of each bilinear constraint. Therefore, we have

∑
i∈N

x̄ij
2k − 1

+
∑
i∈N

ȳik(k − 1)

dj(2k − 1)
≥ 1, for all j ∈ F, (4.12)

and the optimal value at this point is
∑

i∈N ȳi. If we can show that there exists a point

satisfying all the facet defining inequalities of each bilinear constraint with objective value∑
i∈N ȳi, we will be done. Now consider the point (x∗, y∗) defined below.

x∗ij =


∑

i∈N x̄ij, if i = 1

0, if i 6= 1, i ∈ N
for j ∈ F

y∗i =


∑

i∈N ȳi, if i = 1

0, if i 6= 1, i ∈ N

Therefore, using the relation (4.12) and the construction procedure of the facet defin-

ing inequalities using collection of column (M), it can be seen that the point (x∗, y∗)
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satisfies all the facet defining inequalities of each bilinear constraint, and the objective

value at this point is
∑

i∈N ȳi.

To check whether the result holds with the knapsack constraints also we performed

a computational experiment on the same instances that are used in the computational

section of Chapter 2.

For each instance, in either case we start the iterations with the same (LP-I) de-

fined in the computational section in Chapter 2, i.e., with the facet defining inequalities∑
i∈N xij ≥ 1, j ∈ F , the bound constraints xij ≤

⌊
L
lj

⌋
,∀i ∈ N, j ∈ F and the knapsack

constraints, i.e., the following LP.

min
n∑
i=1

yi

s.t.
n∑
i=1

xij ≥ 1,∀j ∈ F,

0 ≤ xij ≤
⌊
L

lj

⌋
,∀i ∈ N, j ∈ F,∑

j∈F

ljxij ≤ L, i ∈ N,

y ≥ 0.

We use Algorithm 2 in Chapter 2 to separate the facet defining inequalities for conv(S)

and the inequalities of S1. Therefore, we add at most |F | cuts in each iteration for both

the cases (i.e., at the kth iteration we solve an LP with k|F | number of linear inequalities

in addition to those in the starting LP). We stop when either of two conditions hold: (a)

we can not find any more violated inequalities, or (b) both the time limit of 3600 seconds

and the number of LPs solved exceeds a limit of 800 LPs (we write “800*” or “3600*”

whichever hits later for such cases in Table 4.1).

We have used Python based PuLP [86] to model the problem and CLP [56] to solve

the linear programs. The experiment was performed on a 4x Intel(R) Core(TM) i5-3570

CPU@3.40 GHz processor, 8 GB of RAM and Linux (Ubuntu 16.04) operating system.

We have used single core to do the experiments. The results are compiled in Table 4.1.

The results show that the optimization over S1 gives the same bound as that over the
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Instances n
Using inequalities for conv(S) Using inequalities for S1 only

Iter Cuts LB Time Iter Cuts LB Time

Fiber-10-5180 10 226 1917 6.88 55.09 5 37 6.88 0.14

Fiber-10-9080 10 223 2045 3.85 46.15 6 42 3.85 0.16

Fiber-11-5180 11 288 2673 6.10 89.22 4 35 6.10 0.13

Fiber-11-9080 11 335 2944 3.40 162.30 5 45 3.40 0.17

Fiber-14-5180 14 473 5417 3.34 547.81 5 57 3.34 0.25

Fiber-14-9080 14 476 6211 1.90 658.27 5 57 1.90 0.26

Fiber-15-5180 15 560 7219 3.74 1412.46 6 65 3.74 0.32

Fiber-15-9080 15 1092 11592 2.09 3600* 6 72 2.11 0.35

Fiber-16-5180 16 756 9763 5.17 3086.56 5 63 5.17 0.31

Fiber-16-9080 16 723 10330 2.93 2692.61 6 78 2.93 0.38

CutGen-01-01 10 252 2244 1.24 95.33 5 43 1.24 0.16

CutGen-01-02 10 270 2443 0.97 103.32 5 40 0.97 0.14

CutGen-01-25 10 246 2157 0.99 77.18 5 39 0.99 0.16

CutGen-01-100 10 244 2131 1.25 52.82 5 41 1.25 0.15

CutGen-02-40 10 262 2272 10.41 92.6 4 33 10.41 0.14

CutGen-02-60 10 275 2480 10.10 76.32 5 40 10.10 0.16

Rand-10 10 185 1601 697.22 28.86 4 33 697.22 0.14

Rand-15 15 440 5296 650.29 900.01 5 55 650.29 0.27

Rand-16 16 800* 9935 753.17 4543.9 5 52 753.17 0.26

Rand-20 20 800* 14105 624.92 12061.05 5 71 624.92 0.43

Rand-25 25 800* 19516 541.80 18040.75 6 94 544.99 0.75

Table 4.1: Comparison of iterations and time taken to optimize using the inequalities for
S1 only and the convex hull.

convex hull in much fewer iterations and in much less time for all input problems.

4.8 Conclusion

All facet defining inequalities of conv(S) can be viewed as disjunctive cuts derived from

disjunctions specified in the discussion above. Some of them have split-rank one for a

convex mixed-integer relaxation of S. These cuts are sufficient to find the optimal value

over conv(S) for certain objective functions like those in trimloss problems. Finding

strong valid inequalities for convex hull of the feasible region of trimloss problems is still

open and can be taken up in the future.
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Chapter 5

Concluding Remarks and Future

Work

The convex hulls of sets considered in Chapter 2 and Chapter 3 turned out to be ‘easy’,

i.e., one can separate over them in polynomial time. It means there is a possible scope

of including more constraints of the original problem in to these sets so that we can find

even tighter relaxations of these problems. The knapsack constraint of (CS) is one such

candidate. Similarly, finding the convex hull of multiple bilinear constraints together can

be taken up as future work.

The cut generated for SU by our criterion of ‘maximum violation’ without any nor-

malization may not be the cut that improves the lower bound the most, or the cut that

is farthest from the infeasible point. Consider the following example:

min x1 + y1 + x2 + y2

s.t. x1y1 + x2y2 ≥ 20,

xi ≤ 10, i = 1, 2,

xi ∈ Z+, yi ≥ 0, i = 1, 2.

The point (x1, y1, x2, y2) = (5, 4, 0, 0) is a global minimizer with optimal value 9. At

the first iteration, the LP solution is (1, 0, 0, 0) with objective value 1. The best cut

generated by Algorithm 1 to cut this point off is y1

2
+ y2

2
≥ 1. After adding this inequality,
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the solution is (1, 2, 0, 0) with objective value 3. But, if we instead add the facet defining

inequality x1

5
+ 3y1

50
+ x2

5
+ 3y2

50
≥ 1, we get a better solution (5, 0, 0, 0) with objective value

5. Also, the distance of the latter from the point (1, 0, 0, 0) is nearly 2.7 as compared to

1.41 for the former. Finding the cut that improves the bound the most or that is farthest

from the given point is a problem that can be explored.

In Chapter 3, we studied the convex hull structure of mixed-integer bilinear covering

set with box constrained integer variables. We implemented the extended formulation in

a branch-and-bound algorithm to solve Pattern Minimization Problem. Immediate future

work is to speed up our algorithm to find solution faster. For this, exploring different

branching strategies on the variables and branching points will be explored.

Lastly, in Chapter 4, we studied the facet defining inequalities of conv(S) as disjunctive

cuts. We derived the exact split rank for a class of inequalities and provided lower

bound on the same for the others. We derived the disjunctions from which they can be

constructed.

We saw that for cutting stock instance, without the knapsack constraints rank one

cuts are sufficient to consider. We observed that for all instances of cutting stock with the

knapsack constraints also, merely considering the rank one cuts was sufficient to reach

the same bound as the convex hull. A systematic study of this extended set may be

carried out in the future.
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Appendix A

Optimization Over S

Minimizing a linear function cTx+dTy over S is equivalent to minimizing it over conv(S).

For the following cases, we can solve the optimization problem by inspection.

Case 1 : If one of the components of c or d is negative, then the problem is unbounded.

Case 2 : Suppose, c ≥ 0, d ≥ 0 and one of the component of the vector c is zero, say

ct = 0. If dt = 0,min(x,y)∈S c
Tx+ dTy = 0 and if dt > 0, inf(x,y)∈S cTx+ dTy = 0. This is

because, in either case we can choose yt arbitrary small such that xtyt = r and all other

components are zero, i.e., L(t, xt, yt) is an optimal solution in either case.

Case 3 : Suppose, c ≥ 0, d = 0. Let ct ≤ cj,∀j ∈ N . Then L(t, 1, r) is an optimal

solution with optimal value ct.

Now, the only remaining case is, when c > 0, d ≥ 0, d 6= 0, which we consider in the

following proposition.

Proposition A.0.1. Let us consider the orthogonal disjunctive subset Si of the set S.

Then we can solve the optimization problem min(x,y)∈Si cixi + diyi in polynomial time.

Proof. From the definition, each (x, y) ∈ Si is of the form L(i, xi, yi). If ci ≥ 0, di = 0 for

some i ∈ N , then L(i, 1, r) is an optimal solution with optimal value ci.

Now, we only have to consider ci > 0, di > 0. Let L(i, x∗i , y
∗
i ) be an extreme point

optimal solution. Clearly, this point should lie on the surface xiyi = r. We note that

the continuous relaxation of the set Si is a strictly convex set. Therefore, the optimal
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solution L(i, x̄i, ȳi) (say) over the continuous relaxation is unique, and we have,

x̄i =

√
rdi
ci
, and ȳi =

r

x̄i
.

If
√

rdi
ci

is an integer, then L(i, x̄i, ȳi) is an optimal solution. If not, then from the

geometry, it is clear that at the optimal solution either x∗i =
⌈√

rdi
ci

⌉
or x∗i =

⌊√
rdi
ci

⌋
whichever minimizes the objective function and is feasible.

So, to determine an optimal solution, we just have to check the signs of the objective

coefficient and compute the value of
√

rdi
ci

. This can be done in constant time.

Now we consider the set S. Since the objective function is linear, it is equivalent to

minimize over conv(S). There must be an extreme point optimal solution, provided an

optimal solution exists. Suppose optimal solution exists. Then by Theorem 2.3.1, there

must be an optimal solution that is an extreme point of conv(Si) for some i ∈ N , because

each extreme point of conv(S) is an extreme point of conv(Si) for some i ∈ N . So, if we

solve the n problems minL(i,xi,yi)∈Si cixi + diyi for i ∈ N and pick the minimum of the n

objective values, we will get the optimal value and corresponding optimal solution. We

have seen earlier that each subproblem takes constant time to solve. So, we can solve

this problem in linear time. The algorithm is presented in Algorithm 3
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Algorithm 3 Algorithm to solve min(x,y)∈S c
Tx+ dTy

1: if One of the components of the vectors c or d is negative then

2: The problem is unbounded.

3: else if c ≥ 0, d ≥ 0 and one of the component of the vector c is zero then

4: inf(x,y)∈S c
Tx+ dTy = 0.

5: else if c ≥ 0, d = 0. Let ct ≤ cj,∀j ∈ N then

6: L(t, 1, r) is an optimal solution with optimal value ct.

7: else (i.e., when c > 0, d ≥ 0)

8: for i = 1, . . . , n do

9: Solve the problem minL(i,xi,yi)∈Si cixi + diyi.

10: Let Li(i, xi, yi) be an optimal solution with optimal value vi.

11: end for

12: Find the minimum of vi, i ∈ N . Let t ∈ N such that vt ≤ vi for all i ∈ N .

13: Then Lt(t, xt, yt) is an optimal solution with optimal value vt.

14: end if
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Appendix B

Optimization Over SU

Now we consider the following problem:

min
(x,y)∈SU

cTx+ dTy (PSU)

This problem is equivalent to minimizing the objective function over conv
(
SU
)
. Also,

there must be an extreme point optimal solution, provided an optimal solution exists.

We know the description of conv
(
SU
)

in terms of the facet defining inequalities, and the

number of facet defining inequalities is exponential in the input size. The extreme point

descriptions of conv
(
SU
)

is also known. In the following discussion we will see that the

problem is efficiently solvable and we will also present the algorithm.

Though there are few similarities between the solution strategy over S and over SU , in

general the solution strategy for the case of SU is quite different. Here also by inspection

we can solve the problem for the following cases.

Case 1 : When dt < 0 for some t ∈ N , the problem is unbounded.

Case 2 : When c ≤ 0, d = 0, then
(
u1,

r
u1
, u2, 0, . . . , un, 0

)
is an extreme point

optimal solution.

Now the remaining case is d ≥ 0. We note that
∑

i∈N :ci≤0 ciui is a lower bound on

the objective value. To solve this problem, we will only consider the extreme points

and compare their corresponding objective values to find the optimal solution. We first

partition the set of extreme points of conv
(
SU
)

and optimize over those partitions. Let
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us define the following set for each i ∈ N .

Ei =

{
(x, y) ∈ R2n

+ : xi ∈ {1, . . . , ui}, yi =
r

xi
, xj ∈ {0, uj}, yj = 0, ∀j ∈ N, j 6= i

}
.

From the discussion in Section 2.4.1, all the points in Ei are extreme points of

conv
(
SU
)

and E =
⋃
i∈N Ei gives the complete set of extreme points of conv

(
SU
)
,

i.e., the sets Ei, i ∈ N defines a partition of the set E. If we minimize cTx + dTy over

each set Ei, i ∈ N and compare their values, we will get the optimal solution. Now our

goal is to solve the following problem.

ζi = min
(x,y)∈Ei

cTx+ dTy (Pi
SU)

Note that only the ith component of the variable y of each point in Ei is non-zero and

rest of all are zero. Therefore, the objective function of the above problem (Pi
SU) reduces

to cixi+diyi+
∑

j∈N,j 6=i cjxj. Also, we see that for any point (x, y) ∈ Ei, the choices of the

components xj ∈ {0, uj}, j ∈ N, j 6= i are independent of the choice of xi ∈ {1, . . . , ui}.

Let (x̄, ȳ)i ∈ Ei be an optimal solution of (Pi
SU). Then, ȳii = r

x̄ii
, ȳij = 0,∀j ∈ N, j 6= i.

Let us consider the following choices of x components of (x̄, ȳ)i.

x̄ii ∈ {1, . . . , ui} such that (x̄ii, ȳ
i
i) minimzes cixi + diyi,

x̄ij =

0, if cj > 0,

uj, if cj ≤ 0,

∀j ∈ N, j 6= i.

It can be seen clearly that such above choice of the components of (x̄, ȳ)i minimizes

the objective function. Now to find the value of x̄ii ∈ {1, . . . , ui}, we consider the following

cases.

Case 1 : When ci ≤ 0, then x̄ii = ui. This is because, since ci ≤ 0, the maximum

value of xi in the domain will minimize cixi. Moreover, for this choice of x̄ii, ȳ
i
i = r

ui
is

also minimum, and since di ≥ 0,
(
ui,

r
ui

)
minimizes cixi + diyi.

Case 2 : If ci > 0 and di = 0, x̄ii = 1, ȳii = r as x̄ii ≥ 1.

Case 3 : The remaining case is ci > 0, di > 0. Since the points L
(
i, pi,

r
pi

)
, pi ∈
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{1, . . . , ui} are the extreme points of conv
(
SUi
)
, it is equivalent to minimize cixi+diyi over

conv
(
SUi
)
. To solve this we will use the same analysis as in the proof of Proposition A.0.1

with slight modification as there is an upper bound ui on the variable xi. So, in this case

we have the following choice of x̄ii and consequently ȳii = r
x̄ii

.

x̄ii =



√
rdi
ci
, if

√
rdi
ci
∈ {1, . . . , ui},

1, if
√

rdi
ci
< 1,⌈√

rdi
ci

⌉
or
⌊√

rdi
ci

⌋
, whichever minimizes cixi + di

r
xi
,

if 1 <
√

rdi
ci
< ui and

√
rdi
ci
/∈ Z+,

ui, if
√

rdi
ci
> ui.

So, from the above analysis, we can solve the problem (Pi
SU) in linear time, as we just

have to check the signs of n − 1 entries and have to check the value of
√

rdi
ci

, whenever

it exists and if not then the signs of ci and di. Now, we have the following algorithms to

solve the problem (PSU).
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Algorithm 4 Algorithm to solve (Pi
SU) when d ≥ 0

1: Let (x̄, ȳ)i be an optimal solution to (Pi
SU).

2: for j ∈ N, j 6= i do

3: ȳij = 0

4: if cj > 0 then

5: x̄ij = 0

6: else

7: x̄ij = uj

8: end if

9: end for

10: if ci ≤ 0 then

11: x̄ii = ui, ȳ
i
i = r

ui

12: else if ci > 0, di = 0 then

13: x̄ii = 1, ȳii = r

14: else

15: η =
√

rdi
ci

16: if η ∈ N and η ≤ ui then

17: x̄ii = η

18: else if η < 1 then

19: x̄ii = 1

20: else if η > ui then

21: x̄ii = ui

22: else

23: if cibηc+ di
r
bηc ≤ cibηc+ di

r
dηe then

24: x̄ii = bηc

25: else

26: x̄ii = dηe

27: end if

28: end if

29: ȳii = r
x̄ii

30: end if
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Algorithm 5 Algorithm to solve min(x,y)∈SU c
Tx+ dTy

1: if One of the components of the vector d is negative then

2: The problem is unbounded.

3: else if c ≤ 0, d = 0 then

4:

(
u1,

r
u1
, u2, 0, . . . , un, 0

)
is an extreme point optimal solution.

5: else(d ≥ 0)

6: for i = 1, . . . , n do

7: Use Algorithm 4 to solve the problem (Pi
SU).

8: Let (x̄, ȳ)i be an optimal solution with optimal value ζi.

9: end for

10: Find the minimum of ζi, i ∈ N . Let t ∈ N such that ζt ≤ ζi for all i ∈ N .

11: Then (x̄, ȳ)t is an optimal solution of (PSU) with optimal value ζt.

12: end if

Since the running time of the Algorithm 4 is O(n) time, and finding the minimum

among ζi, i ∈ N takes O(n) time, therefore the Algorithm 5 runs in O (n2) time of the

input size.
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Appendix C

Additional Proofs

Proposition C.0.1. Let j, k ∈ N with j 6= k, then the following two relations

π0 <
√
j(j − 1) < π0 + 1 and

π0 <
√
k(k − 1) < π0 + 1

can not hold simultaneously for any non-negative integer π0.

Proof. Without loss of generality let k > j. Note that, it is equivalent to prove that√
k(k − 1)−

√
j(j − 1) ≥ 1. This is because, if

√
k(k − 1)−

√
j(j − 1) ≥ 1 holds, then

both the values
√
k(k − 1) and

√
j(j − 1) can not lie between two consecutive integers.

Also note that, since the function f(j) =
√
j(j − 1) is strictly increasing for j ∈ N, it is

sufficient to prove the result when k = j+1, i.e., we show that
√
j(j + 1)−

√
j(j − 1) ≥ 1.

Since we are dealing with positive numbers only, in our following steps of proof, we
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consider only the positive roots. Now we have for any j ∈ N,

4j2 − 4j + 1 > 4j2 − 4j

⇒ (2j − 1)2 > 4j(j − 1)

⇒ 2j − 1 > 2
√
j(j − 1)

⇒ j2 + j > 1 + 2
√
j(j − 1) + j2 − j

⇒ j(j + 1) > 1 + 2
√
j(j − 1) + j(j − 1)

⇒ j(j + 1) >
(

1 +
√
j(j − 1)

)2

⇒
√
j(j + 1)−

√
j(j − 1) > 1.

This completes the proof.

Proposition C.0.2. Let k ∈ N with k ≥ 2. Consider the positive integers µ0, µ with

µ ≥ 1. If µ0 < µ
√
k(k − 1) < µ0 + 1 then k − 1 < µ0+1

µ
≤ k and k − 1 ≤ µ0

µ
< k.

Proof. Given that µ0 < µ
√
k(k − 1) < µ0 + 1, which implies µ0+1

µ
√
k(k−1)

> 1. Again since√
k−1
k
< 1, we have

µ0 + 1

µ
√
k(k − 1)

>

√
k − 1

k

⇒µ0 + 1

µ
> k − 1

Now, we have to show the other side of the desired inequality. By given condition we

have,

µ
√
k(k − 1) > µ0

⇒µ
⌈√

k(k − 1)
⌉
> µ0

⇒µ
⌈√

k(k − 1)
⌉
≥ µ0 + 1 (since the left hand side is integral)

⇒µk ≥ µ0 + 1
(

since k ≥
⌈√

k(k − 1)
⌉)

⇒k ≥ µ0 + 1

µ

Therefore, we have k − 1 < µ0+1
µ
≤ k.
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Since µ0+1
µ
≤ k, we have µ0

µ
< k. Now it remains to show k−1 ≤ µ0

µ
. By given relation

we have

µ0 + 1 > µ
√
k(k − 1)

⇒µ0 + 1 > µ(k − 1)
(

since
√
k(k − 1) > k − 1

)
⇒µ0 ≥ µ(k − 1) (since both sides are integral)

⇒µ0

µ
≥ k − 1

Therefore, we have k − 1 ≤ µ0

µ
< k.
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