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Abstract

This thesis focuses on solving a particular class of mathematical optimization problems

called convex mixed-integer nonlinear programs (MINLPs). Many exciting and challeng-

ing real-world problems are modeled as MINLPs. These problems are known to be theo-

retically hard, but advancements in the computing infrastructure, algorithms, and solvers

have enabled solving these problems faster in practice. Convexity plays a central role

in developing useful techniques for handling convex MINLPs. A significant part of this

thesis aims to automatically detect specific structures in convex MINLPs for practically

enhancing the performance of the methods based on a branch-and-cut framework. These

structures help generate tight linear approximations and, thus, tight relaxations and better

bounds on the optimal value of the problem.

First, we aim to advance one of the most effective methods, LP/NLP based branch-

and-bound, for solving convex MINLPs. While the algorithm is known to take a finite

number of steps, careful implementation and control are required for it to be practically

useful. We develop schemes for deciding when additional cuts can be generated and at

what points. These extra linearizations help strengthen the linear approximation of non-

linear constraints at different nodes in the branch-and-bound tree. Two of the techniques

are specifically applicable to commonly found univariate nonlinear functions and are more

effective than other general approaches.

Next, we discuss two prevalent structures in convex MINLPs. One is a specific dis-

junctive set called the ‘on-off’ set, and the other is the ‘separability’ property in nonlinear

constraints. Reformulations using these structures are known to provide tight polyhedral

approximations. However, detecting them in a problem can be as hard as solving the orig-

inal problem. We present computationally economical ways to automatically recognize

these structures and exploit them in a branch-and-cut framework of the LP/NLP based

branch-and-bound method.

All the above techniques have been implemented in MINOTAUR, an open-source

toolkit for MINLPs.
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x Abstract

Finally, we present a highly challenging class of optimization problems called the

mixed-integer partial differential equations constrained optimization (MIPDECO) prob-

lems. These problems are challenging because of both the combinatorial complexity of

integer variables and the computational difficulties of the discretized PDEs. Little is

known about this class of problems or solution approaches, and one of the motivations

of this work is to experiment with state-of-the-art mixed-integer solvers for solving this

class of problems. We present a convection-diffusion inverse problem that aims to iden-

tify an unknown number of sources and their locations. We model the sources using a

binary function, and we show that the inverse problem can be formulated as a large-scale

MINLPs. We show empirically that current state-of-the-art mixed-integer solvers cannot

solve this problem, and that applying simple rounding heuristics to solutions of the re-

laxed problem can fail to identify the correct number and location of the sources. We

develop two new rounding heuristics that exploit the value and a physical interpretation

of the continuous relaxation solution. We apply a steepest-descent improvement heuristic

to obtain satisfactory solutions to both two- and three-dimensional inverse problems.
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Chapter 1

Introduction

We study optimization problems of finding a solution vector that minimizes a given ob-

jective function while satisfying a given set of constraints. More specifically, we study

problems that can be cast in the following form

minimize
x

f (x)

subject to gi(x) ≤ 0, i ∈ M,

xi ∈ Z, i ∈ I.


(P)

Here, the objective function f : Rn → R and constraint functions gi : Rn → R, i ∈ M

are convex, set I is the index set of integer constrained decision variables and set M is

the index set of constraints. These problems are called convex mixed-integer nonlinear

programs, or convex MINLPs in short.

An example of a convex MINLP is the uncapacitated facility location (UFL) prob-

lem in the area of supply chain management. In a UFL problem, we are given a set of

candidate facilities F = {1, . . . ,m} and a set of customers C = {1, . . . , n} whose demand

for a single commodity must be satisfied from open facilities. The objective is to decide

which facilities should be opened and how much of each customer’s demand be satisfied

by an open facility while minimizing the total cost. The cost comprises of a fixed cost

associated with opening a facility and a transportation cost incurred in transporting the

commodity from an open facility to a customer. A quadratic case of the UFL problem is

1



2 Introduction

modeled as

minimize
x, z

∑
i∈F cizi +

∑
i∈F , j∈C ti jx2

i j

subject to 0 ≤ xi j ≤ zi, i ∈ F , j ∈ C,∑
i∈F xi j = 1, j ∈ C,

xi j ≥ 0, i ∈ F , j ∈ C,
zi ∈ {0, 1}, i ∈ F ,


(UFL)

where c and t are given cost parameters. Decision variables zi, i ∈ F are binary, zi = 1

means facility i is opened, and zi = 0 means it is not opened. Variable xi j is the fraction of

demand of customer j that is met from facility i ∈ F . The first component of the objective

function is the fixed cost of opening facilities. If a facility i is opened, a fixed cost ci is

incurred. The second term in the objective models the transportation cost. If a quantity is

transferred from the facility i to the customer j, transportation cost ti j proportional to the

squared of the quantity is incurred. The objective function is a convex nonlinear function.

Constraints can be rewritten in the form gi(x) ≤ 0 with gi affine (and hence convex) and

variables z are integer constrained. The constraint xi j ≤ zi ensures that no demand is

served by a closed facility.

Convex MINLPs arise in a wide range of real-world applications. Integrality con-

straints can model the requirement of selection from a discrete set, presence or absence

of an entity, logical relationships, fixed charges, disjunctions, piecewise linear functions,

non-divisibility of resources, etc. For example, whether to open a facility is modeled using

integer variables z in the (UFL) problem. Nonlinearity arises from relationships between

the variables and constraints or objective. For example, nonlinear objective function mod-

els operational cost in the (UFL) problem. Similarly, a model may have nonlinear rela-

tionships, for example, potential loss or gain in an investment over a specified time in

financial applications, covariance in data science, gas rate and pressure dependent critical

velocity in shale gas production, thermal expansion, heat flow, stress, voltage, pressure in

engineering models. Convex MINLPs are also solved as subproblems in other optimiza-

tion problems like the more general nonconvex MINLPs (Nowak et al. (2018); Lundell

and Westerlund (2018)), and to approximately solve mixed-integer PDE constrained op-

timization problems (Chapter 4).

MINLP models have been applied in economics (Kendrick (1982)), process and fa-

cility design (Ravemark and Rippin (1998); Iribarren et al. (2004)), service system design

(Elhedhli (2006); Ahmadi-Javid and Hoseinpour (2019)), medical science (Cao and Lim

(2010)), genetics (Mullin and Belotti (2016)), block layout design in manufacturing and

service organization (Castillo et al. (2005)), supply chain (Agnetis et al. (2012); Gün-
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lük et al. (2007)), portfolio optimization (Vielma et al. (2008)), municipal drinking water

networks (Laird et al. (2006)), space applications (Schlueter et al. (2013)), gas distribu-

tion network (Mikolajková et al. (2018)), shale gas production (Sharma (2013)), elec-

tric power systems (Donde et al. (2005); Kaur et al. (2014); Pourakbari-Kasmaei et al.

(2019)), design of nuclear plants (Committee (2010)), disaster recovery scenarios (Dono-

van and Rideout (2003); Fügenschuh et al. (2009); You and Leyffer (2010, 2011); Legg

et al. (2013)), academia (Duives et al. (2013); de Souza and Ritt (2018)), etc.

When the functions f and gi, i ∈ M are not required to be convex, the problem (P)

is called a MINLP or a general MINLP. MINLPs are theoretically hard problems to solve.

A result by Jeroslow (1973) states that for the general class of MINLP with quadratic

constraints there can not be any method or algorithm that can solve all these problems

using available computing architectures. Moreover, a special class of problems of the

general MINLPs called nonlinear programs, obtained by removing integrality constraints,

are also hard problems (Murty and Kabadi (1985); Floudas and Pardalos (2013)). Convex

MINLPs are somewhat easier to solve than general MINLPs, but are still hard theoret-

ically. A subclass of this problem called mixed-integer linear program, obtained when

functions f and g are linear, is known to be NP-hard (Kannan and Monma (1978b)). That

means, there is no polynomial-time algorithm for these problems. Nevertheless, tremen-

dous advancements in linear, mixed-integer linear, and convex nonlinear optimization and

increasing computing power of modern computers have enabled solvers to solve convex

MINLPs. Further advancements are required to solve even moderate size convex MINLPs

fast.

Even though convex MINLPs are theoretically hard, various useful properties of

convex MINLPs can sometimes be exploited to solve them faster. We study such proper-

ties and special structures that lead to practically useful enhancements for algorithms for

convex MINLPs. This chapter describes the existing methodologies and software for con-

vex MINLPs. Then, we outline the remainder of the thesis and present our contributions.

1.1 Relaxations of Convex MINLPs

Given a convex MINLP of the form (P), a vector x satisfying all the constraints is called a

feasible solution. The set of all feasible solutions is called the feasible set or the feasible

region, and is denoted by Po. A feasible solution x∗ at which the objective function takes

the minimum value among all feasible solutions, that is f (x∗) ≤ f (x),∀x ∈ Po, is called an

optimal solution, and the value f (x∗) is called the optimal value. We denote the optimal

value of problem (P) by Z∗.
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Given a point x̄ ∈ Rn, we say that a constraint indexed i ∈ M is violated at x̄ if the

constraint inequality does not hold at x̄, that is, gi(x̄) > 0. A constraint i is called active

(or tight or binding) at x̄ if the constraint holds at equality, that is, gi(x̄) = 0. Let π>x ≤ π0

be an inequality denoted by (π, π0) for a given vector π ∈ Rn and scalar π0. It is a valid

linear inequality for the problem (P), if it is satisfied by all points x ∈ Po. A valid linear

inequality for a problem is also called a cutting plane. Finding ‘good’ cutting planes is

one of the common ways of improving algorithms, as we describe later.

Relaxations are another important element of optimization algorithms. Desirable

relaxations are those that are easy to obtain and solve, and which provide good lower

bounds to Z∗. However, these two goals may conflict with each other. A relaxation that

offers a higher lower bound may not be easy to obtain. On the other hand, a relaxation

obtained by simply dropping integrality constraints or nonlinear constraints may provide

weak lower bounds. Trade-off between ease of obtaining and solving a relaxation on the

one hand and the lower bound quality on the other is important. Usually, a relaxation of

an optimization problem is also an optimization problem albeit of a different class that is

easier to solve. More formally,

Definition 1.1.1. Consider an optimization problem, say (R), with objective function h(x)

and feasible region denoted by Ro. Problem (R) is a relaxation of problem (P) if it has the

following two properties.

1. h(x) ≤ f (x) for all x ∈ Po, where Po is the feasible region of (P). That is, h(x)

underestimates the objective function f (x) on the set Po.

2. Po ⊆ Ro, that is, every point in the feasible region of problem (P) also lies in the

feasible region of its relaxation (R).

Next we present some of the commonly used relaxations of the convex MINLP (P).

1.1.1 Linear Programs

The problem of minimizing a linear function over a region defined by linear con-

straints (and in which all variables are real) is called a Linear Programming. Mathemati-

cally a linear program, or an LP, can be written as

minimize
x

a>x

subject to x ∈ X,

where the vector a ∈ Rn and X = {x ∈ Rn : Cx ≤ c,Dx = d}. C and D are matrices of

coefficients of linear constraints, and c and d are vectors representing the right hand sides.

Clearly, the feasible set of an LP is a polyhedron.
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If the convex MINLP (P) has a linear objective function, the simplest possible linear

programming relaxation of (P) can be obtained by removing all the nonlinear constraints

and integrality restrictions. If the objective function is nonlinear, one can replace the

nonlinear objective with its linear underestimator (first-order approximation). Instead

of removing the nonlinear constraints altogether, one can also replace them with their

linear approximations. An LP relaxation can be tightened by adding more linear valid

inequalities at the cost of increasing the size of LP. Large-scale (over ten million variables)

LPs can be solved currently in an acceptable time using the existing robust, fast, and

reliable solvers (Mittelmann (2019)). The availability of efficient LP solvers encourages

the use of LP relaxations in solving more complicated optimization problems including

convex MINLPs.

The primary methods for solving an LP are the primal simplex method (Dantzig

(1998); Bertsimas and Tsitsiklis (1997)), dual-simplex method (Lemke (1954)) and bar-

rier method (or interior-point method) (Karmarkar (1984)), or some combination of these

algorithms. The simplex method utilizes the fact that if the feasible region of an LP has

at least one extreme point and the LP has an optimal solution, then a basic feasible solu-

tion (BFS), an extreme point, is optimal. Thus, it searches among the extreme points by

moving along the edges of the feasible region from one BFS to the next. The method ter-

minates when it reaches a BFS at which none of the available edges reduces the objective

value, and such a BFS is deemed optimal.

The barrier method moves towards the optimal solution starting from the interior

of the feasible region. Both barrier and simplex methods have various implementations

in state-of-the-art commercial solvers like CPLEX (2017), Gurobi (2012), FICO-Xpress

(2009), MOSEK (2004), etc., and open-source software, CLP (2004). Though the sim-

plex method is one of the most efficient practical approaches for solving LPs, it is not a

polynomial-time method. That is, its worst-case running time can be exponential in the

size of the problem (Klee et al. (1972)). However, interior-point methods are polynomial-

time and have theoretically better running time. In general, interior-point and dual simplex

methods have been shown to perform better than primal simplex methods on large LPs;

however, there are instances on which one algorithm outperforms the others (Junior and

Lins (2005); Koberstein (2005)).

Another useful feature of LPs is their warm start capability. Warm starting or re-

optimizing signifies using the information obtained by solving an LP to efficiently solve

the next LP, which is often a minor perturbation of the earlier problem. These pertur-

bations occur in the context of branch-and-cut frameworks on which most of the convex

MINLP algorithms are based. The perturbed LP comprises of either a change in bounds of
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variables or constraints or some additional constraints to the already solved LP. The dual

simplex methods are particularly suitable for re-optimizing subproblems in the branch-

and-cut framework. A solution to the last LP stays dual feasible and can be used directly

as a starting point for the next LP (Kostina (2002); Maros (2003); Koberstein (2005)).

1.1.2 Nonlinear Programs

A nonlinear program (NLP) is a problem of the form

minimize
x

f (x)

subject to gi(x) ≤ 0, i ∈ M.

 (NLP)

General NLPs are challenging to solve and are considered NP-hard (Murty and Kabadi

(1985)), sometimes even intractable (that is, little is known about how difficult they are

to solve). However, when the nonlinear functions in the objective and constraints are

convex, the resulting problem is called a convex NLP, and there are efficient algorithms

for solving them (Vavasis (1991); Nesterov and Nemirovskii (1994); Leyffer and Mahajan

(2010)).

State-of-the-art methods for solving convex NLPs include active-set based methods

(Forsgren et al. (2015); Gill and Wong (2015)), augmented Lagrangian method (Fried-

lander and Leyffer (2008)), interior point method (Wächter et al. (2002); Forsgren et al.

(2002)), sequential quadratic programming method Gill and Wong (2012); Nocedal and

Wright (2000)), generalized reduced gradient method (Lasdon et al. (1974)), etc. These

methods are implemented in state-of-the-art solvers like CONOPT (2007), filterSQP

(Fletcher and Leyffer (1998)), IPOPT (2015), KNITRO (2012), SNOPT (2008). When

the NLP is not convex, these methods merely converge to a critical point.

An NLP relaxation of (P) can be obtained by removing integrality constraints on its

variables x. It is also commonly referred to as the continuous relaxation of (P).

1.1.3 Mixed-Integer Linear Programs

A mixed-integer linear program, or an MILP, is a problem of the form

minimize
x

f (x)

subject to x ∈ X,

x j ∈ Z, j ∈ I,


(MILP)

where f is a linear function and X is defined, as earlier, as a set of linear constraints that

are to be satisfied by variables x, that is, X = {x ∈ Rn : Cx ≤ c,Dx = d} with C and D be

matrices , and c and d be vectors of appropriate dimensions.
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Approaches for solving MILPs include LP based branch-and-bound (Land and

Doig (2010)), cutting-planes (Gomory (1960)), and branch-and-cut (Caprara and Fis-

chetti (1997); Mitchell (2010)). In LP based branch-and-bound method, LP subproblems

are solved in a branch-and-bound framework. Branch-and-cut methods are based on the

branch-and-bound framework, and add valid inequalities to subproblems before branch-

ing. Cuts are added to strengthen the relaxations. The decision of whether to add cuts

has a significant impact on the success of branch-and-cut methods. Typically, several

rounds of cuts are added early on (especially at the root node) in the tree than the tree’s

deeper parts. Cutting-plane methods start from a linear relaxation of (MILP). If the LP

optimal solution satisfies all the constraints of the original problem, then the method ter-

minates. Otherwise, it generates a valid inequality violated by the LP optimal solution,

thus, strengthening the relaxation, and the process repeats. Cutting-plane methods differ

in the type of cuts they use, like the mixed-integer Gomory cuts (Gomory (1963)), inter-

section cuts (Balas (1971)), lift-and-project cuts (Balas et al. (1993)), cover inequalities

(Gu et al. (1999)), etc.

Some of the state-of-the-art solvers for MILPs are CBC (2004), CPLEX (2017),

MINTO, MOSEK (2004), SYMPHONY (Ralphs and Ladányi (2000)), Gurobi (2012),

FICO-Xpress (2009), SCIP (Achterberg (2009)), etc. Though MILPs are NP-hard (Kan-

nan and Monma (1978b)), tremendous advancements have taken place in the area of

MILPs over the last 60 years. The powerful modeling capability of MILPs allows the

mathematical formulation of problems from various applications in many diverse areas.

The success of MILP solvers is attributed to its essential components like efficient LP

solvers, primal heuristics, cut generation and management routines, and presolving tech-

niques (Lodi (2010); Achterberg and Wunderling (2013); Achterberg et al. (2020)).

One can obtain an MILP relaxation of (P) by either dropping all the nonlinear con-

straints or by replacing them with their linear approximations and by replacing the non-

linear objective function with its first-order approximation.

The areas of LPs, convex NLPs, and MILPs have witnessed tremendous advance-

ments in their theory and software in the last few decades (Leyffer and Mahajan (2010);

Jablonskỳ et al. (2015); Mittelmann (2017)). In the next section, we will see that solving

convex MILPs involves solving a sequence of relaxations, often a large number of times.

Thus, advancements in solving these relaxations contribute to solving convex MINLPs.
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1.2 Methods for Convex MINLPs

Like MILPs, MINLPs also require a tree-search to resolve the integrality restrictions.

Deterministic methods for solving convex MINLPs can be classified into two broad cat-

egories: single-tree and multi-tree approaches. Single-tree methods maintain a single

branch-and-bound tree, whereas a separate tree for each subproblem is created and solved

in multi-tree methods. The nonlinear branch-and-bound (NLP BnB) and the LP/NLP

based branch-and-bound (QG) methods belong to the single-tree category, while the gen-

eralized Benders decomposition (GBD), the outer approximation (OA), and the extended

cutting planes (ECP) methods lie in the second category.

All these methods are iterative and generate lower and upper bounds on the optimal

value Z∗. A method terminates when lower and upper bounds fall within an acceptable

tolerance. At every iteration, an easier subproblem is solved. As solving progresses, a

non-decreasing sequence of lower bounds and a non-increasing sequence of upper bounds

are obtained. All these methods are deterministic in the sense that under some assump-

tions on the problem input, these methods terminate in a finite number of iterations. These

assumptions are presented next. For ease of presentation, let X denotes the feasible set

formed by all constraints of (P) that are linear, that is,

X := {x : gi(x) ≤ 0, gi is affine}. (1.1)

Assumption 1.2.1. Consider a MINLP problem of the form (P).

(a) The polyhedral set X is bounded.

(b) The nonlinear functions f and gi, i ∈ M, are convex and twice continuously differ-

entiable on X.

(c) A constraint qualification holds at every point in the convex hull of the feasible

region of (P).

The last Assumption 1.2.1 (c) ensures that the feasible region around any feasible

point is well represented by the linear approximations of the nonlinear constraint func-

tions. This assumption is required to guarantee the convergence of the NLP solvers.

1.2.1 Generalized Benders Decomposition (GBD)

The GBD method by Geoffrion (1972) solves a given problem by projecting it onto

the space of some of its variables, called ‘complicating variables’. For convex MINLPs,

integer constrained variables are considered complicating variables because we get a
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tractable convex NLP on fixing them to any values. Let the vector of integer constrained

variables in (P) be denoted by xI . The projected problem in the space of xI variables,

expressed using nonlinear duality theory, has infinitely many linear constraints in its de-

scription, making it challenging to directly work with it. The GBD algorithm addresses

this problem by solving a relaxed version of the problem. More constraints are added

sequentially when required. Outer approximation (OA) and LP/NLP based branch-and-

bound (QG) can be viewed as refinements of the GBD.

Let xk denotes an optimal solution of the relaxation problem at the kth iteration of

GBD. The starting relaxation (at k = 0) is created using the solution of the continuous

NLP relaxation of the original problem. If the relaxation solution value lies within an

acceptable tolerance of the best known upper bound, the algorithm terminates. Otherwise,

its optimal value is a lower bound to Z∗. It then fixes the integer variables xI = xk
I , and

solves the resulting convex NLP, referred to as a ‘fixed’ NLP. If the fixed-NLP is optimal

and has an optimal value better than the incumbent (a feasible point with the best objective

value obtained so far), it updates the incumbent and the upper bound. Whether optimal

or infeasible, dual multipliers associated with the solution of a fixed-NLP help refine the

relaxation problem as explained in the Algorithm 1. The notion of a fixed-NLP is also

used in the OA and the QG algorithms. A fixed-NLP is a nonlinear optimization problem

obtained by fixing xI = xk
I in (P), that is,

minimize
x

f (x)

subject to gi(x) ≤ 0, i ∈ M,

xI = xk
I .


(FNLP(xk

I ))

When a fixed-NLP (FNLP(xk
I )) is infeasible, most NLP solvers return a solution of a

‘feasibility problem’ that aims to find a feasible point by minimizing violation of the

constraints (Fletcher and Leyffer (1994)). One such formulation is

minimize
x

∑
i∈M wig

+
i (x)

subject to xI = xk
I .

 (FP(xk
I ))

Here, g+
i (x) = max{gi(x), 0} and wi, i ∈ M are non-negative weights chosen as pa-

rameters. FP(xk
I ) is feasible regardless of xk

I and its optimal value is bounded below by

zero. FNLP(xk
I ) is infeasible if and only if the optimal value of FP(xk

I ) is strictly positive.

Let xR be the vector of variables that are not integer constrained, and x = (xR, xI).

Also, let XR ⊆ Rn−|I| and XI ⊆ Z|I| be the sets of linear inequalities of (P) that define bounds

on variables xI and xR, respectively. Since set X is assumed to be bounded, XI and XR are
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also bounded. Also, The projection of (P) on the space of xI variables is given by

minimize
xI

v(xI)

subject to xI ∈ V ∩ XI ,

 (Proj(xI))

where the set V is defined as

V = {xk
I : there exist some x ∈ X such that xI = xk

I , gi(x) ≤ 0, i ∈ M}.

Thus, V is a set of all feasible integer values of xI . A dual representation of set V is given

by the following result.

Theorem 1.2.2 (Geoffrion (1972)). A point xI for some x ∈ X lies in the set V if and only

if it satisfies the following infinite system

minimize
xR

L(xR, xI , λ) ≤ 0,∀λ ∈ Λ, (1.2)

where L(xR, xI , λ) =
∑

i∈M
λigi(xR, xI) and Λ = {λ ∈ R|M||λ ≥ 0,

∑
i∈M
λi = 1}.

Theorem 1.2.3 (Geoffrion (1972)). (i) If x∗ is optimal to (P), then x∗I is optimal to

(Proj(xI)).

(ii) If (P) is infeasible or unbounded, then so is the projected problem (Proj(xI)).

In (Proj(xI)), v(xI) is parametric in variables xI and is given by

minimize
xR

f (xR, xI)

subject to gi(xR, xI) ≤ 0, i ∈ M.

 (v(xI))

Using dual representation of (v(xI)) and V in terms of Lagrange function and multipliers,

the projected problem (Proj(xI)) can be rewritten as

minimize
xI∈XI , µB

µB

subject to minimizexR L(xR, xI , λ) ≤ µB,∀ λ ≥ 0,

minimizexR L(xR, xI , λ) ≤ 0,∀λ ∈ Λ.


(GBDM)

Here, L(xR, xI , λ) = f (xR, xI) +
∑

i∈M
λi(gi(xR, xI) − 0) and λ is a vector of dual multipliers.

The first set of constraints are associated with v(xI) and the other constraints define the

set V . The problem (GBDM) is called the master problem. Functions ξ and ξ are called

support functions and defined as

ξ(xI , λ) = minimize
xR

L(xR, xI , λ), (1.3)

ξ(xI , λ) = minimize
xR

L(xR, xI , λ). (1.4)



1.2 Methods for Convex MINLPs 11

Finding support functions ξ(xI , λ
k) and ξ(xI , λ

k
) for some λk and λ

k
is difficult in general.

However, for problems with specific structures support functions are easy to find. For

example, problems in which nonlinear functions are separable in real and integer variables

and linear in integer variables, support functions are linear in xI and (GBDM) becomes

an MILP with an infinite number of constraints. Also, for general convex MINLPs, one

can generate linear approximations to the support functions and still get an MILP master

problem. As the master problem (GBDM) contains a infinite number of constraints, it

cannot be solved directly. One solves its relaxation (RGBDM) and updates it dynamically

at every iteration k.

minimize
xI∈XI , µB

µB,

subject to ξ(xI , λ
i) ≤ µB, i ∈ T k,

ξ(xI , λ
i
) ≤ 0, i ∈ S k,


(RGBDM)

where T k and S k are finite subsets of index of constraints in (GBDM) that are generated

upto iteration k. Algorithm 1 presents the pseudocode for the GBD method. The initial

vector x1
I can be any point in the set XI . Commonly, the solution of continuous relaxation,

(NLP), of the original problem is considered as the starting point.

Algorithm 1: Pseudocode of the Generalized Benders Decomposition

Method.
Input: (P), x1

I be any point in XI , upper bound UB = +∞, lower bound

LB = −∞, iteration counter k = 1,T k = S k = ∅, and tolerance ε > 0.

1 while UB − LB > ε. do
2 Solve the fixed-NLP (FNLP(xk

I )).

3 if FNLP(xk
I ) is feasible then

4 Let x̄k be its an optimal solution. Update UB = min{UB, f (x̄k)}.
5 Stop if UB − LB ≤ ε.
6 Let λk be a vector of optimal multipliers. Generate the support function

by solving (1.3) and set T k = T k−1 ∪ {k}.
7 else if FNLP(xk

I ) is infeasible then
8 Let λ

k
be multipliers from solving the feasibility problem (FP(xk

I )).

9 Generate the support function by solving (1.4) and set S k = S k−1 ∪ {k}.
10 Solve the relaxed master problem (RGBDM). Let its solution be xk+1

I .

11 Set k = k + 1 and LB = µB.

12 end
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Convergence of the GBD method is ensured in a finite number of iterations for any

ε ≥ 0 if Assumption 1.2.1 holds (Geoffrion (1972); Floudas (1995)). Different variants of

GBD method are discussed by Floudas (1995). Also, Su et al. (2015) present strategies to

computationally accelerate the GBD method by adding multiple cuts in an iteration, and

Lee et al. (2020) employ machine learning tools to manage the size of the master problem

by regulating the cuts added to the master problem.

1.2.2 Outer Approximation (OA)

The OA method, in principle, is similar to the GBD method. It also uses the same

mathematical concepts of projection, relaxation, and first-order approximation of non-

linear functions. Like GBD, it also projects the original problem on the space of integer

constrained variables and solves an alternating sequence of MILP relaxation and a convex

NLP. The two methods, however, differ in the way the MILP relaxations are formed. The

OA method utilizes the solution obtained from a fixed-NLP (or the feasibility problem) to

generate gradient inequalities to the nonlinear constraints. Given a convex differentiable

nonlinear function f : Rn → R and a point x̄ ∈ Rn, the following well known gradient

inequality (Rockafellar (1970))

∇ f (x̄)>(x − x̄) + f (x̄) ≤ f (x) (1.5)

holds for all x ∈ Rn. A pictorial representation of gradient inequalities to a convex set

defined by a single nonlinear inequality is shown in the Figure 1.1.

(-2,6)

(2,2)

Figure 1.1: A pictorial representation of gradient inequalities (also known as outer-approximation

cuts) to the convex set {x ∈ R2 : x2
1 − x1 − x2 ≤ 0} at points (−2, 6) (left linear inequality) and (2, 2)

(right linear inequality).
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The OA method proposed by Duran and Grossmann (1986) creates an MILP relax-

ation of (P) using the outer approximation cuts of the form (1.5) generated at selected

points. The points are, in turn, obtained by solving fixed-NLPs (obtained by fixing vari-

ables xI to their values in the solution of the MILP relaxation). This method assumes

that the nonlinear functions are separable in integer and real variables, and linear in inte-

ger constrained variables xI . Fletcher and Leyffer (1994) generalized the idea to convex

MINLPs under Assumption 1.2.1.

Lemma 1.2.4 (Fletcher and Leyffer (1994)). If the fixed-NLP (FNLP(xk
I )) is infeasible,

and xk solves FP(xk
I ) with

∑
i∈M w

k
i g

+
i (xk) > 0, then xI = xk

I is infeasible in constraints

gi(xk) + (x − xk)>∇gi(xk) ≤ 0,∀i ∈ M,∀x ∈ X.

Suppose FNLP(xk
I ) is infeasible and x̄k is a solution to FP(xk

I ), then any point x ∈ X

with xI = x̄k
I violates the outer approximations to nonlinear constraints at x̄k. Thus, it is

used for characterizing feasible region of the projected problem. Let T (S ) be the index

set of points in X such that the corresponding fixed-NLPs are feasible (infeasible), defined

as

T = {k| FNLP(xk
I ) is feasible and x̄k is an optimal to FNLP(xk

I )},
S = {k| FNLP(xk

I ) is infeasible and x̄k is an optimal solution to FP(xk
I )}.

An MILP equivalent of the problem (Proj(xI)) can then be written as

minimize
x, µOA

µOA

subject to f (x̄k) + (x − x̄k)>∇ f (x̄k) ≤ µOA, k ∈ T,

gi(x̄k) + (x − x̄k)>∇gi(x̄k) ≤ 0, i ∈ M, k ∈ T,

gi(x̄k) + (x − x̄k)>∇gi(x̄k) ≤ 0, i ∈ M, k ∈ S ,

x ∈ X, xi ∈ Z, i ∈ I.


(OAM)

Theorem 1.2.5. If Assumption 1.2.1 holds, then the problems (OAM) and (P) have the

same optimal value. Also, every optimal solution x∗ to (P) solves (OAM), but the converse

is not true. However, if (x∗, µ∗) is an optimal solution to (OAM), then x∗I is optimal to (P).

The proof of Theorem 1.2.5 can be shown using results by Bonami et al. (2008b) and

Fletcher and Leyffer (1994). Again, solving (OAM) is challenging as it contains a large

number of constraints. The OA method starts by solving a relaxation of problem (OAM)

and tightens it iteratively using the solutions of fixed-NLPs. The algorithm terminates

when the upper and lower bounds on Z∗ lie within an acceptable tolerance. Outer approx-

imations added to the nonlinear constraints at the solution x̄k of the feasibility problem
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ensure that the integer combination x̄k
I does not appear again as the solution of any sub-

sequent MILP relaxation. The MILP relaxation of the (OAM) at any iteration i is given

by

minimize
x, µOA

µOA

subject to f (x̄k) + (x − x̄k)>∇ f (x̄k) ≤ µOA, k ∈ T i,

g j(x̄k) + (x − x̄k)>∇g j(x̄k) ≤ 0, j ∈ M, k ∈ T i,

g j(x̄k) + (x − x̄k)>∇g j(x̄k) ≤ 0, j ∈ M, k ∈ S i,

x ∈ X, x j ∈ Z, j ∈ I,


(ROAM)

where the sets T i ⊂ T and S i ⊂ S are defined as

T i = {k| k ≤ i , FNLP(xk
I ) is feasible and x̄k is an optimal to FNLP(xk

I )},
S i = {k| k ≤ i , FNLP(xk

I ) is infeasible and x̄k is an optimal solution to FP(xk
I )}.

Algorithm 2 presents the pseudocode for the OA method. It has been shown by Duran

Algorithm 2: Pseudocode of the Outer Approximation Method.
Input: (P), let x1

I be any integer point in X, lower bound LB = −∞, upper

bound UB = +∞, counter k = 1, T k = ∅, S k = ∅, and tolerance ε > 0.

1 while UB − LB > ε. do
2 Solve the fixed-NLP (FNLP(xk

I )).

3 if FNLP(xk
I ) is feasible then

4 Let x̄k be an optimal solution. Linearize nonlinear objective and

constraints at x̄k, update UB = min{UB, f (xk)} and T k = T k−1 ∪ {k}.
5 else if FNLP(xk

I ) is infeasible then
6 Let x̄k be an optimal solution to FP(xk

I ). Linearize nonlinear constraints

at x̄k and update S k = S k−1 ∪ {k}.
7 Solve the update master problem (ROAM), let its solution be xk.

8 Set k = k + 1 and LB = µOA.

9 end

and Grossmann (1986) and Fletcher and Leyffer (1994) that the OA method terminates

in a finite number of iterations if the number of possible integer combinations in the

given problem is finite. The subtlety of the proof is that when X is bounded, no integer

assignment, feasible or infeasible, repeats due to the outer approximation cuts at solutions

to FP(xk
I ). Duran and Grossmann (1986) also show that for problems in which nonlinear

functions are separable in integer and real variables and linear in integer variables, the
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lower bound given by the OA method at any iteration is at least as good as the one from

the GBD method. This property implies that for these problems, OA may terminate in

fewer iterations than GBD. However, it does not mean that OA will converge faster than

GBD, since the latter solves a smaller relaxation than OA at each iteration.

1.2.3 Extended Cutting Plane (ECP)

The ECP method by Westerlund and Pettersson (1995) is an extension of Kelley’s

cutting plane method for convex NLPs. It is considered suitable for problems with a

moderate degree of nonlinearity. The ECP method starts from an MILP relaxation of the

problem (P). This relaxation is updated at every iteration by generating outer approxima-

tions to the nonlinear objective and constraints, in the same way as in the OA method, at

a solution to the fixed-NLP. The linearizations added at any point xk < Po ensure that xk

does not appear again as a solution to subsequent MILPs. However, there is no mecha-

nism for preventing the MILP relaxation from yielding a solution with the same integer

assignment xk
I . This drawback of the ECP method sometimes leads to a large number of

iterations until termination. The algorithm terminates when the MILP relaxation solution

is feasible to the original problem.

In practice, extended cutting planes are easy to generate and are incorporated in other

methods in a branch-and-cut framework (Abhishek et al. (2006); Sharma et al. (2020b)).

The convergence of ECP method can be explained similarly to that of the OA method,

but it converges relatively slower. In convex MINLPs where all the variables are integer

constrained, OA and ECP methods perform identically. In the worst case, all the three

multi-tree methods can take an exponential amount of time (in the size of the problem),

as shown by Hijazi et al. (2014).

1.2.4 Nonlinear Branch-and-Bound (NLP BnB)

The branch-and-bound based method by Dakin (1965) and Gupta and Ravindran

(1985) is one of the earliest approaches for solving integer constrained optimization prob-

lems. The idea of a branch-and-bound method is to iteratively divide the feasible region

of the original problem into smaller subsets and then optimize over these sets. A prob-

lem corresponding to a subset is called a subproblem. The process of dividing is referred

to as branching. The subproblems are iteratively generated and solved to obtain lower

bounds on the optimal solution value of the original problem. If a solution to any of the

subproblems is also feasible to the original problem, it updates the upper bound on the

optimal value. All the subproblems with a lower bound value greater than or equal to the

best known upper bound value are excluded from further exploration. This exclusion is



16 Introduction

referred to as ‘pruning’. The method terminates when no further branching is possible for

any of the subproblems.

Branch-and-bound can be visualized in the form of a single tree. In this framework,

each subproblem is termed as a node. The initial relaxation obtained from the original

problem is termed as the root node. When a subproblem is branched into k disjoint sub-

problems, each subproblem is called a child node, and the subproblem that is branched

upon is called the parent node. A node that has no children is called a leaf node. When the

lower bound at a node exceeds or becomes equal to the upper bound value, it is excluded

from further branching. This exclusion is referred to as pruning by bound. A node is also

pruned when it becomes infeasible, in which case it is called pruning by infeasibility.

The NLP BnB method starts with (NLP), the continuous relaxation of the problem

(P) obtained by dropping integrality restriction. Every subproblem in this method is a

convex NLP. At iteration k, if an optimal solution xk at a node does not satisfy the inte-

grality restrictions on xI variables, an integer variable xk
j, j ∈ I, that has assumed a nonin-

tegral value, is selected and the node is split into two subproblems using the inequalities

x j ≤ bx jc and x j ≥ dx je. This kind of branching done using an integer constrained variable

is called variable branching. Solutions to nonlinear subproblems give the lower bounds,

and an integer feasible solution at any node provides an upper bound. The performance

of branch-and-bound based approaches relies mainly on branching methods and the order

in which nodes are solved (the latter is termed as a node selection rule).

Some examples of variable branching are strong branching, pseudocost branching,

and reliability branching (Achterberg et al. (2005); Linderoth and Savelsbergh (1999)).

The preferable variable branching rule in state-of-the-art solvers is reliability branching.

Another important component of branch-and-bound algorithms, the node selection strat-

egy, helps in deciding which node to solve next. These rules aim at improving the lower

bound faster and finding good quality upper bounds early in the search. Usually, while

choosing a node selection rule, there exist trade-offs between the ease of implementation,

the possibility of solving related problems in succession (to exploit warm starting), qual-

ity of bounds obtained, memory requirement, etc. Popular node selection strategies are

depth-first search, best-bound search, hybrid search, etc. Study and comparison of vari-

ous node selection rules are discussed in Dakin (1965), Ibaraki (1976), and Linderoth and

Savelsbergh (1999). The boundedness of the set X in the Assumption 1.2.1 ensures that

the number of possible subproblems in the branch-and-bound (search) tree remains finite,

and thus, the algorithm converges in a finite number of iterations.

More details of various algorithmic decisions in a branch-and-bound

method can be found in Gupta and Ravindran (1985) and Bonami et al.
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(2011). Algorithm 3 shows the pseudocode for the NLP BnB method.
Algorithm 3: Pseudocode for the Nonlinear Branch and Bound Method.

Input: Problem (P), the list of subproblems to be solved, L = {(NLP)}, upper

bound UB = +∞, iteration counter k = 0.

1 while L , ∅ do
2 Select a problem pk ∈ L, update L = L\pk, and solve pk.

3 if pk is infeasible then
4 Prune the node by infeasibility.

5 else
6 Let xk be an optimal solution.

7 if f (xk) > UB then
8 Prune the node by bound.

9 else if xk is integer feasible then
10 Update UB = min{UB, f (xk)}.
11 else
12 Branch pk into subproblems pk1 and pk2 and update

L = L ∪ pk1 ∪ pk2 .
13 end

14 end

15 end

1.2.5 LP/NLP Based Branch-and-Bound (QG)

This method is proposed by Quesada and Grossmann (1992) and can be seen as a

single-tree implementation of the OA method. The fundamental idea of this method is to

avoid solving a large number of related MILPs in different iterations from scratch, like in

GBD and OA methods. Instead, it tries to merge the changes in subsequent MILPs in a

single branch-and-bound tree. Like OA, it aims to solve the MILP equivalent (OAM) of

the original problem; however, it creates and maintains a single branch-and-cut tree. It

starts from a relaxation of (OAM) and proceeds like LP based branch-and-bound while

dynamically updating the MILP relaxation at nodes yielding an integer solution. When a

node in the tree yields an integer optimal solution xk, it solves the fixed-NLP (FNLP(xk
I )).

The solution of FNLP(xk
I ) or FP(xk

I ) is used to generate appropriate linearizations as in OA

which are added to all the open nodes of the tree to tighten the relaxations, and branch-

and-cut is resumed. The root node can be formed by solving the continuous relaxation of

the problem and linearizing the nonlinear objective and constraints at its optimal solution.

This MILP relaxation is then relaxed by dropping integrality restriction on variables xI .
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The resulting LP thus forms the root LP relaxation, P0. A pseudocode of the QG algorithm

is presented in Algorithm 4 and Figure 1.2 shows a pictorial depiction of this algorithm.

0 LB0 = 10

1LB1 = 25

Pruned by bound

2 LB2 = 15

3

Pruned by infeasibility

4 LB4 = 18, UB = 22

5LB5 = 19, UB = 19

Pruned by bound

6 LB6 = 21

Pruned by bound

Figure 1.2: An illustration of the QG method. In the given branch-and-bound tree, the search

starts from root node 0 that yields a fractional solution with the lower bound of 10, and is branched

into nodes 1 and 2. Node 2 is selected next for processing and is further divided into nodes 3 and

4. LBi indicates the lower bound at node i and UB is the upper bound on the optimal value Z∗ of

the original problem. Node 3 becomes infeasible and hence pruned by infeasibility. Filled nodes

indicate nodes at which associated LPs yield an integer solution, and thus, a fixed-NLP is solved,

and the upper bound is updated. Hatched nodes are pruned either due to infeasibility (horizontally

hatched) or bound (vertically hatched). At node 4, fixed-NLP is solved, and gradient inequalities

are generated at the fixed-NLP solution and added to the open nodes 4 and 5. Node 4 is then

resolved. Node 1 is pruned by bound as upper bound is updated to 22 at node 4; and node 6 is

pruned when fixed-NLP at node 5 has improved the upper bound to 19.

This method combines the strength of NLP BnB and OA methods, and has a finite

convergence. The proof of its convergence follows from the convergence results of OA

and NLP BnB methods. The QG method has been shown extremely effective in practice

and forms the basis of the most efficient convex MINLP solvers (Abhishek et al. (2006);

Bonami et al. (2008b); Kronqvist et al. (2018a); Sharma et al. (2020b)).

1.3 Heuristics

In the methods based on a branch-and-bound framework, the availability of a good qual-

ity feasible solution is critical in deciding the size of the branch-and-bound tree, mainly

because good upper bounds help in pruning the nodes. By the size of a tree, we mean

the number of solved (or processed) nodes in the branch-and-bound tree. Better solutions
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Algorithm 4: Pseudocode for the LP/NLP Based Branch-and-Bound

Method.
Input: Problem (P), the list of subproblems to be solved, L = {P0}, upper

bound UB = +∞, iteration counter k = 0.

1 while L , ∅ do
2 Select a problem pk ∈ L, update L = L\pk, and solve pk.

3 if pk is infeasible then
4 Prune the node by infeasibility.

5 else
6 Let xk be the optimal solution.

7 if f (xk) > UB then
8 Prune the node by bound.

9 else if xk is integer feasible then
10 Solve the fixed-NLP (FNLP(xk

I )).

11 if FNLP(xk
I ) is feasible then

12 Let x̄k be an optimal solution. Generate linearizations to

nonlinear objective and constraints at x̄k and add to all nodes in

L and to pk. Update UB = min{UB, f (x̂k)}.
13 else if FNLP(xk

I ) is infeasible then
14 Let x̄k be an optimal solution of the feasibility problem.

Generate linearizations to nonlinear constraints at x̄k and add to

all nodes in L and to pk.
15 Add pk back to list L and set K = k + 1.

16 else
17 Branch pk into subproblems pk1 and pk2 and update

L = L ∪ pk1 ∪ pk2.
18 end

19 end

20 end

also help tighten constraints and variables bounds and also possibly fixing some of the

variables. Smaller branch-and-bound trees lead to shorter computing time and memory

requirements.

Heuristics are methods that aim to obtain good quality feasible solutions in a short

time. These approaches are prevalent and extensively used in MILP and MINLP solv-

ing. Many ideas from the MILP literature on heuristics have been extended to MINLPs.
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Two broad classes of heuristics for mixed-integer nonlinear (and linear) programming are

primal heuristics and improvement heuristics.

Primal heuristics, also referred to as start heuristics, are applied at the nodes in the

early part of the tree (mostly at the root node) to obtain a feasible solution. These methods

are focused more on obtaining a feasible solution fast than on finding a good quality solu-

tion. Some of the famous primal heuristics are feasibility pump (Bonami et al. (2009b)),

relaxation enforced neighborhood search (Berthold (2012)), undercover (Berthold and

Gleixner (2012)), diving heuristics (Berthold (2006); Bonami and Gonçalves (2012)), etc.

The main idea of an improvement heuristic is to start from a solution and iteratively

search for a better solution in terms of the objective value. Sometimes, a solution ob-

tained using some primal heuristic serves as an initial point. Some notable improvement

heuristics are guided dives (Danna et al. (2005b)), crossover (Berthold (2014)), and large

neighborhood searches (LNS) that include local branching (Nannicini et al. (2008)), re-

laxation induced neighborhood search (Danna et al. (2005b)), etc. LNS methods search

for a better solution in some neighborhood of a given solution (referred to as an initial so-

lution or a reference solution). Both the reference point and the neighborhood influence

the performance of LNS methods. A neighborhood signifies a limited search space around

a given solution. It is defined either by adding some constraints or fixing some variables

to solve easier subproblems while aiming for better quality solutions. We later demon-

strate the use of ideas from the local branching heuristic in developing an improvement

heuristic for an inverse problem presented in Chapter 4.

Fischetti and Lodi (2002) introduced the local branching heuristic for solving MILPs

(with binary integer variables) in a branch-and-bound framework. The neighborhood

around a given integer solution is defined using a local branching cut, which is a lin-

ear constraint, that restricts the distance from the given point in Manhattan norm on the

integer variables. Given a solution x̄ ∈ {0, 1}n, a local branching constraint is given by∑
i:x̄i=0

xi +
∑
i:x̄i=1

(1 − xi) ≤ k, (1.6)

where the expression on the left hand side is denoted by N(x̄, x). Equation (1.6) defines

a k-neighborhood around the given solution x̄ by allowing at most k flips in the values

of binary variables. The local branching constraint is used as a branching rule within a

branch-and-bound framework. Given a solution x̄, one creates two subproblems using the

following branching constraints

N(x̄, x) ≤ k, (Left branch)

N(x̄, x) ≥ k + 1, (Right branch)
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where k is some positive integer and is typically in the range (10, 20) (Fischetti and Lodi

(2002); Berthold (2014)). The motivation is that the left subproblem associated with

k-neighborhood is smaller and therefore, computationally less expensive than the right

subproblem and may still contain a better solution than x̄. The left subproblem is solved

as a standalone problem using may be a separate branch-and-bound tree. If a better solu-

tion is indeed obtained by solving the left subproblem, then using the improved solution

and local branching constraint, the right subproblem is further divided as shown in Fig-

ure 1.3. The heuristic terminates when solving a left subproblem does not provide a better

solution and in this case the regular branch-and-bound is resumed. This heuristic has been

modified to start from an infeasible solution by Fischetti and Lodi (2008), and Nannicini

et al. (2008) present an extension of a local branching heuristic for MINLPs.

1

starting solution x1

2

better solution x2

3

4

better solution x3

5

6

no better solution

7

N(x1 , x) ≤ k N(x1 , x) ≥ k + 1

N(x2 , x) ≤ k N(x2 , x) ≥ k + 1

N(x3 , x) ≤ k N(x3 , x) ≥ k + 1

Figure 1.3: A pictorial representation of the local branching scheme. In a given branch-and-bound

tree, the local branching has started at node 1 from a given integer feasible solution x1 and created

two nodes 2 and 3. On solving node 2, an improved solution is obtained using which node 3 is

further branched into nodes 4 and 5. Similar steps repeat at nodes 4 and 5. As no better solution

is found by solving node 6, the local branching scheme terminates, and the original branch-and-

bound is resumed at node 7.

For highly challenging problems, as we will see in Chapter 4, many a times, heuris-

tics provide some satisfactory solutions much faster than the state-of-the-art exact algo-

rithms.
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1.4 Presolving Techniques

Presolving or preprocessing techniques are those that simplify a given problem by ei-

ther reformulation, removing redundant constraints, fixing variables, tightening variable

bounds and constraint bounds, or similar such modifications before actually solving it.

The success of the modern day MILP solvers can be accredited highly to presolving meth-

ods. Some popular presolving techniques for MILPs can be found in Savelsbergh (1994),

Achterberg (2009), and Mahajan (2010). Many of these techniques are incorporated into

solvers for MINLPs too. Presolving helps reduce the size of the problem, tightening the

problem/relaxations, generating tighter valid inequalities, and possibly speeding up the

convergence to the optimal solution. Many presolving techniques pertaining to MINLPs

are presented in Belotti et al. (2013).

We briefly explain two impactful presolving techniques in MINLPs, namely, con-

straint disaggregation and coefficient improvement. Both these schemes are applicable

when a problem has specific structures using which tighter relaxations can be obtained.

Consider the uncapacitated facility location (UFL) problem. The first set of con-

straints that model the condition that a customer’s demand must be satisfied from the

facilities that are open is given by

0 ≤ xi j ≤ zi, i ∈ F , j ∈ C. (1.7)

The form in Equation (1.7) is referred to as a ‘disaggregated’ form. These constraints can

also be written in an ‘aggregated’ form as∑
j∈C

xi j ≤ mzi, i ∈ F , (1.8)

where m is the number of facilities. A (UFL) problem with constraints in aggregated form

(instead of disaggregated form) results in a drastically large branch-and-bound tree and

solution time (Belotti et al. (2013)). This is because the continuous relaxation of a prob-

lem having constraints in disaggregated form is tighter than the aggregated form. That is,

for any value of variable zi, set of points satisfying (1.7) is a subset of points satisfying

(1.8). Many state-of-art solvers can automatically detect constraints in aggregated form

and reformulate it to the disaggregate form (1.7).

Another presolving technique called coefficient tightening in the case of a collection

of constraints of the form C̄ is described as

g(x) ≤ M1(1 − x1),

x1 ∈ {0, 1}, x ∈ Rn,

 (C̄)
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where g : Rn → R is a nonlinear function, M1 is some large scalar value. The role

of scalar M1 is to make the nonlinear constraint redundant when x1 = 0 and have the

nonlinear constraint effective only when x1 = 1. If the value of scalar M1 is chosen to

be unnecessarily large, it can lead to a poor relaxation and a huge branch-and-bound tree

with a large solution time (Belotti et al. (2013)). Let the maximum value of the nonlinear

constraint for x1 = 0 be given by g(0). If g(0) < M1, then the value of M1 can be tightened

to g(0), which is the best possible value of M1.

By automatically identifying useful structures in convex MINLPs, a solver’s compu-

tational performance can be improved significantly. Convexity is the most natural prop-

erty to exploit in convex MINLPs. In branch-and-bound methods, convexity renders non-

linear relaxations that are convex and can be solved efficiently. In branch-and-cut meth-

ods, convexity helps generate polyhedral approximations to the nonlinear functions and

the feasible region, resulting in linear or mixed-integer linear programs. In the coming

chapters, we will see that further improvements are possible by exploiting more structures

and properties if they are present in convex MINLPs. These structures may comprise an

individual nonlinear constraint or a collection of linear and nonlinear inequalities. More

specifically, these structures help generate tight convex relaxations, better valid inequal-

ities to strengthen polyhedral relaxations, and better bounds on the optimal value of the

problem.

1.5 Software

There are several open-source and commercial software available for solving convex

MINLPs. These programs, also called solvers, implement algorithms - exact and heuris-

tic methods, preprocessing techniques, cutting planes, branching and node selection rules,

and various other components that help solve a problem efficiently. AMPL (Fourer et al.

(1993)), GAMS (Brooke et al. (1992)), AIMMS (Bisschop and Entriken (1993)), Py-

omo (Hart et al. (2011)), JuMP (Dunning et al. (2017)) are some of the widely used

languages for modeling optimization problems including convex MINLPs. Solvers for

convex MINLPs include AlphaECP (Westerlund and Lundqvist (2001)), ANTIGONE

(Misener and Floudas (2014)), BARON (Sahinidis (1996)), BONMIN (Bonami and Lee

(2007)), COUENNE (Belotti (2009)), DICOPT (Grossmann et al. (2002)), MINOTAUR

(Mahajan et al. (2020)), Pajarito (Lubin et al. (2016)), SCIP (Achterberg (2009)), SHOT

(Lundell et al. (2018)). Of these, ANTIGONE, BARON, Couenne, and SCIP are designed

for global optimization of nonconvex MINLPs. Since solving LPs, NLPs and MILPs (as

subproblems) constitutes an integral component of algorithms for convex MINLPs, most
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of the convex MINLP solvers require an interface with the solvers for LPs, NLPs, and

MILPs. Reviews and comparisons of various solvers for solving MINLPs and convex

MINLPs can be found in Bussieck and Pruessner (2003) and Kronqvist et al. (2018a).

We have implemented a majority of the methods proposed and discussed in this the-

sis into the MINOTAUR solver. It is a sophisticated open-source framework for MINLPs

and is largely written in C++. MINOTAUR stands for Mixed-Integer Nonlinear Opti-

mization Toolkit: Algorithms, Underestimators, and Relaxations. For convex MINLPs, it

provides data structures and basic algorithmic platforms on which a wide range of single-

tree and multi-tree methods can be implemented. It also allows access to the nonlinear

functions in terms of their computational graphs, providing the flexibility and possibility

of exploiting structures of nonlinear functions. It uses the Open-Solver Interface (OSI)

library provided by COIN-OR to link to the CLP and CBC solver libraries for solving LPs

and MILPs, respectively. There are direct interfaces to solvers like CPLEX for solving

LPs and MILPs, BQPD for QPs, and filterSQP and IPOPT for NLPs. Interested readers

can refer to Mahajan et al. (2020) for more details on various functionalities and features

of MINOTAUR.

1.6 Contributions and Outline of the Thesis

The mathematical concepts and notations used throughout are presented in Appendix A.

We classify the remainder of the thesis into four chapters.

Chapter 2 focuses on enhancing the performance of QG algorithm for convex

MINLPs by creating better relaxations through effective cuts. Recall that the QG al-

gorithm creates an MILP relaxation of the nonlinear feasible region which is solved by

branch-and-cut in a single-tree framework. Adding linearizations only when we reach

integer feasible points in the branch-and-bound tree may lead to a weak relaxation, and

adding too many linearizations early on can slow down the speed. Also, our computa-

tional experiments reveal that a very small fraction of the total nodes solved in the branch-

and-bound tree yields an integer optimal LP solution. Additionally, in nodes yielding

fractional optimal solutions, a large fraction of nonlinear constraints are violated. These

observations motivated us to improve the performance of QG algorithm. We make the

following contributions.

(i) We propose a set of schemes for tightening the initial LP relaxation at the root node

of the branch-and-bound tree. Two of the techniques are specifically applicable to

commonly found univariate nonlinear functions and are more effective than other

general approaches.
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(ii) We provide another set of schemes for generating effective linearization inequalities

at other ‘selected’ nodes that yield a fractional LP solution and have a considerable

constraint violation. Two main decisions in the design of these schemes are: (a)

whether additional linearization constraints should be added at a given node, and

(b) how to determine the points for generating linearization constraints.

(iii) We also study the impact of these schemes in a parallel implementation of the QG

method.

In Chapter 3, we present reformulation techniques that exploit specific structures in

a convex MINLP (P) to derive tight relaxations. One seeks tight relaxations to obtain

better lower bounds on the optimal value of the problem. We address two useful reformu-

lations for convex MINLPs - ‘perspective reformulation’ (PR), and reformulation using

the ‘separability’ property of nonlinear functions. Our contributions on this front are as

follows.

(i) The structures that enable PR are ‘on-off’ sets, which are in general difficult to find.

We present collections of constraints that yield on-off sets in the required form and

we automate their identification in MINOTAUR.

(ii) We solve the perspective-reformulated problem in the branch-and-cut framework

of QG method using perspective cuts. We develop techniques to automatically find

points for generating tight perspective cuts, in different parts of the tree. We also

show that, another method, called ε-approximation, is naturally applicable to the

reformulated problem because of the assumptions on the considered structures.

(iii) Our method for detecting structures amenable to PR also helps in (presolving tech-

niques) variable fixing and finding redundancy in nonlinear constraints.

(iv) We automate the detection of the separability property in nonlinear functions us-

ing their computational graphs and solve the reformulated problem using outer-

approximation cuts in MINOTAUR.

(v) We present computational results showing that for some instances, reformulation

using function separability induces structures amenable to PR, and thus, can be

solved much faster.

In Chapter 4, we study a highly challenging class of optimization problems called

mixed-integer partial differential equation constrained optimization (MIPDECO). We first
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provide some relevant background on the mathematical theory and notations of PDE-

constrained optimization and MIPDECO. Then, we discuss a convection-diffusion in-

verse problem where one wants to determine the number and location of a set of sources

by reconciling the differences between measurements and numerical prediction of the

concentration. Our contributions on this part are as follows.

(i) We formulate the inverse problem as a large-scale convex MINLP and empirically

show that state-of-the-art methods for convex MINLPs fail to give a satisfactory

solution to such problems, even in a considerably large amount of time.

(ii) We advance the state-of-the-art in MIPDECO in a number of ways.

(a) We develop new rounding schemes that take the physics of the problem into

account, for example, by preserving the mass of the sources when we move

from a relaxation to a rounded solution.

(b) We apply a simplified version of the trust-region method by Hahn et al. (2020),

and show that it provides competitive integer solutions.

(c) We improve the above mentioned trust-region approach by developing a new

problem-specific neighborhood that takes the topology of our problem into

account, and we use a specialized knapsack problem for the resulting trust-

region subproblem. Using this modified trust-region method, we show that

one can solve 3-dimensional instances of MIPDECO, that are typically hard

to solve, efficiently and in a reasonable amount of time.

(iii) We provide our algorithms coded in Julia (Bezanson et al. (2012)) under a per-

missible open-source license. We also provide the mathematical models of our

2-dimensional instances, coded using the widely used scripting software, AMPL,

to promote experimentation with existing MINLP solvers.

Finally in Chapter 5, we discuss the conclusions from our study, and list some future

directions of research.
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Linearization Schemes for QG Method

Recall that the QG algorithm creates an MILP relaxation of the nonlinear feasible region

which is solved by branch-and-cut. Adding linearizations only when we reach integer

feasible points in branch-and-bound tree may lead to a weak relaxation, and adding many

of these early on can slow down the speed. While the algorithm is known to take a finite

number of steps, careful implementation and control are required for it to be practically

useful. Convex MINLPs are known to be NP-hard, and this algorithm, like others, can

take a long time to run. We demonstrate effectiveness of some practical ideas that enhance

the performance of this algorithm. We propose two sets of schemes - one for tightening

the initial LP relaxation at the root node and the other for adding new linearizations later in

the branch-and-bound tree. Strategies for generating linearizations based on the change

in the lower bound, depth of the nodes in the tree, etc., and using NLP techniques for

selecting points for linearizations have previously been proposed by Abhishek (2008) and

Kilinç (2011) for use in the FilMINT solver.

There are 374 instances in MINLPLib (Bussieck et al. (2003)) that are known to

be convex MINLPs. We excluded 40 instances that did not have any nonlinearity (in

constraints and objective) or any integer variables after the presolving step in MINO-

TAUR. We used the remaining 334 instances and refer to them as the TS l test set in our

experiments. Description of these instances is presented in Appendix B. We analyzed

performance of default QG in MINOTAUR on 267 instances in test set TS l which have

at least one nonlinear constraint and observed that a large fraction of the nodes processed

yield fractional optimal solutions Figure 2.1, many of which also violate a large fraction

of nonlinear constraints Figure 2.2. These observations motivated us to add more lin-

earizations at selected nodes. A commonly used technique for creating linear relaxations

of convex nonlinear constraints is through a gradient based underestimation. One can thus

create a relaxation of (P) by replacing its nonlinear constraints by gradient inequalities of

27
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the form

∇gi(x′)>(x − x′) + gi(x′) ≤ 0. (grad-I)

This relaxation can be tightened by adding linearization inequalities obtained from mul-

tiple points. We propose schemes that try to identify more effective linearization inequal-

ities by finding suitable points of linearization.

2.1 Experimental Setup

All the computational experiments have been carried out on a system with two 64-bit

Intel(R) Xeon(R) E5-2670 v2, 2.50GHz CPUs having 10 cores each and sharing 128GB

RAM. Hyperthreading is disabled. Our schemes are available in the development version

of MINOTAUR1. All codes are complied with GCC-4.9.2 compiler. IPOPT-3.12 with

MA97 linear-systems solver is used as the NLP solver. CPLEX-12.8 has been used as the

LP solver. We have set a limit of one hour on the wall clock time in all our experiments

and reported all the solution times in seconds. Appendix B provides a brief decription of

the test instances that are used for the computational experiments in this chapter and in

Chapter 3.

1Available at http://github.com/minotaur-solver/minotaur

http://github.com/minotaur-solver/minotaur
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2.2 Linearization Schemes at the Root Node

Given a problem (P) and the solution x0 of its continuous relaxation (NLP), let P̄k be a

polyhedron corresponding to the kth nonlinear constraint (gk(x) ≤ 0, k ∈ M) defined as

P̄k := {x : ∇gk(x0)>(x − x0) + gk(x0) ≤ 0}. (2.1)

The feasible region of the root LP relaxation can be interpreted as an intersection of

polyhedra P̄k, k ∈ M, corresponding to the nonlinear constraints, and X. In this section, we

propose five schemes that aim to tighten the LP relaxation at the root node by tightening

P̄k, k ∈ M.

The first two schemes are designed for problems in which a nonlinear constraint,

gk(x) ≤ 0, has a univariate nonlinear structure, i.e., gk is the sum of a univariate nonlinear

function (hk(xi)) and a linear function (a jx j − bk, where bk is a scalar), and the variable in

the linear part of gk does not appear in its nonlinear part. Mathematically, the nonlinear

constraint is of the form

a jx j + hk(xi) ≤ bk, (US)

where a j , 0 and j , i. A nonlinear constraint with more than one term in its linear part

can be transformed into this structure by replacing the entire linear part using an auxiliary

variable.

This univariate structure appears in 126 out of 334 instances in test set TS l (see

Table C.1). Problem classes with this structure are listed in Table 2.1. In 123 of these

instances, all the nonlinear constraints have this structure. Three instances, ex1223a and

two of synthes*, have a few other constraints without this structure (US). We refer to

the set of these 126 instances as TS 1 and the set of remaining 208 instances in TS l as

TS 2. The structure (US) has also been exploited by Hijazi et al. (2014) for building initial

relaxation in outer approximation algorithms. They select points at regular intervals along

xi.

The feasible region of (US) can be visualized in the two-dimensional space of xi and

x j variables. It is easy to see that a linearization (or a gradient inequality) generated at a

point (xi, x j) touches the nonlinear constraint boundary at some point. More specifically,

given a point x′, all gradient inequalities at points of the form (x′i , x j), x j ∈ R are the same

and touch the constraint boundary at
(
x′i ,

bk − hk(xi)
a j

)
. We utilize this simple fact in the

first two schemes.
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Table 2.1: Name of classes and number of instances (#) with the univariate structure (US) in a

class. * following a name denotes a collection of instances in a class.

Name # Name # Name #

cvxnonsep_normcon*r 3 fo8* 6 procurement2mot 1

cvxnonsep_nsig*r 3 fo9* 6 rsyn*m 24

cvxnonsep_pcon*r 3 m* 8 sssd* 13

ex1223a 1 no7* 5 syn*m 24

flay* 10 nvs03 1 synthes* 2

fo7* 7 o7* 9 Total 126

2.2.1 Root Linearization Scheme 1 (RS1)

Given a nonlinear constraint with the univariate structure (US), this iterative scheme

selects a point in each iteration for generating a linearization until the violation of the

nonlinear constraint at all points in the updated P̄k is less than a desired value T̃k.

The scheme starts by generating linearizations at points xL = (li, (bk − hk(li))/a j) and

xU = (ui, (bk − hk(ui))/a j), where li and ui are the lower and upper bounds, respectively,

on xi. Both xL and xU lie on the boundary of the feasible region of (US). Let us add to P̄k

two linearizations L(xL) and L(xU) at these points. Amongst all points in the updated P̄k,

the violation of the constraint (US) is maximum at the point of intersection, xI , of L(xL)

and L(xU). Let Ek be the set of extreme points of P̄k. At any point xl ∈ Ek, let v(xl) be the

violation of the nonlinear constraint defined as v(xl) = max{a jxl
j + hk(xl

i) − bk, 0}, where

xl
i and xl

j are the values of variables xi and x j in xl. In each iteration, candidate points for

generating a new linearization are those points xl ∈ Ek for which v(xl) ≥ T̃k. Amongst

these candidates, the one with maximum violation is selected. Figure 2.3 shows a pictorial

depiction of this scheme and Algorithm 5 presents the pseudocode for this scheme.

We compare the default implementation of QG in MINOTAUR, which we refer to

as qg to that of qg with scheme RS1 (denoted as qgrs1). Threshold T̃k is set to be a

fraction K of bk, if bk , 0, otherwise of v(xI). We tried four different values of K : 0.02,

0.05, 0.10, 0.20. In case any of the bounds, li or ui, on variable xi is not known, we take

li = x0
i − 50 and ui = x0

i + 50, respectively. Table 2.2 shows the impact of this scheme on

the overall solution time, size of the tree in terms of the number of nodes processed, and

the Euclidean distance of the optimal solution (x) of the root LP from the feasible region
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xL

xI

xl

xU

Figure 2.3: Depiction of linearization

scheme RS1.

xp

xq
x0

> θ

> θ

Figure 2.4: Depiction of linearization scheme

RS2.

Algorithm 5: Root linearization scheme RS1.
Input: kth nonlinear constraint with structure (US), a scalar K and initial P̄k.

1 Compute points xL and xU . Generate linearizations L(xL) and L(xU) tor the

nonlinear constraint at these points, and add to P̄k.

2 Compute intersection point, xI , of L(xL) and L(xU), and threshold value T̃k.

3 Construct set Ek = {xL, xI , xU} of the extreme points of P̄k.

4 while (maxxl∈Ek{v(xl)} ≥ T̃k) do
5 Select xp ∈ Ek with the maximum violation value, generate linearization to

the nonlinear constraint at xp and add to P̄k.

6 Update set Ek by adding newly generated extreme points.

7 end

of (NLP). The following nonlinear program is solved for computing this distance.

minimize
x

||x − x||2
subject to gi(x) ≤ 0, i ∈ M.

 (NLPD)

Here, ||.||2 stands for Euclidean norm. Problem (NLPD) differs from (NLP) only in the

objective function.

Each row of the top table in Table 2.2 corresponds to a parameter setting (K in this

case). The column ‘# solved by’ lists the number of instances solved to optimality within

the time limit by the proposed method and by both the reference solver (qg in this case)

as well as the proposed method (under the column ‘both’). The first column under the

headings ‘time’ and ‘nodes’ shows the shifted geometric mean (SGM) of these measures

reported by the reference solver for the instances in the column ‘both’. The second column
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under these headings show the relative SGM (‘rel.’) of the proposed method for the same

instances using the setting corresponding to the row. Similar statistics for the distance

measure are computed, but over all the instances, not just for those solved within the

time limit. For example, qgrs1 with K = 0.20 is on an average 11% faster and showed

an improvement of about 15% and 81% in the number of nodes processed and distance,

respectively, over default qg on the set of 111 instances that were solved by both qg and

qgrs1. We used a shift of 10 for calculating SGM of time and distance, and 100 for the

number of nodes processed. More number of linearizations are added for a smaller value

of K, and thus the resulting LP relaxation is tighter but bigger.

As mentioned by Achterberg (2007), using SGM as a performance measure in this

context is better compared to the geometric mean, which gets skewed if there are small

solution time values, and also compared to the arithmetic mean, which gets gets biased by

the presence of large values. Thus, SGM has become a well-accepted statistic of choice

to present computational results (Berthold and Csizmadia (2020); Witzig et al. (2017)).

Our results report modest improvements in all the considered performance measures

under all the settings. We choose K = 0.20 as the default setting for this scheme as it

solved 2 instances more than qg and resulted in about 11% improvement in solution times.

The break-up of performance over instances of varying difficulty using the best setting is

also included in Table 2.2 (bottom). Each row corresponds to the instances solved by both

qg and qgrs1, but for which at least one of them took more than the specified time. For

example, 31 instances were solved to optimality by both qg and qgrs1, and for each of

these instances, at least one of the two solvers took more than 100 seconds. We observed

that qgrs1 is more effective for ‘difficult’ problems, especially those corresponding to row

3 in the table on the bottom. Similar tables have been used in the rest of this chapter and

the next chapter as well.

2.2.2 Root Linearization Scheme 2 (RS2)

Given a nonlinear constraint with univariate structure (US), this scheme iteratively

selects points in a way that the successively generated linearization constraints differ in

their slope by at least a specified threshold value. Like RS1, the feasible region of (US)

can be seen as a two-dimensional region in the space of xi and x j variables. We start at x0,

an optimal solution of (NLP). First, x0
i is gradually increased using step size δ and variable

x j is determined. If the slope of the linearization at this point differs from the slope of the

previously accepted linearization by θ, it is added to the linear relaxation. Otherwise the

step size δ is doubled. This process is repeated until x0
i exceeds min{ui, x0

i +∆} for a scalar

parameter ∆ > 0. A similar search is carried out in the opposite direction until x0
i falls
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# solved by time nodes distance

K qgrs1 both qg rel. qg rel. qg rel.

0.02 113 111 31.66 0.93 6.9e3 0.79 1.35 0.02

0.05 113 111 31.38 0.86 6.9e3 0.77 1.36 0.05

0.10 113 111 31.54 0.91 6.9e3 0.86 1.37 0.08

0.20 115 111 31.54 0.89 6.9e3 0.85 1.37 0.19

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 111 31.54 0.89 6.9e3 0.85 1.37 0.19

> 10 53 164.82 0.86 1.5e5 0.88 1.19 0.12

> 100 31 453.82 0.79 4.7e5 0.79 0.89 0.09

> 500 14 1133.83 0.87 1.2e6 0.86 0.68 0.06

Table 2.2: (Top) Comparison of qg and qgrs1 for different values of K on test set TS 1. qg could

solve 113 instances in the time limit. (Bottom) Performance break-up of qgrs1 with K = 0.20 over

instances of varying difficulty in TS 1.

below max{li, x0
i − ∆}. Figure 2.4 gives a pictorial description of the scheme and Figure 6

presents pseudocode of RS2 along the direction −ei.

Algorithm 6: Root linearization scheme RS2 for the direction −ei.
Input: kth nonlinear constraint with structure (US), x0, parameters θ, ∆, δ, li, ui,

and iteration counter p = 1.

1 if x0
i −max{li, x0

i − ∆} < 1 then
2 Set δ = x0

i −max{li, x0
i − ∆}

3 Set x1
i = x0

i − δ and x1
j = (bk − hk(x1

i ))/a j.

4 while xp
i ≥ max{li, x0

i − ∆} do
5 Compute angle, α, between the linearization at xp and the last added one.

6 if α ≥ θ then
7 Add linearization at xp.

8 else
9 Set δ← 2δ.

10 end
11 Set p = p + 1, xp

i = xp−1
i − δ and xp

j = (bk − hk(xp
i ))/a j.

12 end
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Computational performance of qg with linearization scheme RS2 (qgrs2) on test set

TS 1 is presented in Table 2.3. We used four values of θ = 2, 5, 10, 20 with ∆ = 10, and

δ = 0.5. In our experiments, we observed improvements in solution time and tree-size for

the first two settings. Quality of the relaxation improved for all the considered θ values -

more for smaller values because more linearizations were added, implying a tighter, but

larger LP. Although more instances than qg and other settings were solved with θ = 10,

it resulted in poor solution times. qgrs2 with θ = 5 solved two instances less than qg but

resulted in better performance on 109 instances that were solved by both qg and qgrs2 .

Table 2.3 shows the break-up of its performance over instances of varying difficulty.

# solved by time nodes distance

θ qgrs2 both qg rel. qg rel. qg rel.

2 112 110 30.44 0.95 6.6e3 0.88 1.37 0.11

5 111 109 28.64 0.87 6.2e3 0.86 1.38 0.17

10 115 112 33.01 1.00 7.3e3 1.00 1.35 0.50

20 113 112 33.01 1.01 7.3e3 1.03 1.35 0.73

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 109 28.64 0.87 6.2e3 0.86 1.38 0.17

> 10 51 147.57 0.81 1.3e5 0.82 1.20 0.10

> 100 28 432.08 0.74 4.4e5 0.72 0.92 0.07

> 500 13 964.24 0.85 1.0e6 0.83 0.65 0.05

Table 2.3: (Top) Comparison of qg and qgrs2 for different values of θ on test set TS 1. qg could

solve 113 instances. (Bottom) Break-up of performance over instances of varying difficulty for

qgrs2 with θ = 5.

Time taken within the schemes qgrs1 and qgrs2 is negligible (less than 0.5s) in

comparison to the total solution time for all the considered instances.

The next three schemes are applicable to a general problem of the form (P).

2.2.3 Root Linearization Scheme 3 (RS3)

Consider the following root LP relaxation of (P). Nonlinear constraints are replaced

with gradient inequalities at x0, an optimal solution of continuous relaxation of the prob-

lem. If the objective function in (P) is also nonlinear, the problem is reformulated by

replacing the objective with an auxiliary variable, η, and adding the constraint f (x) ≤ η.

This new constraint is also replaced with its linearization inequality at x0 and integrality
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constraints are relaxed.

minimize
x,η

η

subject to ∇ f (x0)>(x − x0) + f (x0) ≤ η,
∇gk(x0)>(x − x0) + gk(x0) ≤ 0, k ∈ M.


(LP)

This scheme finds linearization points near an optimal solution of root LP relaxation

(LP). First the root LP relaxation is solved and an optimal solution, x̄, is obtained. If

the solution violates any nonlinear constraint, a line search is performed between x̄ and

xC to find a point at the boundary of the feasible region of (NLP). xC is chosen to be a

point inside the feasible region of (NLP). The boundary point is used to generate new

linearizations. The updated LP is solved again and the process is continued. The point xC

remains the same at every iteration. We stop when the LP solution is feasible to (NLP) or

a preset number (kmax) of LPs have been solved.

To obtain an interior point xC, we solve the following nonlinear problem (NLPI). All

the nonlinear inequalities in (NLP) are modified using an auxiliary variable ν, which also

forms the objective of (NLPI). All the other (linear) constraints remain unchanged.

minimize
x,ν

ν

subject to gi(x) ≤ ν, i ∈ M,

ν ≤ 0.


(NLPI)

Let the optimal solution of (NLPI) be (ν̃, x̃). If ν̃ < 0, then we set xC = x̃. If ν̃ = 0, then

there does not exist any point in the feasible region of (NLP) at which all the nonlinear

constraints are inactive. In this case, we simply generate linearizations to nonlinear con-

straints that are active at x̃, and terminate the scheme. If (NLPI) is unbounded, then we

add ν to the linear inequalities in the same way as the nonlinear constraints and re-solve.

Algorithm 7 presents the pseudocode for this scheme. This scheme is similar to

root LP generation in the ESH algorithm by Kronqvist et al. (2016), but differs in the

formulation of initial root LP and the nonlinear problem (NLPI). Unlike in Kronqvist

et al. (2016), our initial root LP is obtained by linearizing nonlinear constraints at x0,

and we also consider linear equalities to find the required interior point, thus ensuring

xC lies in the feasible region of (NLP). Out of the total 334 instances in the test set TS l,

67 have nonlinearity only in the objective (see Table C.1). The remaining 267 resulted

in an optimal solution with ν̃ < 0. Our computational investigations indicate that the

choice of interior point plays an important role in determining the quality of linearizations

generated. We experimented first with xC as obtained from solving (NLPI). Next, we used

the center of the line segment between xC and x0 as the required interior point, which also
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lies in the interior of the feasible region of (NLP). Interior point obtained using the latter

way resulted in a better performance.

For 67 instances with nonlinearity only in the objective function (all these instances

lie in test set TS 2), root LP solution is also feasible to the problem (NLP). We add objec-

tive linearization directly at the LP solution obtained in every iteration. In this case, the

algorithm terminates when the current LP solution is the same as the previous solution or

when we exhaust a prefixed number of iterations, kmax.

Algorithm 7: Root linearization scheme RS3.
Input: An interior point xC, a maximum iteration limit, kmax, the initial root LP

and its solution x̄.

1 Set the iteration count k = 1 and x̄1 = x̄.

2 while (k ≤ kmax and x̄ < feasible region of (NLP)) do
3 Find 0 ≤ λ ≤ 1 such that xB = λxC + (1 − λ)x̄k lies on the boundary of

(NLP).

4 Add linearizations of all the nonlinear constraints active at xB.

5 Set k = k + 1, solve the resulting LP and let x̄k be its optimal solution.

6 end

We compare qg and qg with scheme RS3 (qgrs3) using kmax = 5, 10, 20, 40. Ta-

ble 2.4 and Table 2.5 report values for different performance metrics on TS 1 and TS 2

respectively. The time taken in this scheme is a very small fraction of the total solution

time in all the considered instances. The maximum time taken was close to 2 second for

instances with a large number of variables.

We observed only small improvements in the performance metrics over the set TS 1,

but reasonable improvements for TS 2. We obtained an improvement of about 5% on TS 1

and of 8% on TS 2 in solution times. Table 2.4 and Table 2.5 (bottom ones) provide a

break-up of performance for instances in test sets TS 1 and TS 2, respectively, from the

best settings on these sets. Larger improvements in solution times are seen for more

difficult and structured instances (Table 2.4, last row in the bottom table). However, we

can not predict whether an instance is ‘easy’ or ‘difficult’ before solving it. Overall, qgrs3

is slower than qgrs1 and qgrs2 on test set TS 1.

2.2.4 Root Linearization Scheme 4 (RS4)

In this scheme, we search for linearization points by exploring several ‘well spread’

directions. Starting from an interior point of the feasible region of (NLP), we move along



2.2 Linearization Schemes at the Root Node 37

# solved by time nodes distance

kmax qgrs3 both qg rel. qg rel. qg rel.

5 113 110 29.94 0.99 6.5e3 1.03 1.38 0.26

10 113 111 31.54 0.95 6.9e3 0.98 1.37 0.12

20 113 111 31.54 1.01 6.9e3 1.01 1.37 0.05

40 112 111 31.66 1.06 6.9e3 1.06 1.35 0.01

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 111 31.54 0.95 6.9e3 0.98 1.37 0.12

> 10 54 156.81 0.92 1.4e5 0.98 1.17 0.05

> 100 31 451.61 0.84 4.7e5 0.88 0.89 0.02

> 500 17 933.18 0.81 1.0e6 0.83 0.64 0.02

Table 2.4: (Top) Comparison of qg and qgrs3 for different values of kmax on test set TS 1. qg

could solve 113 instances. (Bottom) Break-up of results over instances of varying difficulty with

the best setting, kmax = 10.

# solved by time nodes distance

kmax qgrs3 both qg rel. qg rel. qg rel.

5 180 177 11.86 0.99 1.0e3 1.00 5.73 0.48

10 179 176 11.33 0.95 1.0e3 0.96 5.78 0.28

20 179 177 11.86 0.96 1.0e3 0.93 5.73 0.19

40 179 177 11.86 0.92 1.0e3 0.88 5.73 0.07

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 177 11.86 0.92 1.0e3 0.88 5.73 0.07

> 10 64 56.41 0.88 1.0e4 0.82 17.5 0.06

> 100 18 336.23 0.93 1.4e4 0.89 4.61 0.08

> 500 7 1548.07 0.90 3.8e4 0.95 0.56 0.19

Table 2.5: (Top) Comparison of qg and qgrs3 for different values of kmax on test set TS 2. qg

could solve 179 instances. (Bottom) Break-up of results over instances of varying difficulty with

the best setting kmax = 40.

each chosen direction until the boundary of the feasible region of (NLP) is reached. We

add linearizations to all the nonlinear constraints that are active at the obtained boundary

point. The interior point is computed in the same way as in RS3. For search directions, we
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use positive and negative standard basis which consists of directions of the form {e j,−e j},
∀ j ∈ D, where D is the set of indices of variables that appear in the nonlinear part of some

constraint or objective and e j is the jth unit vector. This means that there are at most 2|D|
directions and points for linearizations.

For problems with nonlinearity only in the objective function, this scheme is

changed slightly. In the problem (NLPI) for finding an interior point, linear inequali-

ties are modified in the same way as nonlinear inequalities. If ν̃ < 0, then the scheme is

same as for the problems with nonlinear constraints with the only difference that in the

place of nonlinear constraints, linear constraints are used. In the rare case when ν̃ = 0 or

if there exists a linear equality constraint, the point x̃ lies on the boundary of the feasible

region of (NLP). In this case, we consider the four equidistant points on the line segment

between x̃ and x0. We generate linearizations at these four points that also lie on the

boundary of the feasible region of (NLP). A similar step is performed along the opposite

direction, d = x̃ − x0. Starting from x̃, we consider four equidistant points on the line

segment between x̃ and (2x̃ − x0). Out of these four points, the ones which are feasible to

(NLP) are selected for generating linearizations.

We observed that in set TS 2, many instances in the class of problems such as ibs2,

squfl0*, unitcommit_200_100*, watercontamination*, etc., have a large number of vari-

ables in their nonlinear part resulting in a large number of elements in the set D. For

such problems, we restrict the size of set D, thus limiting the amount of time spent in this

scheme by searching along fewer directions.

In our runs, we limit the size of D to a maximum of 300, selecting only the first 300

directions. First, we chose xC as defined in RS3 scheme as the interior point and referred

to this setting as FC. Then, we used the mid-point of the line segment joining xC and

x0 as the interior point; this setting is termed as MC. Results from qg with RS4 (qgrs4)

on test sets TS 1 and TS 2 using these two settings are shown in Table 2.6 and Table 2.7

respectively. The time taken within this scheme is again a very small fraction of the total

solution time, most of which is spent in solving the nonlinear problem (NLPI) for finding

the interior point.

On both the test sets, setting MC has performed better. On TS 1, qgrs4 solved same

number of instances as qg, but resulted in an improvement of about 12% in the solution

times. Overall, this scheme is inferior to qgrs1, but better than both qgrs2 and qgrs3 on

this test set. On TS 2, qgrs4 solved two instances fewer than qg, but on 177 instances that

were solved by both, it showed an improvement of about 6%. Although, qgrs4 has solved

two instances fewer than qgrs3, it seems to have performed better on ‘difficult’ instances

(rows corresponding to time > 500 in the respective tables).
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# solved by time nodes distance

setting qgrs4 both qg rel. qg rel. qg rel.

MC 113 111 31.54 0.88 6.9e3 0.89 1.37 0.61

FC 113 110 29.94 0.92 6.5e3 0.92 1.38 0.76

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 111 31.54 0.88 6.9e3 0.89 1.37 0.61

> 10 54 156.81 0.82 1.4e5 0.88 1.17 0.47

> 100 33 414.91 0.75 4.3e5 0.79 0.86 0.46

> 500 14 1133.83 0.73 1.2e6 0.77 0.68 0.21

Table 2.6: (Top) Comparison of qg and qgrs4 on test set TS 1. qg could solve 113 instances.

(Bottom) Break-up of performance over instances of varying difficulty with the best setting, MC.

# solved by time nodes distance

setting qgrs4 both qg rel. qg rel. qg rel.

MC 177 177 11.86 0.94 1.0e3 0.93 5.73 0.59

FC 178 177 11.86 1.00 1.0e3 0.96 5.73 0.59

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 177 11.86 0.94 1.0e3 0.93 5.73 0.59

> 10 63 57.50 0.93 1.1e4 0.94 7.62 0.50

> 100 16 416.56 0.86 2.3e4 0.88 7.56 0.71

> 500 7 1548.07 0.80 3.8e4 0.86 0.56 1.00

Table 2.7: (Top) Comparison of qg and qgrs4 on test set TS 2. qg could solve 179 instances.

(Bottom) Break-up of performance over instances of varying difficulty with best setting, MC.

2.2.5 Root Linearization Scheme 5 (RS5)

This scheme selects points for linearizations in a neighborhood of x0, an optimal

solution obtained by solving (NLP). Starting from x0, we move in different directions to

find suitable points. We consider two sets of directions. For the first set, we select affinely

independent points on the hyperplane passing through x0 and whose normal is (xC − x0),

where xC is an interior point like in RS3. Let this hyperplane be denoted by a>x = r,

where a = xC − x0, j = 1, . . . , n and r = (xC − x0)>x0. Let j be any index such that a j , 0,
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and define a set of n affinely independent points xi on this hyperplane as

xi =


(r/ai)ei, if ai , 0,

(r/a j)e j + ei, otherwise.
(2.2)

Let DS 1 be the set of (n− 1) linearly independent directions, xi − x1, i = 2, . . . , n. Each of

these directions has at most two nonzero components.

For each direction d from the set DS 1, we search iteratively along d starting from x0.

At iteration l, we obtain a point x̄l = x̄l−1 + δd, where δ is a positive step size and x̄0 = x0.

Then, starting from xC, we perform a line search along direction (x̄l − xC) for finding a

point xB on the boundary of the feasible region of (NLP). For every nonlinear constraint

active at xB, we compute the angle between the normals of the linearization drawn at xB

and the previous linearization added to this nonlinear constraint. If this angle is more than

a specified threshold θ (in degrees), then we add the linearization generated at xB to the

relaxation. If the objective is also nonlinear, we add an objective linearization at xB using

the same criterion of slope difference. If no linearizations are added at the current point

xB, then we double the step size δ and repeat the search. The search terminates when any

component of the point x̄l violates its bound (lower or upper). This process is repeated for

every direction d ∈ DS 1 and also its negative. The whole procedure was tried on another

set of directions, DS 2, as a variant of the above method. For each d ∈ DS 1, we replace

its negative components by −1 and positive components by 1 to get a new direction. All

these n − 1 directions constitute DS 2. Rest of the procedure remains identical.

In order to choose an initial step size δ along a direction d, we consider the Hessian

of the Lagrangian, H, at x0. If the absolute value of d>Hd is below a threshold, we take a

step size δl, otherwise a smaller step size δs is chosen. For problems with nonlinearity only

in the objective function, this scheme is modified in the same way as in RS4. However,

unlike scheme RS4, if ν̃ = 0 or if there exists a linear equality constraint, then we consider

points at an interval of δs on the line segment between the points xC and x0.

In our numerical experiments using qg with RS5 (qgrs5), we first used xC (referred

to as FC) and then modified it as in qgrs4 (denoted as MC). Along with the two proposed

set of directions, DS 1 and DS 2, we obtained four settings: FC-1, MC-1, FC-2, MC-2;

for example, FC-1 corresponds to the setting in which interior point is chosen as FC

and search directions are from DS 1. For each setting, we used four values for parameter

θ = 2, 5, 10, 20, δs = 0.25, and δl = 1. Out of the four settings, FC-2 with θ = 2 exhibited

the best results on both the test sets and are presented in Table 2.8 and Table 2.9. On TS 1,

qgrs5 with this setting solved 2 instances more than qg and exhibited an improvement of

about 7% in solution times. Overall, on TS 1, qgrs5 is inferior to all the previous schemes
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except qgrs3 in terms of solution times, but is better than all except qgrs1 in terms of

number of instances solved. On TS 2, it solved one instance more than qg and provided

an improvement of about 12% in solution times. It also provided better solution times

than qgrs3 and qgrs4 . Like qgrs3 and qgrs4 , most of the time taken by qgrs5 is spent in

solving the nonlinear problem (NLPI) for finding the interior point.

# solved by time nodes distance

θ qgrs5 both qg rel. qg rel. qg rel.

2 115 113 34.71 0.93 7.8e3 0.94 1.34 0.69

5 113 112 33.05 0.92 7.4e3 0.96 1.35 0.82

10 112 112 33.05 0.94 7.4e3 0.99 1.35 0.84

20 113 113 34.71 0.95 7.8e3 0.98 1.34 0.93

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 113 34.71 0.93 7.8e3 0.94 1.34 0.69

> 10 55 183.02 0.88 1.7e5 0.91 1.14 0.64

> 100 33 505.64 0.84 5.5e5 0.86 0.84 0.67

> 500 16 1261.25 0.88 1.4e6 0.89 0.60 0.32

Table 2.8: (Top) Comparison of qg and qgrs5 with FC-2 for different values of θ on test set

TS 1. qg could solve 113 instances. (Bottom) Break-up of performance over instances of varying

difficulty with the best setting θ = 2.

2.3 Linearization Schemes at the Other Nodes

We now consider schemes for nodes (other than the root) that yield a fractional optimal

solution in the branch-and-bound tree. Two main decisions in the design of these schemes

are: (a) whether additional linearization constraints should be added at a given node, and

(b) how to determine points for generating linearization constraints.

2.3.1 Node Linearization Scheme 1 (NS1)

Let x′ and Z′ be an optimal solution and corresponding optimal value obtained by

solving the LP relaxation at a node. Given a nonlinear constraint gk(x) ≤ 0, let bk denotes

the constant term in it. We assign a violation based score Vk =
vk − bk

|bk| , if bk , 0, and

Vk = vk otherwise, where vk = max{0, gk(x′)}. For a nonlinear objective, f (x), score Vo is

defined as Vo = vo/|Z′|, if Z′ , 0, and Vo = vo otherwise, with vo = max{0, f (x′) − Z′}.
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# solved by time nodes distance

θ qgrs5 both qg rel. qg rel. qg rel.

2 180 177 11.86 0.88 1.0e3 0.88 5.73 0.27

5 180 177 11.86 0.95 1.0e3 0.92 5.73 0.56

10 179 177 11.86 0.97 1.0e3 0.94 5.73 0.88

20 178 176 11.33 0.98 1.0e3 0.98 5.78 0.90

# solved time nodes distance

time by both qg rel. qg rel. qg rel.

> 0 177 11.86 0.88 1.0e3 0.88 5.73 0.27

> 10 62 59.15 0.83 1.1e4 0.82 18.08 0.15

> 100 15 451.28 0.81 2.0e4 0.88 4.55 0.34

> 500 7 1548.07 0.87 3.8e4 0.93 0.56 1.11

Table 2.9: (Top) Comparison of qg and qgrs5 with FC-2 for different values of θ on test set

TS 2. qg could solve 179 instances. (Bottom) Break-up of performance over instances of varying

difficulty with the best setting θ = 2.

If the score of a nonlinear constraint is more than a preset threshold value τ, then we

generate linearizations at the node. To avoid adding too many cuts, this scheme is applied

only up to a certain depth, D, in the branch-and-bound tree.

We employ the following two methods for finding points for generating lineariza-

tions for problems that have at least one nonlinear constraint. The first method is based on

the extended cutting plane technique (Westerlund and Pettersson (1995)), hence we refer

to it as the ECP method. Here, we generate linearizations at x′ to all nonlinear constraints

whose score Vk ≥ τ.

If the objective is nonlinear, then we add a linearization to the objective at x′ if

Vo ≥ K̃. Here, K̃ is initialized with vr/|Z|, if Z , 0, and vr otherwise, where vr =

max
{
0, f (x) − Z

}
, and x and Z denote an optimal solution and corresponding optimal

value to the root LP relaxation, respectively. If K̃ < 0.5, then we double the value of K̃.

The second method is based on line search and we refer to it as the LS method.

Starting from an interior point x̃ in the feasible region of (NLP), we search along the

direction x′ − x̃ for a point on the boundary of the feasible region of (NLP). Then we

generate linearizations at this boundary point to all the active nonlinear constraints. This

method ensures that all the linearizations are tight. The chosen interior point, x̃, is the mid-

point of the line segment joining xC (an interior point obtained as in RS3) and x0. For



2.3 Linearization Schemes at the Other Nodes 43

problems with a nonlinear objective also, we add a linearization at the obtained boundary

point if the criteria mentioned in ECP are met.

For problems that have nonlinearity only in the objective function, a node is selected

for adding linearization if Vo ≥ K̃, where K̃ is initialized in the same way as above. If

K̃ > 1000, then we reduce depth D by half, and if K̃ < 0.5, we double the value of K̃ and

D.

For these problems we employ only ECP method. This treatment to the problems

with nonlinearity only in the objective remains the same in the following two schemes,

NS2 and NS3, as well.

Using qg with scheme NS1 (qgns1), we experimented with four values of τ :

{0.75, 1, 1.5, 2}, D = 10 for problems with nonlinear constraints, and D = 5 for prob-

lems with nonlinearity only in the objective. This scheme with both the methods have

shown improvements in solution time and the number of nodes processed. We obtained

better results with LS method than ECP on both the test sets. Results for test sets TS 1

and TS 2 are reported in Table 2.10 and Table 2.11 respectively. On TS 2, although qgns1

solved one instance less than qg, fair improvements are seen in solution times. Best re-

sults are obtained using τ = 2 in which we obtained an improvement of about 7% and

11% on TS 1 and TS 2 respectively in solution times. On TS 1, this scheme is inferior to

all root schemes in terms of solution times, but comparable to qgrs1 and qgrs5 in terms

of the number of instances solved. On TS 2, this scheme has performed better than root

schemes qgrs3 and qgrs4 , but inferior to qgrs5.

2.3.2 Node Linearization Scheme 2 (NS2)

This scheme is similar to NS1 but differs in the nonlinear constraints that are ana-

lyzed at a given node. Here, we analyze violation of important nonlinear constraints only.

A nonlinear constraint with index k is considered important based on a surrogate value

for its dual multiplier. Let I be the index set of important constraints and is constructed

as follows. Given a feasible solution xl to (NLP), let dk be the dual multiplier of the non-

linear constraint with index k at xl, dmax = max{dk}
k∈M

be the maximum dual value among

all the nonlinear constraints, and d̃ (≤ 1) be a positive parameter. We include indices of

those nonlinear constraints in set I whose associated dual values are at least d̃ times of

the maximum dual value dmax. Initially, set I is populated using x0, an optimal solution of

(NLP), and is recomputed every time the upper bound is updated using the corresponding

solution. Since, the same dual multiplier values are used until a better solution is obtained,

we call these values surrogate. For determining points for generating linearizations, the

same two methods, ECP and LS, as in qgns1 are used. The ECP method is slightly mod-
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# solved by time nodes

τ qgns1 both qg rel. qg rel.

0.75 115 113 34.71 0.98 7.8e3 1.00

1 114 113 34.71 0.99 7.8e3 1.01

1.5 114 113 34.71 0.95 7.8e3 0.98

2 113 113 34.71 0.93 7.8e3 0.98

# solved time nodes

time by both qg rel. qg rel.

> 0 113 34.71 0.93 7.8e3 0.98

> 10 54 191.54 0.90 1.8e5 0.98

> 100 32 535.64 0.88 5.8e5 0.97

> 500 16 1261.25 0.90 1.4e6 0.98

Table 2.10: (Top) Comparing qg and qgns1 using LS method for different values of τ on TS 1. qg

could solve 113 instances. (Bottom) Break-up of results over instances of varying difficulty for

the best setting, τ = 2.

# solved by time nodes

τ qgns1 both qg rel. qg rel.

0.75 178 177 11.86 0.91 1.0e3 0.89

1 178 177 11.86 0.90 1.0e3 0.90

1.5 178 177 11.86 0.91 1.0e3 0.92

2 178 177 11.86 0.89 1.0e3 0.92

# solved time nodes

time by both qg rel. qg rel.

> 0 177 11.86 0.89 1.0e3 0.92

> 10 63 57.76 0.83 1.1e4 0.81

> 100 16 406.47 0.84 1.8e4 0.87

> 500 7 1548.07 0.85 3.8e4 1.03

Table 2.11: (Top) Comparing qg and qgns1 using LS method for different values of τ on TS 2. qg

could solve 179 instances. (Bottom) Break-up of performance over instances of varying difficulty

for the best setting τ = 2.

ified to consider only important constraints (in set I) for generating linearizations. Also,

problems with nonlinearity only in the objective function are treated as in NS1.



2.3 Linearization Schemes at the Other Nodes 45

In experiments using qg with NS2 (qgns2), we used the same values for parameter

τ, D, and K̃. We used d̃ = 0.5 for constructing set I. Again, on both the test sets, LS

method for selecting points for linearizations has performed better than ECP.

Table 2.12 and Table 2.13 illustrate results from qgns2 with LS method on TS 1 and

TS 2 respectively. On TS 1, we obtained an improvement of about 7% and of about 13%

on TS 2 in solution times. qgns2 has performed better than qgns1 on both the test sets

TS 1 and TS 2.

# solved by time nodes

τ qgns2 both qg rel. qg rel.

0.75 114 113 34.71 0.93 7.8e3 0.98

1 113 113 34.71 0.93 7.8e3 0.98

1.5 113 113 34.71 0.93 7.8e3 0.98

2 113 113 34.71 0.92 7.8e3 0.98

# solved time nodes

time by both qg rel. qg rel.

> 0 113 34.71 0.93 7.8e3 0.98

> 10 54 191.54 0.89 1.8e5 0.98

> 100 32 535.64 0.86 5.8e5 0.97

> 500 16 1261.25 0.92 1.4e6 1.02

Table 2.12: (Top) Comparing qg and qgns2 with LS method and various values of τ on TS 1. qg

could solve 113 instances. (Bottom) Break-up of results over instances of varying difficulty for

best setting τ = 0.75.

2.3.3 Node Linearization Scheme 3 (NS3)

In this scheme, we use both the violation of nonlinear constraints, and their dual

multipliers for deciding whether to select a given node for generating linearizations. First,

we compute a score, ŝ, for the node as ŝ =
∑

k:vk>0
(Vk + vk×dk)/N where Vk, vk and dk are as

defined in schemes NS1 and NS2, and N is the number of violated nonlinear constraints

(vk > 0) at x′, an optimal solution to the LP relaxation of the node. If the score of the node

is more than τ times the score of its parent ( p̂), then we consider the node for generating

linearizations. First, parameter τ is initialized by a preset value. As the tree grows, τ

is updated at every selected node (for adding linearizations) by taking its average with

τ̃ = ŝ/( p̂ + ε), where ε is a small tolerance value which in our experiments is 0.001.

This scheme is also implemented up to a depth D in the search-tree. Methods for finding
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# solved by time nodes

τ qgns2 both qg rel. qg rel.

0.75 178 177 11.86 0.87 1.0e3 0.89

1 178 177 11.86 0.87 1.0e3 0.90

1.5 178 177 11.86 0.89 1.0e3 0.91

2 178 177 11.86 0.88 1.0e3 0.91

# solved time nodes

time by both qg rel. qg rel.

> 0 177 11.86 0.87 1.0e3 0.89

> 10 63 57.76 0.81 1.6e4 0.81

> 100 15 463.33 0.82 2.2e4 0.93

> 500 7 1548.07 0.81 3.8e4 1.03

Table 2.13: (Top) Comparing qg and qgns2 with LS method and various values of τ on TS 2. qg

could solve 179 instances. (Bottom) Break-up of results over instances of varying difficulty for

best setting τ = 0.75.

linearization points and treatment to problems with nonlinearity only in the objective

remain same as in NS1.

In qg with NS3 (qgns3), we used τ = 0.5, 0.75, 1, 1.5 and the same D as in qgns1

and qgns2 . We observed that the ECP method performed better on test set TS 1 and

LS performed better on TS 2. In the former case, best performance is obtained using

τ = 1.5 where qgns3 with ECP solved one instance more than qg with an improvement

of about 11% in the solution time and of about 10% in the number of nodes processed.

On TS 2, using τ = 0.5 and LS method, qgns3 solved two more instances than qg with an

improvement of about 10% in solution times. These results are presented in Table 2.14

and Table 2.15. This scheme has performed better than qgns1 and qgns2 on both TS 1 and

TS 2.

2.4 A Hybrid Linearization Scheme

We studied the effects of schemes obtained by combining linearization schemes at the root

node with those for fractional nodes. We present a hybrid scheme (Hyb) that automatically

identifies structure (US) in a problem and applies linearization schemes RS1 and NS3.

For instances (in TS 2) without this structure, Hyb scheme employs RS5 and NS3. Results

from qg using the hybrid scheme Hyb (denoted qgHyb) on TS 1 and TS 2 are detailed in

Table 2.16 and Table 2.17 respectively. These results show that on TS 1, qgHyb (with
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# solved by time nodes

τ qgns3 both qg rel. qg rel.

0.5 113 111 31.54 0.94 6.9e3 0.89

0.75 113 110 30.21 0.93 6.9e3 0.89

1 114 111 31.54 0.93 6.9e3 0.90

1.5 114 111 31.54 0.89 6.9e3 0.90

# solved time nodes

time by both qg rel. qg rel.

> 0 111 31.54 0.89 6.9e3 0.90

> 10 53 163.83 0.86 1.5e5 0.88

> 100 32 430.23 0.82 4.5e5 0.83

> 500 16 1000.65 0.85 1.1e6 0.84

Table 2.14: (Top) Comparing qg and qgns3 with ECP method and different values of τ on TS 1.

qg could solve 113 instances. (Bottom) Break-up of results over instances of varying difficulty for

best setting, τ = 1.5.

# solved by time nodes

τ qgns3 both qg rel. qg rel.

0.5 181 179 11.72 0.90 1.0e3 0.96

0.75 180 179 11.72 0.90 1.0e3 0.95

1 180 179 11.72 0.92 1.0e3 0.96

1.5 180 179 11.72 0.93 1.0e3 0.95

# solved time nodes

time by both qg rel. qg rel.

> 0 179 11.72 0.90 1.0e3 0.96

> 10 63 58.02 0.87 1.1e4 0.94

> 100 15 463.33 0.77 2.2e4 0.91

> 500 7 1548.07 0.81 3.8e4 1.02

Table 2.15: (Top) Comparing qg and qgns3 with LS method and different values of τ on TS 2. qg

could solve 179 instances. (Bottom) Break-up of results over instances of varying difficulty for

best setting, τ = 0.5.

K = 0.05 and τ = 1.5) has solved 2 instances more than qg with an improvement of about

11% in solution times and about 22% in the number of nodes processed. On TS 2, qgHyb

(with θ = 2 and τ = 1.5) has solved one instance more than qg with about 13% reduction
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in both solution times and nodes processed. Overall, on test set TS l, we solved 3 more

instances and obtained an improvement of about 12% in the solution times over qg.

# solved by time nodes

qgHyb both qg rel. qg rel.

115 112 33.01 0.89 7.3e3 0.78

# solved time nodes

time by both qg rel. qg rel.

> 0 112 33.01 0.89 7.3e3 0.78

> 10 54 172.97 0.86 1.6e5 0.82

> 100 34 430.69 0.81 4.7e5 0.75

> 500 16 1115.30 0.89 1.2e6 0.80

Table 2.16: (Top) Comparison of qg and qgHyb on TS 1. qg could solve 113 instances. (Bottom)

Break-up of performance of qgHyb over instances of varying difficulty.

# solved by time nodes

qgHyb both qg rel. qg rel.

180 177 11.86 0.87 1.0e3 0.86

# solved time nodes

time by both qg rel. qg rel.

> 0 177 11.86 0.87 1.0e3 0.86

> 10 64 56.37 0.81 1.1e4 0.84

> 100 16 408.04 0.82 2.1e4 0.85

> 500 7 1548.07 0.69 3.8e4 0.85

Table 2.17: (Top) Comparison of qg and qgHyb on TS 2. qg could solve 179 instances. (Bottom)

Break-up of performance of qgHyb over instances of varying difficulty.

2.5 Effect of Linearization Schemes in Parallel

Implementation of QG

We study the impact of proposed linearization schemes on a parallel implementation of

QG in MINOTAUR, referred to as mcqg. The basic idea of mcqg is to solve multiple LP

subproblems in the tree simultaneously using multiple available processors on a shared-

memory system. Also, information generated in the tree by different processors, like
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feasible solutions, pseudocosts etc. are shared. More details on the implementation of the

considered parallel implementation can be found in Sharma et al. (2020b). Our numerical

experiments show that deploying linearization schemes within parallel tree-search further

enhances the performance of qg. We show the performance of mcqg with the hybrid

linearization scheme Hyb presented in Section 2.4. We refer to the combination of mcqg

with Hyb as mcqgHyb and compare it to both qg and (plain) mcqg. For experiments

using mcqg and mcqgHyb , we have used 16 threads. Table 2.18 and Table 2.19 show the

performance of mcqgHyb on test sets TS 1 and TS 2, respectively. Note that the wall clock

time taken by the sequential algorithm (qg) is the same as the CPU time. Using mcqgHyb

on TS 1, we observed a significant improvement of about 52% in the solution times and

solved 6 instances more than qg. On TS 2, we solved 2 more instances and obtained an

improvement of about 38% in the solution times.

method # solved by wall time nodes

(M) M both qg rel. qg rel.

mcqg 115 111 31.54 0.54 6.9e3 1.35

mcqgHyb 119 112 33.01 0.48 7.3e3 1.07

# solved wall time nodes

time by both qg rel. qg rel.

> 0 112 33.01 0.48 7.3e3 1.07

> 10 53 181.01 0.32 1.7e5 1.09

> 100 31 504.06 0.27 5.3e5 0.94

> 500 16 1021.32 0.31 1.1e6 1.19

Table 2.18: (Top) Comparison of mcqg and mcqgHyb to qg on test set TS 1. qg could solve 113

instances. (Bottom) Break-up of results of mcqgHyb over instances of varying difficulty.

2.6 Conclusions

To conclude, the serial implementation of QG sees about 12% and 15% improvements in

the solution time and tree size, respectively, by using the proposed linearization schemes.

The schemes reduce the distance between the root LP solution and the feasible region

of the continuous relaxation at the root node by a far greater extent than the reduction

in the solution time. Exploiting the univariate structure in nonlinear constraints has a

bigger impact as compared to general purpose routines. Proposed linearization schemes
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method # solved by wall time nodes

(M) M both qg rel. qg rel.

mcqg 179 177 11.86 0.88 1.0e3 1.45

mcqgHyb 181 176 11.42 0.62 1.0e3 1.19

# solved wall time nodes

time by both qg rel. qg rel.

> 0 176 11.42 0.62 1.0e3 1.19

> 10 64 52.15 0.47 1.1e4 1.08

> 100 14 445.50 0.35 2.4e4 0.86

> 500 6 1727.45 0.28 5.2e4 0.81

Table 2.19: (Top) Comparison of qg and mcqgHyb on test set TS 2. qg could solve 179 instances.

(Bottom) Break-up of results of mcqgHyb over instances of varying difficulty.

are shown to have favorable impact on the performance of a parallel implementation of

the QG method as well.



Chapter 3

Automatic Reformulations

One of the main algorithmic ideas in solving a convex MINLP (P) is to generate and

strengthen bounds (lower and upper) on its optimal objective value, Z∗. The quality

of these bounds influences the convergence of an algorithm, where tight (good quality)

bounds often contribute to solving a problem faster. Iteratively tightened relaxations are

solved in a branch-and-bound framework to obtain lower bounds on Z∗. Since tight relax-

ations often give good bounds, one seeks to generate tight relaxations at different nodes

in a tree-search, especially at the root node. Reformulation is one of the ways to tighten a

problem’s relaxation. The tightest possible continuous relaxation of (P) is its convex hull.

But, finding a convex hull can be as hard as solving the original problem.

In some cases, finding a convex hull description of some relaxation of (P) may be

easy, and using such a description, one can reformulate (P) to strengthen its overall contin-

uous relaxation. In this chapter, we study one such reformulation, called the Perspective

Reformulation (PR) by Frangioni and Gentile (2006) and Günlük and Linderoth (2010).

This reformulation uses a special disjunctive set, called the ‘on-off’ set, whose convex

hull can be defined using the perspective function in the space of the original variables.

Another useful problem reformulation results from utilizing the ‘separability’ prop-

erty of the nonlinear function defining a constraint or the objective in (P). Function sep-

arability is widely used for approximating the values of the Jacobian matrix of a func-

tion, for solving nonconvex MINLPs (especially factorable programs) by creating a sep-

arable equivalent of the original problem (Ryoo and Sahinidis (1996); Shectman and

Sahinidis (1998)), in methods like the interval branch-and-bound for global optimization

(Berenguel et al. (2013)), etc.

For convex MINLPs, using function separability, one can form an extended formu-

lation (with extra variables and constraints) of (P), which helps generate tight polyhe-

dral approximations in cutting-plane, and branch-and-cut based methods (Kronqvist et al.

51
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(2018b)). The effectiveness of exploiting separability is demonstrated by Hijazi et al.

(2014) through example (exBall) of a convex MINLP that involves one nonlinear con-

straint with a separable quadratic function.

minimize
x

0>x

subject to
∑n

j=1

(
x j − 1

2

)2 ≤ n−1
4

}
,

x ∈ {0, 1}n.


(exBall)

Here, the feasible region is defined as an intersection of a hyperball of radius
√

(n − 1)/2

centered at (1/2, . . . , 1/2), with the vertices of the unit hypercube {0, 1}n. Moreover, the

feasible region is empty. It is shown that outer-approximation based algorithms take an

exponential number (2n) of iterations to prove the infeasibility of this problem. On the

other hand, using the separability of the nonlinear function in (exBall), the number of cuts

required by an algorithm to converge reduces to 2n.

On another front, the use of function transformations can induce separability. For

example, log and power transformations help reduce some general nonlinear functions

to separable nonlinear functions. These transformations enable reformulation of general

MINLPs to convex MINLPs, which can then be solved by exploiting function separability

in a branch-and-cut framework (Bonami et al. (2008b); Kronqvist et al. (2018b)).

‘On-off’ sets and separable nonlinear functions appear in many optimization prob-

lems and the reformulations utilizing these structures help solve these problems faster.

With this motivation, we automatically detect such structures in a given mathematical

formulation (and exploiting them) and show their significance in a computational opti-

mization environment using MINOTAUR. More specifically, this chapter presents how to

detect structures that signify separability in nonlinear functions, the applicability of the

perspective reformulation, and how to solve the reformulated problems in a branch-and-

cut framework.

3.1 Perspective Reformulation

First, we present the definition of the perspective function used in describing a convex

hull of the sets of our interest. Given a function f (x) : Rn → R, let a function f̌ (x, λ) :

Rn+1 → R be defined as

f̌ (x, λ) =


λ f

( x − (1 − λ)x̂
λ

)
, if λ > 0,

0, if λ = 0,

∞, otherwise,

(PF)
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where x̂ is some fixed vector. It can be easily shown that if f is convex, then f̌ is also

convex. When x̂ = 0, the function f̌ is known as the perspective function of f .

Proposition 3.1.1. f̌ (x, λ) is convex if and only if f (x) is convex.

Ceria and Soares (1999) extend the results of Balas (1985) and Balas (1998) on

disjunctive programming involving polyhedral sets to disjunctive convex programming.

Theorem 3.1.2 by Ceria and Soares (1999) presents convex hull description of the union

of a finite number of closed convex sets (defined using convex functions) in a higher-

dimensional space using the perspective function. Let a set K be defined as

K = conv
(
∪
j∈J

K j
)
, (3.1)

where every set K j is a closed convex set and is given by K j :=
{
x ∈ Rn : F j(x) ≤

0
}

and F j : Rn → Rm j is a vector-valued function whose every component is a closed

convex function. Perspective functions F j and their closure, denoted as F̌ j and
(
cl F j

)
respectively, are given by

F̌ j(x j, λ j) =


λ jF j

( x j

λ j

)
, if λ j > 0,

0, if λ j = 0,

∞, otherwise,

and,

(
cl F̌ j

)
(x j, λ j) =


λ jF j

( x j

λ j

)
, if λ j > 0,

F j′
∞, if λ j = 0,

∞, otherwise,

where F j′
∞ denotes the recession function of F j (Ceria and Soares (1999)). The recession

function of a function captures the asymptotic behavior of this function along a direction.

Theorem 3.1.2 (Ceria and Soares (1999)). Let K be defined as in (3.1). A vector x belongs

to K if and only if there exist vectors (x j, λ j) for every j ∈ J, such that the following

nonlinear system is feasible

x =
∑
j∈J

xi, (3.2)

(
cl F̌ j

)
(x j, λi) ≤ 0, j ∈ J, (3.3)∑

j∈J

λ j = 1, λ j ≥ 0, (3.4)

where
(
cl F̌ j

)
(x j, λi) denotes the closure of the perspective mapping of F j at (x j, λi).
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It is shown by Günlük and Linderoth (2010) and Frangioni and Gentile (2006) that,

for some disjunctive sets of the following form (S), convex hull description can be given

in the space of the original variables using the perspective function. The set (S) is a union

of two sets corresponding to different values of an associated binary variable, say z.{
(x, z) ∈ Rn × {0, 1}

∣∣∣∣∣ x ∈ Γ0, if z = 0

x ∈ Γ1, if z = 1

}
. (S)

If Γ0 is a singleton set and Γ1 is a bounded convex set, then the set S is called an indicator-

induced {0, 1} set or an ‘on-off’ set. The roles of z = 0 and z = 1 can be swapped without

losing generality.

A binary variable z is said to control variables x, if by setting z = 0, x can be fixed

to some vector x̂, x̂ ∈ Rn, and z = 1 implies that x lies in a compact convex set. Such vari-

ables x are called semi-continuous variables (Frangioni and Gentile (2006, 2009)). Every

binary variable trivially controls itself. Semi-continuous variables appear in optimiza-

tion models of many real-world problems like the synthesis of heat exchanger networks

(Zamora and Grossmann (1998)), hydro-thermal unit commitment problems (Frangioni

et al. (2008)), the portfolio selection model (Jobst et al. (2001)), etc. These variables take

a fixed value representing a certain condition, otherwise, a value from some interval. For

example, the variable xi j in the uncapacitated facility location problem (UFL) presented

in Chapter 1 is a semi-continuous variable. It takes the value 0 when facility i is closed

(indicated by zi = 0), and if the facility is open (zi = 1), xi j lies in the range [0, 1].

Let the problem (P) contains disjunctions that are either an ‘on-off’ set or a set (S)

in which Γ0 is a ray. Suppose such disjunctions are replaced with their convex hull repre-

sented using the well-known perspective function (4.6) in the space of original variables.

In that case, the resulting reformulation is called a perspective reformulation of (P).

In this chapter, we present structures in the form of a collection of constraints repre-

senting disjunctive sets that are amenable to perspective reformulation. We automatically

detect and use these structures in a branch-and-cut framework for generating gradient in-

equalities to the nonlinear constraints in their convex hull description. These inequalities

are called perspective cuts Frangioni and Gentile (2006)).

3.1.1 Sets of the Form (S)

We present sets that are amenable to perspective reformulation. If these sets are

present in a problem, they can be replaced by their convex hull descriptions to obtain

tighter relaxations. Sets discussed in this section can be viewed as generalizations of sets

described by Günlük and Linderoth (2010).



3.1 Perspective Reformulation 55

1. This set is referred to as (S 1) and is given by Γ0 ∪ Γ1 with

Γ0 := {(x, z) ∈ Rp × {0, 1} : x = x̂, z = 0}.
Γ1 := {(x, z) ∈ Rp × {0, 1} : gi(x) ≤ 0, i ∈ M′, Ax ≤ a, z = 1}.

 (S 1)

Where, x̂ is some fixed assignment of x, M′ is an index set of nonlinear constraints,

a is a vector, A is a matrix of appropriate dimensions such that the polyhedral set

Ax ≤ a is compact, every gi is a convex function, and p is a positive integer. Here,

Γ0 is a singleton and Γ1 is a compact convex set.

From the first principle, the convex hull of the set (S 1), denoted as conv(S 1), can be

shown to be in the space of original variables x and z.

Lemma 3.1.3. conv(S 1) = Γ0 ∪ S̃ 1, where

S̃ 1 =

{
(x, z) ∈ Rp+1 :gi

( x − (1 − z)x̂
z

)
≤ 0, i ∈ M′,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}
.

Proof. The extended reformulation of conv(S 1) can be derived by taking convex

combination of points (x0, z0) ∈ Γ0 and (x1, z1) ∈ Γ1 as

conv(S 1) =

{
(x, z, λ) ∈ Rp+2 : x = (1 − λ)x0 + λx1,

z = (1 − λ)z0 + λz1,

gi(x1) ≤ 0, i ∈ M′,

Ax1 ≤ a, z1 = 1,

x0 = x̂, z0 = 0, λ ∈ [0, 1]
}
.

By substituting the values of x0, z0, and z1, we get z = λ and x = (1 − z)x̂ + zx1.

Furthermore, x1 can be substituted as x1 =
x − (1 − z)x̂

z
for z > 0. We define

S̃ 1 =

{
(x, z) ∈ Rp+1 :gi

( x − (1 − z)x̂
z

)
≤ 0, i ∈ M′,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}
.

Also, if z = 0, then (x, 0) ∈ conv(S 1) if and only if (x, 0) ∈ Γ0.

Also, using results from Günlük and Linderoth (2008), Γ0 can be shown to lie in

the closure of the set S̃ 1, denoted by cl (S̃ 1). Therefore, conv(S 1) = cl (S̃ 1). The

function defining S̃ 1 may not be convex even when gi is convex. To ensure that
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the nonlinear functions defining the set S̃ 1 are convex and given that z > 0, we can

write the following equivalence

gi

( x − (1 − z)x̂
z

)
≤ 0⇔ zgi

( x − (1 − z)x̂
z

)
≤ 0, i ∈ M′.

Thus, S̃ 1 can be rewritten as

S̃ 1 =

{
(x, z) ∈ Rp+1 :zgi

( x − (1 − z)x̂
z

)
≤ 0, i ∈ M′,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}
.

2. This set, referred to as (S 2), is defined as Γ0 ∪ Γ1, with

Γ0 := {(x, v, z) ∈ Rp+q × {0, 1} : x = x̂, dT v ≤ 0, z = 0}.
Γ1 := {(x, v, z) ∈ Rp+q × {0, 1} : gi(x) ≤ 0, i ∈ M′, g j(x) + dT v ≤ 0, Ax ≤ a, z = 1}.


(S 2)

Where, x̂ is some fixed x, d, a are vectors and A is a matrix of appropriate dimensions,

polyhedral set defined by Ax ≤ a is compact, and every gi and g j are convex functions

such that g j(x̂) ≥ 0. In this case, Γ0 constitutes a half-space and Γ1 is a compact convex

set.

Lemma 3.1.4. conv(S 2) = Γ0 ∪ S̃ 2, where

S̃ 2 =

{
(x, v, z) ∈ Rp+q+1 : gi

( x − (1 − z)x̂
z

)
≤ 0, i ∈ M′,

g j

( x − (1 − z)x̂
z

)
+

dT v

z
≤ 0,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}
.

Proof. Convex hull of the set S 2, conv(S 2), can be expressed in the extended space by

taking convex combination of points (x0, v0, z0) ∈ Γ0 and (x1, v1, z1) ∈ Γ1 as

conv(S 2) =

{
(x, v, z, λ) ∈ Rp+q+2 : x = (1 − λ)x0 + λx1

v = (1 − λ)v0 + λv1,

z = (1 − λ)z0 + λz1,

gi(x1) ≤ 0, i ∈ M′,

g j(x1) + d>v1 ≤ 0,

Ax1 ≤ a, z1 = 1,

x0 = x̂, z0 = 0, d>v0 ≤ 0, λ ∈ [0, 1]
}
.
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By substituting the values of x0, x1, v1, z0 and z1, we get z = λ, and for z > 0, we also

get x1 =
x − (1 − z)x̂

z
and v1 =

v − (1 − z)v0

z
. On substituting the values of x1 and v1 in the

nonlinear constraints in the description of conv(S 2), we get

g j

( x − (1 − z)x̂
z

)
+

1
z

d>v − 1 − z
z

d>v0 ≤ 0. (3.5)

Since, d>v0 ≤ 0, we have that
(1 − z

z

)
d>v0 ≤ 0 and the third term in (3.5) can be dropped.

For z = 0, the point (x, v, 0) belongs to conv(S 2) if and only if (x, v, 0) belongs to Γ0.

Like earlier, conv(S 2) can be shown equivalent to the closure of the set S̃ 2, denoted

by cl (S̃ 2). Again, to ensure convexity of the nonlinear functions in the description of S̃ 2,

we multiply both the sides by z as it is positive, and obtain

S̃ 2 =

{
(x, v, z) ∈ Rp+q+1 : zgi

( x − (1 − z)x̂
z

)
≤ 0, i ∈ M′,

zg j

( x − (1 − z)x̂
z

)
+ d>v ≤ 0,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}
.

Also, the conv(S 2) = cl (S̃ 2).

3.1.2 Difficulty in Finding Sets (S 1) and (S 2)

Variables x in the sets (S 1) and (S 2) are semi-continuous variables. Given a convex

MINLP of the form (P), finding semi-continuous variables and hence the disjunctive sets

(S 1) or (S 2), is NP-hard in general. This is because, for every pair (xi, x j) of variables of

interest, where i , j, x j ∈ {0, 1}, j ∈ I, the following two MINLPs (P1 and P2) have to

be solved with x j = 0 to check if xi gets fixed to a value x̂i.

minimize
x

xi

subject to gk(x) ≤ 0, k ∈ M,

x j = 0, xk ∈ Z, k ∈ I.


(P1)

Problem (P2) is the same as (P1) except that the objective sense is maximization. If the

optimal values of these two MINLPs exist and are equal to say x̂i, then it means that

x j = 0 fixes xi to x̂i. Since finding on-off sets can be as challenging as solving the original

MINLP, there is a trade-off between the number of structures detected and the time spent

finding them. A less time-consuming alternative is to find collections of constraints that

conform with sets (S 1) and (S 2). As reported in the next section, such collections appear

as small blocks in the mathematical formulation of many applications, as evident from

certain benchmarking instances from MINLPLib (Bussieck et al. (2003)).
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3.1.3 Structures Implying Semi-Continuous Variables

As mentioned earlier, finding whether a variable is semi-continuous or not requires

solving two MINLPs, (P1) and (P2). This section presents some collections of constraints

that indicate semi-continuous variables and binary variables controlling them. These col-

lections may appear as small blocks in the problem (P). In this and the coming sections,

we also use the notation z for binary variables that control other variables.

1. Collection, (C1), of linear inequalities in at most two variables of the form,

l1z + l0(1 − z) ≤ x ≤ u1z + u0(1 − z),

z ∈ {0, 1}, x ∈ R,

 (C1)

where l0, l1, u0, u1 ∈ R and l j ≤ u j, j = 0, 1. If l0 = u0, then x is a semi-continuous

variable controlled by z. Similarly, if l1 = u1, then (1 − z) controls x. A simple

example of (C1) that appears in many problems is

lz ≤ x ≤ uz,

z ∈ {0, 1}, x ∈ R,

where l0 = u0 = 0, l, u are lower and upper bounds on x, and x̂ = 0.

2. Collection (C2) of the following constraints

aT x + d1z ≤ d2,

l ≤ x ≤ u,

z ∈ {0, 1},

 (C2)

where d1 and d2 are scalars, and l, u ∈ Rp with l ≤ u. For a variable xi, if ai > 0,

then li = 0, and if ai < 0, then ui = 0.

(a) When d2 = 0 if d1 < 0, every component of x is semi-continuous variable

controlled by z such that x̂ = 0. If d1 > 0, z = 1 is infeasible and therefore, z

can be fixed to 0.

(b) When d1 = d2, every component of x is semi-continuous variable controlled

by 1 − z and x̂ = 0. However, if d1 < 0, then z = 0 becomes infeasible and z

can be fixed to 1. A simple example of (C2) is

p∑
i=1

zi ≤ 1,

z ∈ {0, 1}p.

In this example, (1 − zi) controls all the other variables in the constraint.
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3. Collection (C3) of constraints that involves at least one of the previous two collec-

tions and an extra equality constraint.

dT x + d3 x̃ = d4,

x̃ ∈ R, x ∈ C1 or C2,

 (C3)

where d ∈ Rp, and d3 and d4 are any scalars. If x is controlled by z or (1 − z), then

so is x̃ if l̃ ≤ d4 − dT x̂
d3

≤ ũ, where l̃ and ũ are lower and upper bounds respectively

on x̃, otherwise, z can be fixed to 1 or 0, respectively.

The experimental setup used in this chapter is the same as in Section 2.1 in the

Chapter 2. Out of 374 convex MINLP instances in MINLPLib (Bussieck et al. (2003)),

274 instances have at least one binary variable remaining after MINOTAUR’s presolve

routine. We refer to the set of these 274 instances as TS b. Table 3.1 reports the number

of instances in TS b with above mentioned collections. While computing the number of

semi-continuous variables in an instance, we do not count a binary variable that controls

itself. We found that 220 instances in TS b have at least one of collections (C1 + C2 + C3).

We refer to the set of these instances as TS c. Test set TS c is used for detecting structure

amenable to PR. More details on instances in test set TS c are presented in the Table D.1

in Appendix D.

# inst. with semi-continuous variables

type # inst. ≥ 50% ≤ 10%

C1 194 151 9

C2 132 41 5

C1 + C2 220 203 0

C1 + C3 194 154 7

C2 + C3 132 43 5

C1 + C2 + C3 220 208 0

Table 3.1: Summary of instances in test set TS c that contain collections of type Ci, i = 1, 2, 3

indicating the presence of semi-continuous variables in them. The first column shows the type of

collection. The second column reports the number of instances containing at least one collection

of the type mentioned in the first column. In the last column, the first sub-column corresponds to

the number of instances (out of the number of instances mentioned under the second column) in

which at least 50% of the total number of variables are found to be semi-continuous. The second

sub-column shows the number of instances in which the total number of semi-continuous variables

is less than 10%.
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3.1.4 Structures Amenable to Perspective Reformulation

A reformulation of the problem that results by replacing the on-off sets of the

form (S 1) or (S 2) by their convex hull description (as mentioned in Lemma 3.1.3 and

Lemma 3.1.4, respectively) is referred to as a perspective reformulation. In this section,

given the problem (P), we present some structures that conform with sets of the form (S 1)

or (S 2), and thus, are amenable to perspective reformulation.

1. A nonlinear constraint of the form

gi(x) ≤ 0, (3.6)

conforms with (S 1) and thus, is amenable to perspective reformulation, if the fol-

lowing two conditions hold.

(a) variables x are semi-continuous and controlled by a binary variable x j, j ∈ I,

and are related by constraints of the form (C1) or (C2) or (C3).

(b)

gi(x̂) ≤ 0. (3.7)

If inequality (3.7) does not hold, then x j = 0 is infeasible (there does not exist

a feasible solution in which x j takes the value 0) and x j can be fixed to 1.

The overall structure can be written as

gi(x) ≤ 0,

(x, z) ∈ Ck,

 (PS 1)

where k ∈ {1, 2, 3}.
An example of structure (PS 1) and its PR is

ex1+x2 − 1000 ≤ 0,

z + 1 ≤ x1 ≤ 1 + 5z,

z + 2 ≤ x2 ≤ 2 + 7z,

z ∈ {0, 1}.

Here, e3 < 1000 therefore, the perspective reformulation is given by

ze

( x1 + x2

z

)
− 1000z ≤ 0,

z + 1 ≤ x1 ≤ 1 + 5z,

z + 2 ≤ x2 ≤ 2 + 7z,

z ∈ [0, 1].


(PEx-1)
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Remark 3.1.5.

(a) Suppose all the semi-continuous variables result from collection (C1). In that

case, only the nonlinear constraint is modified, and the linear constraints re-

main unchanged in the reformulated problem.

(b) When the semi-continuous variables x and the associated binary variable z

are defined using linear constraints Dx ≤ d (where d is a vector and D is a

matrix of appropriate dimensions) such that x̂ = 0 and d = 0, then the linear

constraints remain unchanged in the reformulated problem. For example, see

(C2) (2a).

(c) Structure (PS 1) can have additional linear constraints of the form Dx ≤ d

and nonlinear constraints gk(x) ≤ bk, k ∈ M′ such that D(x̂) ≤ d and gk(x̂) ≤
bk, k ∈ M′, and PR is still applicable.

2. In this structure, all variables in the nonlinear part of a nonlinear constraint function

g j are semi-continuous, and there is at least one variable in the linear part that is not

controlled by the same binary variable x j. Given a nonlinear constraint function g j,

let g̃ j and g j denote nonlinear and linear parts in disjoint set of variables x̃ and x,

respectively. If z exists in the function g j, it should be considered a part of g̃ j. This

collection (PS 2) is defined as

g̃ j(x̃) + g j(x) ≤ 0,

(x̃, z) ∈ Ck,

 (PS 2)

where k ∈ {1, 2, 3} conforms with set (S 2) if g j( ˆ̃x) ≥ 0 and the nonlinear constraint

(3.6) is called amenable to PR. Remark 3.1.5 regarding the reformulated problem

hold in this case as well.

An example of structure (PS 2) that may appear on reformulating a problem by

moving the nonlinear objective to the constraint set using an auxiliary variable and

its PR is

ex1+x2 ≤ η,
z + 1 ≤ x1 ≤ 1 + 5z,

z + 2 ≤ x2 ≤ 2 + 7z,

z ∈ {0, 1}.
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Here, e3 > 0 and therefore, the perspective reformulation is given by

ze

( x1 + x2

z

)
≤ η,

z + 1 ≤ x1 ≤ 1 + 5z,

z + 2 ≤ x2 ≤ 2 + 7z,

z ∈ [0, 1].


(PEx-2)

Perspective reformulations of the structures (PS 1) and (PS 2) represent the convex hull

descriptions of these sets and thus, contained by any convex nonlinear relaxation of these

sets. Therefore, these reformulations are at least as tight as their continuous relaxations (

result from relaxing the integer constrained variables in these sets).

3.1.5 Detecting Structures Amenable to Perspective Reformulation

Given a problem (P), we have a straightforward two-phase algorithm for detecting

nonlinear constraints amenable to perspective reformulation. In the first phase, the algo-

rithm first iterates through linear inequalities to find blocks of constraints (C1) and (C2).

Then it iterates through all the linear equalities to detect (C3). The outcome of the first

phase is either a set of semi-continuous variables (and binary variables controlling them)

or an indication that there are none. If there are semi-continuous variables, then in the

second phase, the algorithm iterates through every nonlinear constraint and checks if it is

amenable to PR. In case a nonlinear constraint conforms to either of the sets, it is declared

amenable to perspective reformulation.

Our computational results on the test set TS c show that 104 instances (all mixed-

binary nonlinear programs) have structures amenable to perspective reformulation. We

refer to the set of these 104 instances as TS pr. Full details of the instances in TS pr are

shown in the Table D.2 in Appendix D. All instances (except synthes2 and synthes3) in

TS pr have all nonlinear constraints amenable to perspective reformulation. Out of these,

103 instances have all PR amenable constraints of type (S 1), and the instance synthes3

has one constraint each of type (S 1) and (S 2).

As this algorithm iterates through linear constraints for finding semi-continuous

variables, it might take more time on instances with a large number of linear constraints.

The time taken to detect structures amenable to perspective reformulation (including de-

tection of semi-continuous variables) in any instance in the set TS pr is negligible (less

than half a second).
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3.1.6 PR as a Presolving Technique

The identification of semi-continuous variables and constraints amenable to PR can

also be viewed as a preprocessing step. We may also see some variable fixings as a

byproduct of finding structures for PR. While detecting semi-continuous variables, col-

lections (C1), (C2), and (C3) are used to fix the value of a variable that is controlled by z

or 1 − z. When z = 0, if the lower bound and the upper bound on a variable x ∈ R, say l

and u respectively, are equal, then x is said to be controlled by z. If, however, l > u, then z

can be fixed to 1. In the cases, C2 + C3 and C1 + C2 + C3 as shown in Table 3.1, we found

that a binary variable could be fixed to 0 or 1 in three instances batch0812, batchdes,

and batch.

Another possibility of variable-fixing arises when a nonlinear constraint satisfies the

first requirement but not the second (3.7) of the set (S 1). Although we do not see fixing

of this kind in the instances in test set TS c, it does not undermine such possibility.

Moreover, if a nonlinear constraint conforming with (S 1) is such that all of its vari-

ables are controlled by both z and 1 − z, then the nonlinear constraint becomes redundant

and can be removed from the problem. If the same holds for a nonlinear constraint con-

forming with (S 2), then the nonlinear constraint can be transformed to a linear one as

g j(x) + (1 − z)̃g j(x̃0) + z̃g j(x̃1) ≤ 0,

where x̃ = x̃0 when z = 0, and x̃ = x̃1 when z = 1.

3.1.7 Solving Perspective Reformulation

The main difficulty in solving a perspective reformulation problem arises (due to

indivisibility by zero) at points where binary variables associated with PR amenable non-

linear constraints take the value 0. Therefore, the existing methods for solving the re-

formulated problem focus on handling the division by 0. One can solve the perspective

reformulated problem (1) by ε-approximation method that perturbs the reformulated con-

straint to take care of indivisibility by 0 (Furman et al. (2020)) (2) as a second-order cone

program (SOCP) where nonlinear inequalities in the reformulated problem can be writ-

ten as equivalent second-order cone constraints and solved using efficient SOCP solvers

Frangioni and Gentile (2009); Günlük and Linderoth (2010)) (3) using perspective cuts,

which are outer-approximation cuts to the reformulated nonlinear constraints, introduced

by Frangioni and Gentile (2006). We focus on the last method - solving the reformulated

problem using perspective cuts - where we generate and automatically add perspective

cuts in a branch-and-cut framework, particularly in the QG method. We also briefly dis-

cuss ε-approximation approach in the context of the structures of our interest.
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Consider the nonlinear constraint (3.8) in the perspective reformulation of the struc-

ture (PS 1)

zgi

( x − (1 − z)x̂
z

)
≤ 0. (3.8)

Let

hi(x, z) = zgi

( x − (1 − z)x̂
z

)
.

Outer-approximating the constraint in (3.8) at a point (x′, z′) with z′ > 0 gives

hi(x′, z′) + (s1, s2)>(x − x′, z − z′) ≤ 0, ∀(s1, s2) ∈ ∂hi(x′, z′). (3.9)

Let Γ1 be the set obtained corresponding to z = 1 in the structure (PS 1). For any fixed

x′′ ∈ Γ1 and z ∈ [0, 1], ∂hi(x, z) remains constant on the line of the form x = (1− z)x̂ + zx′′

and thus, linearizations obtained at all such points (x, z) are the same. This implies that

the outer-approximation cut at (x′, z′) is the same as at one at the point
( x′

z′
, 1

)
and is given

by

x>s + z
(
gi

( x′

z′
)

+ s
(
x̂ − x′

z′
))
≤ s> x̂, s ∈ ∂xgi

( x′

z′
)
. (3.10)

The valid inequality (3.10) is called a perspective cut. It is shown by Günlük and

Linderoth (2010) that perspective cuts are outer-approximation cuts to the constraints

amenable to perspective reformulation. And adding infinitely many perspective cuts to

the defining function in a structure amenable to perspective reformulation gives its con-

vex hull. Also, note that all perspective cuts pass through the point (x̂, 0). Similarly, for a

reformulated constraint corresponding to (PS 2), a perspective cut is given by

x̃>s + z
(̃
g j

( x̃′

z′
)

+ s̃
(
ˆ̃x − x̃′

z′
))

+ gi(x) ≤ sT ˆ̃x, s ∈ ∂x̃g̃i

( x′

z′
)
. (3.11)

In a cutting-plane based method or a branch-and-cut framework, instead of working

directly with the algebraic description of the reformulated constraints, one starts from its

relaxation. This relaxation is iteratively strengthened by dynamically generating perspec-

tive cuts as the algorithm progresses.

3.1.8 Perspective Cuts in a Branch-and-Cut Framework

This section discusses when one should generate perspective cuts and at which

points in the branch-and-cut framework of the QG algorithm. In the QG method, cuts

are added at nodes where associated linear programs yield integer optimal solutions. Ad-

ditionally, as discussed in Chapter 2, one tends to start with a tight relaxation at the root
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node as the quality of relaxation at the early stages of the tree influences branching de-

cisions and the overall size of the tree. Traditionally, the continuous relaxation solution

at the root node, say (x0, z0), is used to create initial linear relaxation by linearizing the

nonlinear constraints at (x0, z0). Here, z0 represents the vector of binary variables asso-

ciated with semi-continuous variables appearing in the structures amenable to PR. These

linearizations (gradient inequalities or cuts) to the constraints active at (x0, z0) are sup-

porting for Pc (the feasible region of the continuous relaxation of problem (P)). However,

these inequalities may not support Pr (the feasible region of the continuous relaxation

of the perspective reformulated problem). This scenario arises when z0
j belongs to (0, 1)

for some j and satisfies the original nonlinear constraint but not the reformulated con-

straint. Moreover, this can also happen at other nodes yielding fractional solutions in the

branch-and-bound tree.

We found that in 68 instances in test set TS pr, at least one reformulated nonlinear

constraint get violated at the root relaxation solution (x0, z0), and 20 of these instances

have more than 50% of the reformulated constraints violated. This observation motivated

us to generate tight perspective cuts for the reformulated problem from a point (x′, z′) that

is not in Pr. We study the problem of generating perspective cuts from such a point (x′, z′)

under the following two cases.

1. In this case, (x′, z′) lies in the Pr, feasible region of the continuous relaxation of the

original problem (P), but not in the Pc, continuous relaxation of the reformulated

problem. That is, (x′, z′) ∈ Pc but (x′, z′) < Pr. An example of this case is when

(x0, z0), the root relaxation solution, does not lie in Pr.

2. In this case, (x′, z′) does not lie in either of the sets Pc or Pr.

Given a (x′, z′) < Pr, we are interested in finding a point (x′′, z′′) such that (x′′, z′′) lies in

Pr (or at least at the boundary of the violated constraint) and linearizations generated at

(x′′, z′′) are tight and cut off (x′, z′). We propose the following methods that are easy to

implement and are computationally effective in obtaining such a point (x′′, z′′).

1. This method, named SimLS (stands for simple line search,) considers each violated

constraint indexed j and search for a point that satisfies the reformulated constraint

indexed j at equality. That is, given

z′ig j

( x′ − (1 − z′i)x̂
z′i

)
> 0,

where zi is the binary variable controlling variables x, this method finds a point

(x′′, z′′) such that

zi
′′g j

( x′′ − (1 − zi
′′)x̂

zi
′′

)
= 0.



66 Automatic Reformulations

Given the point (x′, z′) ∈ Pc, if (x′, 1) ∈ Pr, then (x′′, z′′) is such that x′′ = x′ and

z′′i = (1 − λ)z′i + λ for some λ ∈ (0, 1].

Also, if (x̂, 1) ∈ Pc (and thus, in Pr), then for every (x′, z′ ∈ Pc), (x′, 1) ∈ Pc (and

thus, in Pr). Verifying (x̂, 1) ∈ Pc amounts to evaluating whether the nonlinear

constraint satisfies at (x′, 1). Also, for the structure (PS 1), if the associated binary

variable does not exist in the defining nonlinear constraint, then (x̂, 1) ∈ Pc.

We found that in 98 instances in TS pr, (x̂, 1) ∈ Pc for all the PR amenable

constraints. In 50 out of these 98 instances, binary variables controlling semi-

continuous variables do not appear in the constraint function. The 6 instances in

which this condition is not satisfied for any of the PR amenable constraints are

clay*.

2. This method, referred to as CenLS, uses an approximation of the center (xC, zC) of

Pc, if (xC, zC) also lies Pr, continuous relaxation of the reformulated problem. To

find (xC, zC), we solve the problem (NLPI) as in Chapter 2. If such a point (xC, zC)

exists and lies in Pr, then we perform a line search between the given point and the

center point (xC, zC) to obtain boundary point as the desired point (x′′, z′′).

Adding Perspective Cuts at Root Node

In the first set of computational experiments, we generate perspective cuts at only the root

node in the QG algorithm. We categorize these under three settings root_reg, root_cenls,

and root_bothls, based on the above methods for generating perspective cuts.

1. root_reg: In this setting, we generate a perspective cut to every nonlinear constraint

violated at point (x0, z0) (solution to the root node) in the reformulated problem.

2. root_cenls: This setting generates perspective cuts to violated nonlinear constraints

in the reformulated problem using CenLS method.

3. root_bothls: This setting generates additional perspective cuts using SimLS

method, wherever applicable, in the setting root_cenls.

In all these experiments, we add gradient inequalities to nonlinear constraints defining

structures amenable to PR at corresponding points (x̂, 0), where z = 0 sets x = x̂. Collec-

tion of these cuts are termed as initCuts.

We compare the default implementation of QG in MINOTAUR, referred to as qg,

to qg with the settings root_reg, root_cenls, and root_bothls. We experimented with a

variant of the last two settings. In this variant, we incorporated additional perspective
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cuts generated at (x0, z0) and obtained better performance than the corresponding origi-

nal setting. We see further improvement by adding perspective cuts to constraints that

were inactive at the root relaxation solution. If a nonlinear constraint in the reformulated

problem is inactive at (x0, z0), then every direction from (x0, z0) is feasible concerning the

region defined by the constraint. If (x0, 1) does not lie in Pr, then we find a point on the

boundary by moving along direction −ez, where ez is a vector whose components asso-

ciated with z is one and rest are 0. Thus, results reported for the settings root_cenls and

root_bothls are from this final version. The performance measures used for comparison

are overall solution time and size of the tree in terms of the number of nodes processed,

as described in Section 2.2.

Each row of Table 3.2 corresponds to an experimental setting (s ∈ {root_reg,

root_cenls, root_bothls}). The column ‘# solved by’ lists the number of instances solved

to optimality within the time limit under setting s and by both the reference solver (qg

in this case) as well as setting s. The first column under the headings ‘time’ and ‘nodes’

shows the shifted geometric mean (SGM) of these measures reported by the reference

solver (qg in this case) for the instances solved by both. The second column under these

headings show the relative SGM (‘rel.’) under setting s for the same instances. Similarly

for Table 3.3. Table 3.2 and Table 3.3 present a comparison of default qg and qg with

different settings s for adding perspective cuts at the root node of the tree of instances

from test set TS pr. Analysis is presented for instances in the test set TS pr that are solved

by all the methods compared. The once instance (rsyn0830m04m) that reached time limit

by qg took under setting root_reg 56.22 s, root_cenls 53.93 s, and root_bothls 47.17 s.

Our computational results show improvements in both the considered measures un-

der all three settings. The highest improvement is reported by qg with root_bothls. Over-

all, it improved the solution time and tree size by about 43.19% and 41.45%, respectively.

Even higher improvements (about 81% and 95%for both the measures) are observed for

instances in with default qg took more than 100 seconds and 500 seconds, respectively.

Furthermore, we use performance profiles Dolan and Moré (2002) that graphically

demonstrate the relative performance of different solvers for a particular performance

measure over a given set of instances. Let S be a set of solvers to be compared, I be

a given set of instances, and ti,s be the solution time of instance i ∈ I by solver s. The

performance ratio ri,s of solver s on instance i compared to the best solver for this instance

is given by

ri,s =
ti,s

min
j∈S

ti, j
,
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Table 3.2: (Top) Comparison of qg and

qg with setting s on 103 instances in TS pr

that are solved by both the methods. (Bot-

tom) Performance on instances (26 for qg

and qg with first two settings, and 25 with

root_bothls) that are solved by both but at

least one method took more than 10 sec-

onds.

time nodes

setting (s) qg rel. qg rel.

root_reg 8.60 0.67 505.44 0.69

root_cenls 8.60 0.63 505.44 0.69

root_bothls 8.60 0.57 505.44 0.59

time nodes

setting (s) qg rel. qg rel.

root_reg 67.23 0.48 14956.08 0.41

root_cenls 67.23 0.43 14956.08 0.41

root_bothls 72.39 0.34 17005.06 0.29

Table 3.3: (Top) Comparison of qg and qg

with setting s on nine instances in TS pr

that are solved by both the methods but at

least one method took more than 100 sec-

onds. (Bottom) Similar comparison on two

instances in TS pr that are solved by both the

methods, but at least one method took more

than 500 seconds.

time nodes

qg rel. qg rel.

294.93 0.28 55751.27 0.24

294.93 0.24 55751.27 0.26

294.93 0.19 55751.27 0.19

time nodes

qg rel. qg rel.

1249.47 0.10 595448.0 0.09

1249.47 0.10 595448.0 0.09

1249.47 0.05 595448.0 0.04

and ρs(τ) : R → [0, 1], a cumulative distribution function for the performance ratio of

solver s, is defined as

ρs(τ) =
|i ∈ I : ti,s ≤ τ|

|I| .

ρs(τ) is a nondecreasing function indicating that solver s is at most τ times slower than the

best solver on an instance. In particular, the value ρs(1) gives the fraction of the instances

on which a solver s performs the best. Figure 3.1 shows the performance profiles of

qg and qg with settings root_reg, root_cenls, root_bothls using the solution times of the

instances in test set TS pr. It shows that on nearly 45% of these instances, qgrs1 is faster

than qg and two times faster on more than 10% of the instances. We use similar profiles

for reporting the results of the other schemes in this section.

Adding Perspective Cuts at Other Nodes

In this second set of experiments, we generate perspective cuts at other nodes yielding

integer feasible solutions in addition to the root node. The nodes we have selected for

generating perspective cuts are the same as in default qg (the ones yielding integer optimal

LP solution). But using the fixed-NLP solution as in QG algorithm may not produce tight
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Figure 3.1: Performance profiles comparing so-

lution times of qg and qg with settings root_reg,

root_cenls, root_bothls on instances in test set

TS pr.
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Figure 3.2: Performance profiles comparing

solution times of qg and qg with settings

root_bothls, other_reg, other_cenls on instances

in test set TS pr.

inequalities for the reformulated problem for the same reason as mentioned for the case of

the root node. Here, we employ CenLS method for finding points for generating tighter

perspective cuts. Let (x′, z′) be an integer solution of the fixed-NLP at any node. If the

fixed-NLP is infeasible, (x′, z′) is a solution to the feasibility problem. When the fixed-

NLP is optimal, a reformulated constraint is always feasible. However, some constraints

could be inactive. In the test set TS pr, in 6 instances, at least one reformulated nonlinear

constraint is violated at some node yielding an integer optimal solution. In 10 instance,

at least one reformulated constraint is inactive at the fixed-NLP optimal solution. Thus,

keeping the best setting at the root node, we have performed the following computational

experiments for adding perspective cuts at nodes that yield an integer optimal solution.

• other_reg: This setting generates perspective cuts to every nonlinear constraint in

the reformulated problem at (x′, z′) when z′ , 0.

• other_cenls: This setting employs CenLS method for generating perspective cuts.

We have experimented other_cenls method with and without adding constraints for inac-

tive perspective amenable constraints in the same manner as in the root node. We found

better results by not adding additional constraints for inactive constraints and thus report

the same. Table 3.4 and Table 3.5 summarize the results of qg with these settings in

comparison to the default qg on instances in the test set TS pr.

Our computational results show improvements in both the considered measures un-

der all the three settings. The highest improvement is reported by qg with other_cenls.

Overall, it improved the solution time and the tree size by about 47.40% and 44.62%,

respectively, but even higher improvements (around 82% and 95% for both the measures)
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Table 3.4: (Top) Comparison of qg and

qg with setting s on 103 instances in TS pr

that are solved by both the methods. (Bot-

tom) Performance on instances (25 for qg

and qg with first two settings, and 26 with

other_cenls) that are solved by both but at

least one method took more than 10 sec-

onds.

time nodes

setting (s) qg rel. qg rel.

root_bothls 8.60 0.57 505.44 0.59

other_reg 8.60 0.53 505.44 0.56

other_cenls 8.60 0.53 505.44 0.55

time nodes

setting (s) qg rel. qg rel.

root_bothls 72.39 0.34 17005.06 0.29

other_reg 72.39 0.30 17005.06 0.26

other_cenls 67.61 0.31 15645.84 0.27

Table 3.5: (Top) Comparison of qg and qg

with setting s on nine instances in TS pr

that are solved by both the methods but at

least one method took more than 100 sec-

onds. (Bottom) Similar comparison on two

instances in TS pr that are solved by both the

methods, but at least one method took more

than 500 seconds.

time nodes

qg rel. qg rel.

294.93 0.19 55751.27 0.19

294.93 0.18 55751.27 0.17

294.93 0.19 55751.27 0.17

time nodes

qg rel. qg rel.

1249.47 0.05 595448.0 0.04

1249.47 0.06 595448.0 0.05

1249.47 0.06 595448.0 0.05

are observed for instances in with default qg took more than 100 seconds and 500 seconds,

respectively.

As discussed in Chapter 2, generating additional cuts at some fractional nodes may

also reduce the size of the tree and solution time (Sharma et al. (2020b)). One can also

add the perspective cuts at the fractional nodes in the tree. However, since we compare

with traditional QG, we limit our PR related computational experiments to the root node

and the nodes yielding integer optimal solutions only.

3.1.9 ε-Approximation of Perspective Reformulation

In this section, we briefly discuss the ε−approximation method of perspective re-

formulation. Grossmann and Lee (2003) proposed to solve the perspective reformulated

problem in disjunctive convex programming by using the following approximation of the

reformulated nonlinear constraints

(zi + ε)gi

( x − (1 − (zi + ε))x̂
zi + ε

)
≤ 0, (Ref1)

where ε is a small tolerance value. For zi = 0, (Ref1) reduces to gi(x̂) ≤ 0. However,

for zi = 1, it gives (1 + ε)gi

( x − ε x̂
1 + ε

)
≤ 0. The smaller the value of ε, the closer the
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approximated region is to the feasible region of the reformulated problem. But choosing

a very small value of tolerance leads to numerical instability in terms of round-off errors.

This approximation can be carried out in a similar way for the nonlinear constraint in the

structure (PS 2).

An approximation proposed by Furman (2009) overcomes the difficulty at zi = 1 in

the previous approximation (Ref1) and is given by

((1 − ε)zi + ε)gi

( x − (1 − ε)(1 − zi)x̂
(1 − ε)zi + ε

)
≤ 0. (Ref2)

The approximation (Ref2) is the same as the original constraint for zi ∈ {0, 1}. Similarly,

an approximation can be written for the structure (PS 2) by replacing zi with (1− ε)zi + ε .

Since, we assume that gi(x̂) ≤ 0, and (1−xi)ε ≥ 0, inequality (Ref2) can be tightened

by modifying its right-hand side as

((1 − ε)zi + ε)gi

( x − (1 − ε)(1 − zi)x̂
(1 − ε)xi + ε

)
≤ gi(x̂)(1 − zi)ε. (3.12)

Inequality (3.12) is tighter than inequality (Ref2) for any 0 < zi < 1. Furman et al.

(2020) describes the conditions under which the approximation (3.12) is applicable in

general. However, for the structures (PS 1) and (PS 2) both the ε-approximations, (Ref1)

and (Ref2), are directly applicable for solving the perspective reformulation.

3.2 Reformulation Based on Function Separability

Separability is a property of a function that allows the function to be written as a sum of

functions with a disjoint set of variables. Every linear function, by its very definition, is

separable. In Wright et al. (2009), a function f : Rn → R is called ‘group separable’ or

separable if there exist functions f i : Rni → R, i = 1, . . . ,m, such that

f (x) =

m∑
i=1

f i(xi), (3.13)

where xi ∈ Rni , and f i and f j for i , j do not have any variables in common. This means

that f can be written as a sum of functions of disjoint set of variables. A function is

fully separable if every f i in (3.13) is a univariate function; and f is partially separable if

some f i are univariate functions and some are not. Fully and partially separable functions

can be seen as special cases of group separable functions. A fully separable function is

also referred to as completely additively separable function and a general group separa-

ble function is also called as partially additively separable function (Griewank and Toint

(1982); Kronqvist et al. (2018b)).
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In addition to the motivating example (exBall), it is shown by Tawarmalani and

Sahinidis (2005) that if a convex function is decomposed into its convex sub-expressions

then outer-approximating these decomposed components separately gives better approxi-

mation of the original function than outer-approximating the original function directly.

Let f̂ : Rk → Rm and ĝ : Rm → Rn be vectors of functions such that f̂ (x) =

( f̂1(x), . . . , f̂m(x)) and ĝ(u) = (ĝ1(u), . . . , ĝn(u)). Let f̂i(x) be convex for i = 1, . . . ,m,

ĝ j(u) be convex for j = 1, . . . , n, I = {1, ...,m}, and IL = {i ∈ I| f̂i(x) is affine}. As-

sume ĝ j(u), ∀ j is non-decreasing in the range of f̂i(x) for each i ∈ I \ IL. Let functions

ĥl = ĝl ◦ f̂ , l = 1, . . . , n be defined as the composition of ĝ and f̂ , as ĥ(x) = ĝ( f̂ (x)). It is

shown by Tawarmalani and Sahinidis (2005) that for each l = 1, . . . , n, function ĥl is con-

vex and Theorem 3.2.1 shows that the set obtained by outer-approximating the functions

f̂ and ĝ separately is a subset of the set obtained by outer-approximating ĥ directly.

Theorem 3.2.1 (Tawarmalani and Sahinidis (2005)). Consider a set of points x j, j =

1, . . . , r. Let

H1(ĥ) = {(γ, x) : γ ≥ ĥ(x j) + 5ĥ((x j(x − x j)), j = 1, . . . , r},

and,

H2(ĥ) =


(γ, x) : γ ≥ ĝ( f̂ (x j)) + 5ĝ( f̂ (x j))(φ − f̂ (x j)), j = 1, . . . , r,

φi ≥ f̂i(x j) + 5 f̂i(x j(x − x j)), j = 1, . . . , r, i ∈ I \ IL,

φi = f̂i(x j) + 5 f̂i(x j(x − x j)), j = 1, . . . , r, i ∈ I.

Then, H2(ĥ) ⊆ H1(ĥ).

Given ĥ(x), determining if it is a composition of functions ĝ and f̂ with the proper-

ties as mentioned above is not easy. However, a relatively easy-to-identify case is where

ĝ is a linear function (of the form g(u) = u) and f̂ is a convex separable function. From

Proposition 3.2.2), it is clear that with ĝ being linear and f̂ being convex and separa-

ble, ĥ(x) = ĝ( f̂ (x)) is convex with f̂ and ĝ satisfying the required properties. Many of

the instances in MINLPLib (Bussieck et al. (2003)) have functions of this form in their

mathematical formulations.

Proposition 3.2.2. If f is a convex and separable function as in (3.13), then every sepa-

rable part f i(xi), i = 1, . . . ,m of it is also a convex function.

Suppose a nonlinear separable constraint is of the form

m∑
i=1

f i(xi) ≤ b, (3.14)
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where b ∈ R is a scalar. The reformulation of (3.14) utilizing the nonlinear function

separability can be written as ∑m
i=1 γ̃i ≤ b,

f i(xi) ≤ γ̃i, i = 1, . . . ,m,

γ̃i ∈ R, i = 1, . . . ,m.

 (SepCon)

Practically, to detect separability of a nonlinear function, we use its computational graph

representation. A computational graph of a nonlinear function represents the function as

a directed acyclic graph (DAG) for computational purposes. Figure 3.3 shows an example

of a computational graph of the nonlinear function f = ex1+x2 + x2
2 + x3

4.

+

e +

+ ∧ ∧

x1 x2 2 x3 4

Figure 3.3: A computational graph of the nonlinear function f = ex1+x2 + x2
2 + x3

4.

A nonlinear separability can be detected using its Hessian matrix, but the compu-

tation of the Hessian matrix is expensive. On the other hand, a computational graph is

readily available in many solvers, as it is used to store nonlinear functions, compute gra-

dients and Hessians, etc. The computational graph we use is slightly different from the

one used by Iri (1984) in algorithms for automatic differentiation, but is similar to the

one used by Yamamura and Kiyoi (1992) in algorithms for identifying fully separable

functions.

A computational graph of a nonlinear function f is constructed as a sequence of

unary, binary, or other operations carried out on the input variables, constants, and inter-

mediate variables, which themselves are created using these operations. Operations that

we consider are binary operations (addition, subtraction, multiplication, and division),

unary operations (ceiling, floor, root extraction, (.)k, etc.), functions like transcendental,

logarithmic and exponential, etc. Depending upon how intermediate variables are formed,

a function can have multiple computational processes. Example (3.2.3) shows a compu-

tational process of a nonlinear function.
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Example 3.2.3. Given nonlinear convex function

f = ex1+x2 + x2
2 + x3

4,

a computational process can be described as

v1 = x4
3, v2 = x2

2, v3 = v1 + v2,

v4 = x1 + x2, v5 = ev4 ,

f = v3 + v5.

Where, vi, i = 1, . . . , 5 are intermediate variables such that

vi = φi(vi1 , . . . , vin), i1, . . . , in < i,

and, φi is a basic operation on vi1 , . . . , vin that yields vi.

A node in a computational graph represents either a variable, a constant, or an oper-

ation. An edge ei j from node i to node j implies that i is a parent of j, or j is an operand

of operation represented by i, or j is a child of node i. A node with no child is called a

leaf node or an independent node, and it represents either a constant or a variable. Other

nodes are called dependent nodes. A node i that represents a binary operation has two

child nodes- left ni
l and right ni

r. A node i representing a unary operation has only one

child, ni
l. In expressions a − b and a ÷ b, a is the left child and b is the right child of the

node representing the operation − or ÷. Figure 3.4 shows an example of a node with two

children. Let Eo
i denotes the set of edges originating from node i, and Et

i denotes the set

of edges terminating at i. Node i with Et
i = ∅ is called the root node and there is only one

root node in a computational graph. If Eo
i = ∅ then i is a leaf node. For an edge ei j, let No

i j

represents the origin node and N t
i j represents the terminal node. In our implementation, a

node representing a constant can have only one parent.

−

a b

Figure 3.4: Left (a) and right (b) child nodes of node (-) representing the expression a − b.

Computational Subgraph

We introduce a notion of the computational subgraph that we use in finding separable

parts in a computational graph of the given nonlinear function.
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Let G f (C, E) be a computational graph of some nonlinear function f with C and E

be the sets of all the nodes and edges, respectively. A graph Gs
f (V, F) is called a subgraph

of G f (C, E) if the following conditions hold.

1. V ⊆ C and F ⊆ E.

2. For each v ∈ V , Eo
v ∈ F, and for each ei j ∈ F, N t

i j ∈ V and No
i j ∈ V .

3. A node with no parent node does not represent binary operations + or −.

4. If we consider an undirected version of Gs
f (V, F), then there exists a path between

every pair of nodes i, j ∈ V .

A subgraph can have more than one node with no parent. Every computational graph is a

subgraph.

We define ‘maximal subgraph’ as a subgraph that is not a part of any subgraph

other than the original computational graph. Figure 3.5 shows the computational graph

of a separable function depicted in Figure 3.3 and its maximal subgraphs. Following

+

e +

+ ∧ ∧

x1 x2 2 x3 4

e

+ ∧

x1 x2 2

∧

x3 4

Figure 3.5: Computational graph (top) and maximal subgraphs (bottom) of f = ex1+x2 + x2
2 + x3

4.

Yamamura and Kiyoi (1992), we call a function implicitly separable if it is separable but

is not evident from the given function expression. For example, f = (x1 + x2 − x2)2 + x2
2

is separable in variables x1 and x2 but it is not evident until the first term in the expression

is reduced to x2
1. We call a function explicitly separable if its separability is not hidden in
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the presence of other terms in the function expression. Let f be an explicitly separable

function and let G f be its computational graph.

Proposition 3.2.4. The number of maximal subgraphs in G f is equal to the number of

separable parts in the function f and vice-versa.

Proposition 3.2.5. Function f is not separable if and only if G f has only one maximal

subgraph.

3.2.1 Detection of Function Separability

Given a nonlinear convex function f : Rn → R and its computational graph G f ,

checking whether f is not separable is more straightforward than checking otherwise.

Thus, we start with employing simple rules to check if a function is not explicitly separa-

ble. If a function disobeys these rules, we use more extensive checking for separability.

Let r be the root node of G f . Function f may not be separable if any of the below

conditions is true:

1. r represents a unary operation.

2. r represents the binary operation ×, and both of its children represent either an

operation or a variable.

3. r represents the binary operation ÷, and its right child represents either an operation

or a variable.

If r represents the operation ×with any of its children representing a constant, we compute

the tree rooted at the non-constant node and check again. Similarly, if r represents ÷ with

the right child representing a constant, we further analyze the graph rooted at its left child.

When a function fails to meet the above conditions, we search for maximal sub-

graphs in the computational graph G f . If the number of maximal subgraphs is one, then

the function is not separable. Otherwise, it is separable in as many parts as the number

of maximal subgraphs. In this regard, we iteratively traverse G f starting from node r and

construct a list O of nodes that are either themselves or have children that are root nodes

of some maximal subgraph. If a node i ∈ O represents an operation other than binary

operations + and −, it is a root node of a maximal subgraph. Thus, a graph rooted at i

belongs to a separable part, and an iteration of the algorithm amounts to traversing the

graph rooted at such a node i. The graph rooted at a node i is a graph G(Ci, Ei) in which:

1. i is the root node,
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2. for each k ∈ Ci, Eo
k ⊆ Ei,

3. for each e ∈ Ei, N t
e ∈ Ci.

While traversing the graph rooted at node i, if a node k is encountered that is already

traversed in some previous iteration l, we do not traverse the graph rooted at k. Instead,

we merge the information from iteration l with that in the current iteration j, as they

belong to the same separable part. Every iteration j has a number m j associated with it.

This number represents the iteration number to which iteration j is merged to. Merging

the iterations prevents revisiting the graph rooted at a node. At iteration j, N j represents

the set of nodes that are root nodes of maximal subgraphs. The number v j represents the

number of nodes representing the variables found while traversing the graph rooted at

nodes in N j. Merging iteration l to j means updating N j = N j ∪ Nl, v j = v j + vl, Nl = ∅,
and vl = 0. If v j is equal to the number of variables in the function f , then f has only

one maximal subgraph. In this case, the algorithm terminates with the output that the

function is not separable. Otherwise, the algorithm gives the number of separable parts:

the number of nonempty sets N j. If N j = ∅, it means that the iteration j is merged to some

other iteration.

3.2.2 Some Implementation Details

As our algorithm relies on the computational graph of the function to detect its sep-

arability, we prefer to have a computational graph representing the function expression as

explicitly as possible; sometimes at the expense of some additional computational effort.

Different separable function expressions (in an explicit form) that can be identified by our

algorithms are (1) a × (
∑m

i=1 f i(xi)) (2)
∑m

i=1 ai × f i(xi) (3)
∑m

i=1 f i(xi)
a

(4)
∑m

i=1
f i(xi)

ai
(5)

(
∑m

i=1 f i(xi))1, where a, ai, b ∈ R.
A constraint of the form

m∑
i=1

ai × f i(xi) ≤ b,

is reformulated as
m∑

i=1

aiγ
i ≤ b,

f i(xi) ≤ γi, i = 1, . . . ,m.

And, a constraint of the form

a × (
m∑

i=1

f i(xi)) ≤ b,
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is reformulated as
m∑

i=1

aγi ≤ b,

f i(xi) ≤ γi, i = 1, . . . ,m.

Similar reformulations are applied to the other forms. This is a default reformulation

under separability detection in MINOTAUR. However, in some instances of the bench-

marking library, we found that different separable constraints have common separable

parts ( f i). For example, if there are two constraints of the form

a1 f 1(x1) + a2 f 2(x2) ≤ b1,

d1 f 1(x1) + d2 f 3(x3) ≤ b2,

then, we reformulate them as

a1γ1 + a2γ2 ≤ b1,

d1γ1 + d2γ3 ≤ b2,

f 1(x1) ≤ γ1,

f 2(x2) ≤ γ2,

f 3(x3) ≤ γ3.

Our implementation reuses variables corresponding to different separable parts in other

constraint expressions, thus avoiding to create an extra variable and a constraint.

In MINOTAUR, we carry out separability detection before the presolving step. We

have found that 126 instances have at least one separable nonlinear function (either in

constraint or objective) out of 374 convex MINLP instances in the benchmarking library.

Out of 126 such instances, 79 have separability only in the nonlinear objective function.

In the remaining 47 instances, 45 instances have all the nonlinear constraints separable,

and 2 have 40% of the nonlinear constraints with separability property. Also, 108 out

of these 126 instances have at least one integer constrained variable. These 108 instances

constitute our test set, TS sep, for analyzing the impact of exploiting separability in the QG

method. More details on these instances are provided in the Table D.3 in Appendix D.

Using the same performance measures as before, Table 3.6 reports a comparison of default

qg and qg with separability based reformulation on instances in test set TS pr. Overall,

we achieve about 40% improvement in the solution time and the tree size; even better

improvements are seen in difficult instances. Using this reformulation, qg could solve 8

extra instances that reached the time limit earlier with default qg.
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Table 3.6: Comparison of qg and qgsep (qg using separability based reformulation) on instances

in test set TS sep.

time nodes

time # of inst. qg rel. qg rel.

>= 0 76 13.68 0.60 700.04 0.50

>= 10 26 94.54 0.42 5902.23 0.32

>= 100 11 714.61 0.20 24311.92 0.28

>= 500 7 1900.22 0.12 54480.5 0.26
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Figure 3.6: Performance profiles comparing so-

lution times of qg and qgsep on instances in the

test set TS sep.
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Figure 3.7: Performance profiles comparing so-

lution times of qg, qgsep, and qgprsep on in-

stances in the test set TS ps.

3.3 Combined Effects of the Two Reformulations

In some cases, when a problem (P) is reformulated using function separability, we may

get structures that are amenable to perspective reformulation. Let us reconsider the un-

capacitated facility relocation problem (UFL) introduced in Chapter 1. This problem can

be reformulated by moving the nonlinear objective to the constraint set using an auxiliary

variable η as

minimize
x, z, η

η

subject to
∑

i∈F cizi +
∑

i∈F , j∈C ti jx2
i j ≤ η,

0 ≤ xi j ≤ zi, i ∈ F , j ∈ C,∑
i∈F xi j = 1, j ∈ C,

xi j ≥ 0, zi ∈ {0, 1}, i ∈ F , j ∈ C.


(UFL1)
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The function in the nonlinear constraint is separable and on reformulating (UFL1), we get

minimize
x, z, η

η

subject to
∑

i∈F cizi +
∑

i∈F , j∈C ti jγi j ≤ η,
x2

i j ≤ γi j, i ∈ F , j ∈ C,
0 ≤ xi j ≤ zi, i ∈ F , j ∈ C,∑

i∈F xi j = 1, j ∈ C,
xi j ≥ 0, zi ∈ {0, 1}, i ∈ F , j ∈ C.



(UFL2)

Clearly, (UFL2) now has structures of the form (PS 2) and thus, becomes amenable to

perspective reformulation.

We observed that in the test set TS sep, on reformulating using separable nonlinear

functions, 26 instances have become amenable to perspective reformulation. These in-

stances comprise our test set TS ps and are reported in Table D.3 in Appendix D. We

solved instances in TS ps with default qg, qgsep (qg with separability based reformula-

tion), and qgprsep (qg with both separability and perspective reformulations), and results

are reported in Table 3.7 and Table 3.8 . Overall, there is a significant improvement of

about 88% in both the solution times and the tree size, and 4 more instances that reached

the time limit with even separability based reformulation could now be solved.

Table 3.7: (Top) Comparison of qg and methods (M) (qg with reformulation) on 15 instances

in TS ps that are solved by both the techniques. (Bottom) Performance on ten instances that are

solved by both, but at least one technique took more than 10 seconds.

time nodes

Method (M) qg rel. qg rel.

qgsep 78.24 0.32 1213.03 0.42

qgprsep 78.24 0.12 1213.03 0.12

time nodes

Method (M) qg rel. qg rel.

qgsep 251.01 0.22 4418.17 0.31

qgprsep 251.01 0.07 4418.17 0.06

3.4 Conclusions

Our study concludes that perspective reformulation and exploitation of separability of

nonlinear constraint functions help generate better polyhedral-approximations of the fea-
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Table 3.8: (Top) Performance break-up on instances solved by both the methods (M) and qg, but

where at least one of them took more than 100s (Top) and 500s (Bottom).(Top) Comparison of qg

and methods (M) on instances in TS ps that are solved by both the techniques, but at least one took

more than 100 seconds. (Bottom) Similar comparisons using instances that are solved by both the

techniques, but at least one took more than 500 seconds.

# solved time nodes

by both qg rel. qg rel.

7 654.78 0.15 10605.48 0.27

5 1454.86 0.01 15711.76 0.02

# solved time nodes

by both qg rel. qg rel.

4 2389.38 0.04 27068.51 0.15

4 2389.38 0.01 27068.51 0.01

sible region. We see improvement in both the solution time and the size of the tree in

the branch-and-cut framework of the QG method on our test instances. Using the pro-

posed schemes for generating perspective cuts at the root node, we reported around 10%

improvement in the solution times and tree size over default qg. Overall, about 45%

and 40% enhancements are observed in the considered performance measure with PR

and exploiting separability, respectively; more improvements are recorded for difficult in-

stances. Reformulation based on separability solved six more instances than the default

qg setting. Test instances that became amenable to PR after separability based reformu-

lation are solved even faster. About 20% improvement is recorded in both the considered

performance measures over qgsep (qg with separability) and around 88% over default

qg. Out of 26 such instances, qg solved 15, qgsep 19, and qgprsep (qg with PR and

separability) 23.



Chapter 4

Mixed-Integer Partial Differential
Equation Constrained Optimization

In this chapter, we study a problem from a highly challenging class of optimiza-

tion problems called mixed-integer partial differential equation constrained optimization

(MIPDECO). The combination of discrete optimization variables and PDE constraints

presents difficult problems, providing a range of new mathematical challenges; see, for

example, Leyffer et al. (2013). These challenges arise out of the combination of the

combinatorial complexity of integer variables and the computational difficulties of the

discretized PDE. Little is known about this class of problems or solution approaches, and

one motivation of this work is to experiment with state-of-the-art mixed-integer solvers

for solving this class of problems.

We consider an inverse problem in which the optimization variables are discrete and

constrained by partial differential equations (PDEs), specifically in our case to describe

convection-diffusion. We are interested in determining the number and location of a set

of sources by reconciling the difference between measurements and numerical prediction

of the concentration. Our work is motivated by applications in groundwater flow, where

we want to find the location of pollutants in the subsurface; see, for example, Ozdogan

(2004) and Fipki and Celi (2008), for more detailed background. We chose the steady-

state convection-diffusion equation as our model problem because it allows us to solve the

resulting mixed-integer PDE-constrained optimization (MIPDECO) problems in a reason-

able amount of time. We stress, however, that our results and approaches generalize to

time-dependent convection-diffusion processes. This work is done with Dr. Sven Leyffer

(Argonne National Laboratory, USA), Prof. Lars Ruthotto (Emory University, USA), and

Dr. Bart van Bloemen Waanders (Sandia National Laboratory, USA).

82
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We advance the state of the art in MIPDECO in a number of ways. First, we develop

new rounding schemes that take the physics of the problem into account by preserving

the mass of the source when we move from a relaxation to a rounded solution. Second,

we apply a simplified version of the trust-region method (Hahn et al. (2020)), and show

that it already provides competitive integer solutions. Third, we improve the trust-region

approach by developing a new problem-specific neighborhood that takes the topology of

our problem into account, and we use a specialized knapsack solve for the resulting trust-

region subproblem. Using the modified trust-region method we show that we can solve

3D instances of MIPDECO efficiently and in a reasonable amount of time, and we provide

our Julia (Bezanson et al. (2012)) code under a permissible open-source license.

In the next section, we provide background on PDECO that is relevant to our devel-

opments, then we discuss the challenges of MIPDECO in more detail.

4.1 Background

Mixed-integer PDE-constrained optimization brings together complicated elements from

two algorithmic areas to solve relevant application problems. In this section, we provide a

general overview to highlight the most relevant features needed to introduce MIPDECO.

MINLPs are a challenging class of problems in their own right: they are in gen-

eral NP-hard (Kannan and Monma (1978a)) and in the worst case undecidable (Jeroslow

(1973)). Adding PDE-constraints leads to a range of computational and conceptual chal-

lenges for MINLPs. First, the computational expense of solving PDE-constrained opti-

mization problems is much higher than the computational expense of solving standard

NLP. Second, the number of optimization variables is typically very large, and if the

integer variables are functions defined over the computational domain, then the num-

ber of integer variables typically also grows as we refine the discretization, resulting in

huge combinatorial search spaces. Third, the solutions of the relaxations of the PDE-

constrained optimization problem are typically only locally optimal and do not provide

valid lower bounds for nonlinear PDE-constrained optimization problems.

4.1.1 PDE-Constrained Optimization

PDE-constrained optimization (PDECO) refers to the optimization of systems gov-

erned by partial differential equations. In most cases the goal is to optimize an objective

function with respect to a quantity that is defined on subregions or everywhere in the com-

putational domain. The inversion for initial conditions and the reconstruction of material

properties are examples of typical optimization problems.
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The PDE-constrained optimization problem is an infinite-dimensional optimization

problem, and two approaches exist for obtaining a finite-dimensional approximation: the

optimize-then-discretize approach and the discretize-then-optimize approach. In the for-

mer, one finds the necessary optimality conditions of the PDECO in function spaces and

then discretizes this system of equations. In the latter, one first discretizes the PDE and

then uses nonlinear optimization techniques to solve the large-scale optimization problem.

Both approaches lead to an optimization problem with a large number of variables and a

large system of equations (the discretized PDEs) that describe the underlying physics. The

large-scale nature of these problems dictates the use of efficient sensitivities (adjoints),

Newton based methods to handle the nonlinearity of the optimization formulation, the

coordination of globalization, and the use of parallel matrix-vector operators to address

the computational requirements (Nocedal and Wright (2000); Biegler et al. (2001, 2007)).

The combination of these technologies poses formidable challenges to achieve efficient

and accurate solutions. Considerable research and development have been conducted; the

interested reader is referred to (Vogel (1999); Ascher and Haber (2001); Haber and As-

cher (2001); Vogel (2002); Laird et al. (2005); Hintermuller and Vicente (2005); Hazra

and Schulz (2006); Borzi (2007); Hinze et al. (2009)). Advances have been made to

accelerate the convergence of these algorithms, with recent examples in special precon-

ditioners, reduced-space methods, full-space algorithms, and multigrid approaches (Biros

and Ghattas (2005a,b); Akcelik et al. (2005); Bartlett et al. (2006); Heinkenschloss and

Ridzal (2008); Borzì and Schulz (2009); Simon (2008)).

A full-space solution algorithm forms the Lagrangian function and takes variations

with respect to the state variables, the adjoint variables, and the optimization variables.

This approach results in the first-order optimality conditions, which form a nonlinear

system of equations. This system is typically solved by using Newton’s method, requiring

the solution of large structured systems of equations.

Alternatively, a reduced-space method eliminates the state variables by using the

discretized PDE, resulting in an optimization problem in the optimization or control vari-

ables only, where the effect of the states in represented implicitly. The gradient of the

objective function can be computed via the chain rule; and the solution process consists

of an iterative process in which forward, adjoint, and gradient equations are successively

solved. Even though there are advantages to using the full-space methods, in particular

when the solution of the forward solve is slow to converge, we use the reduced-space

method here because it has advantages in the mixed-integer case, resulting in an easy-to-

solve subproblem.
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PDE-constrained optimization problems with integer optimization variables have

been solved with PDE-constrained optimization methods. Topological optimization is

an example where the discrete optimization variables are approximated with continuous

variables with the unfortunate consequence of errors (nonintegral values, or gray areas)

at the boundaries of the topological solution. Although excellent practical results are

obtained for a host of problems, establishing rigorous optimality proofs for this approach

remains a challenge (Bendsøe and Sigmund (2004); Sigmund and Maute (2013a)).

4.1.2 MIPDECO

Practical approaches to MIPDECO must tackle the challenges posed by the number

of integer variables in the discretized problem and the computational complexity of solv-

ing PDECO problems. We briefly discuss how recent approaches to MIPDECOs tackle

these challenges.

The two classical approaches for solving PDECO problems are optimize-then-

discretize and discretize-then-optimize. We do not believe that it is possible to apply the

optimize-then-discretize to obtain first-order conditions for MIPDECOs, because such a

generalization would also imply a set of first-order conditions for the (global) optimal-

ity of integer solutions for MINLPs, which seems unlikely. Hence, we consider only the

discretize-then-optimize approach as a practical way to solve MIPDECOs.

If the integer controls are functions over the computational domain, then the dis-

cretization of the PDE and the controls results in MINLPs with a large number of integer

variables, which has implications for standard MINLP solvers. Current state-of-the-art so-

lution methods for MINLP employ a branch-and-bound tree search (Belotti et al. (2013);

Bonami et al. (2008a)) at some stage of the solution process and the large number of in-

teger variables arising in discretized MIPDECOs means that this tree can become huge,

even for coarse discretization levels. In some cases, the tree search can be customized for

solving discretized MIPDECO by using problem specific branching rules; see, for exam-

ple, Hahn et al. (2017), which introduces a new branching rule and backtracking strategy

that work well for time-dependent control problems.

Another solution approach for discretized MIPDECO is penalty based methods,

which avoid the branch-and-bound tree altogether by penalizing the violation of integral-

ity. The resulting nonlinear optimization problem is solved iteratively for an increasing

penalty parameter, until all integer variables are integral. Unfortunately, the penalty is

in general nonconvex, and stationary points of the nonlinear optimization problem corre-

spond only to feasible points of the discretized MIPDECO without any optimality guar-
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antees. See Costa et al. (2016), Lucidi and Rinaldi (2013), and Garmatter et al. (2019)

for penalty based methods in the context of MINLP and MIPDECO.

There are other notable solution approaches for MIPDECOs that avoid a tree search,

including decomposition methods that solve a relaxed form of the original problem and

approximate the effect of the relaxed optimal control with that of an integer-valued one.

For ODE- and DAE-constrained problems, heuristics such as sum-up rounding (SUR)

(Sager (2006, 2009)) and next-forced rounding (NFR) (Jung (2013)) can produce arbi-

trarily good approximations of the optimal relaxed behavior given sufficiently high grid

resolutions (Gerdts and Sager (2012); Sager et al. (2012)). These heuristics are special

cases of the combinatorial integral approximation (CIA) approach (Sager et al. (2011)),

which formulates the approximation problem as an MILP. Efficient problem-specific tree

based solvers have also been developed to solve the CIA problem directly (Bürger et al.

(2020); Jung et al. (2015)).

Early extensions of CIA heuristics to PDE-constrained problems (Hante and Sager

(2013); Hante (2017)) limited themselves to rounding purely time-distributed controls

where the arrow of time can be exploited as part of rounding heuristics such as SUR

and NFR. More recent results, however, have shown that SUR can be applied to ellip-

tic PDEs with spatially distributed controls by imposing an order through space-filling

Hilbert curves (Manns and Kirches (2020, 2018, 2019)), though other orders have also

been used successfully. Rounding methods for topology optimization problems are also

explored in Garmatter et al. (2019).

These methods are collectively based on the recognition that spatially distributed

integer-valued controls are not truly discrete, but form a continuum. This is explored

in Hahn et al. (2020), where a trust-region steepest-descent method for binary optimal

control is developed that is closely related to our approach. The authors show convergence

to first-order stationarity in a topological sense, provided that the mesh is refined. This

is a remarkable result because it replaces the combinatorial challenge of MIPDECO by a

set based approach. This method avoids the combinatorial complexity of the tree search

and instead solves a sequence of knapsack problems that can be interpreted as a local

improvement strategy. A similar model to ours has been studied in Guo et al. (2019),

where pollution sources are identified and a genetic algorithm heuristic is employed to

resolve the integrality restrictions.
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4.2 Mathematical Formulation

We formulate our constrained source inversion problem as a mixed-integer PDE-

constrained optimization problem with binary inversion parameters. We discretize the

PDEs with finite elements and present the resulting finite-dimensional formulation. We

also present an alternative finite-difference discretization that provides self-contained

AMPL models to run state-of-the-art MINLP solvers.

4.2.1 Variational Formulation of Source Inversion Problem

The goal of the inverse problem is to estimate the source w from measurements b

assuming that the properties of the PDE are known and assuming a sparse set of sensors.

The problem can be written as

minimize
u,w

J(u, w) = 1
2σ

∑m
i=1 ‖〈p(ri), u〉 − bi‖2 + αR(w)

subject to −c∆u + v>∇u = w, in Ω,

∂u
∂n = 0, on ΓN ,

u = g, on ΓD,


(VF)

where c > 0 is the diffusion coefficient, v : Ω → Rd is the velocity vector, and w : Ω →
{0, 1} represents the source terms. The boundary of the domain, Γ, is partitioned into

ΓN and ΓD for Neumann and Dirichlet conditions, respectively, n : Γ → Rd denotes the

outward normal vector; and g : ΓD → R defines the Dirichlet condition. Let Ω ⊂ Rd

denote the computational domain, where in this work d = 2, 3. Discrete measurements

b ∈ Rm are given as

bi = 〈p(ri), u〉 + εi, i = 1, 2, . . . ,m, (4.1)

where u is the concentration of the pollutant, p(ri) : Ω → R are the receiver functions at

the locations ri for i = 1, . . . ,m, 〈·, ·〉 denotes the L2 inner product, and ε1, ε2, . . . , εm rep-

resent measurement noise. To model point measurements of the PDEs, we consider the

receiver function p(r) to be a Dirac δ-function centered at r. In our numerical demonstra-

tions, we generate the sensor data synthetically and assume that the measurement noise

is independent and identically distributed (iid) Gaussian noise with constant, known stan-

dard deviation σ > 0.

R is a regularization functional that promotes the existence and regularity of so-

lutions. This is important because the inverse problem is underdetermined and ill-

conditioned as a result of data sparsity and noise. The term R can also be used to penalize

undesirable features. The regularization parameter α > 0 balances between fitting the

data (for small values of α) and ensuring regularity of the solution (for large values of α).
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Choosing an “optimal" α, is both crucial and nontrivial. No general rule exists for picking

α; however, strategies using generalized cross validation (Golub et al. (1979); Haber and

Oldenburg (2000)), and L-curve (Hansen (1998)) are commonly used. In practice, any of

these methods will require us to approximately solve (VF) for a set of regularization pa-

rameters. Because of the binary constraints, the source wwill be continuous only in trivial

cases. In general, we expect piecewise constant solutions with finite edge measure. This

guides our choice of the regularization function and motivates us to use the total variation

(TV) semi-norm. With this choice, the solution of the relaxed problem will have bounded

variation (Chan and Shen (2005); Rudin et al. (1992); Vogel (2002)). In our numerical

experiments, we formally write the total variation regularizer as

R(w) =

∫
Ω

‖∇w(x)‖2 dx, (4.2)

which is well-defined for all w : Ω→ [0, 1] with bounded variation; for non-differentiable

functions (e.g., binary-valued functions) R(w) can be computed using the co-area for-

mula (Scherzer, O and Grasmair, M and Grossauer, H and Haltmeier, M and Lenzen, F,

2013, Thm 9.75). This regularizer is isotropic, which means that its value does not depend

on the orientation the source w. In other words, its value is invariant to rotations of the

coordinate system. This is an advantage over the also commonly used anisotropic ver-

sion of TV (obtained by replacing the Euclidean norm with the `1-norm in (4.2)), which

is sensitive to rotations of the domain. Problem (VF) is not a quadratic program, be-

cause the TV regularization term involves a square-root. It is easy to show that (4.2) is

second-order-cone representable. However, we do not exploit this fact in our results.

4.2.2 Finite-Dimensional Approximations of Source Inversion

Problem

In the following, we briefly outline a finite-element discretization of the PDE and

boundary condition and comment on the structure these discretizations imply for the

finite-dimensional MINLPs. Detailed mathematical analysis and implementation details

are discussed in Sharma et al. (2020a). For ease of presentation, we assume a rectangular

domain Ω = [0, 1]d.

The finite-element approach partitions the domain Ω into a mesh ΩN containing

Nd congruent elements (pixels or voxels; see an additional explanation in Sharma et al.

(2020a)) in d = 2 and d = 3, respectively. We note however that a strength of the finite-

element method is that it extends easily to a wide class of non-rectangular domains. We

then approximate the concentration u in a finite-dimensional subspace consisting of glob-

ally continuous and piecewise bi/trilinear functions on ΩN . Similarly, we approximate the
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sources w in the space of all piecewise constant functions. This approach allows us to

replace u and w by finite-dimensional vectors, u ∈ R(N+1)d
and w ∈ {0, 1}Nd

, respectively,

where ui corresponds to the value of u at node i of the finite-element mesh and wi is the

value of w inside element i. Even though the basis functions are nonlinear, the expansion

of u and w is linear in the coefficients of the basis functions, and results in a set of linear

equality constraints, leading to the finite-dimensional PDE constraint

S u = Mw, (4.3)

where S is the stiffness matrix and M is the mass matrix, whose entries are obtained

by integrating the weak form of the PDE constraint in (VF); see Sharma et al. (2020a)

for details. Because of the compact support of the Ansatz functions for u and w, both

matrices are sparse. The discrete objective function is obtained after discretizing the

receiver functions and gradient operators on the finite-element mesh. To discretize the

inner products in (4.1), we use a midpoint rule. The resulting finite-dimensional convex

MINLP is

minimize
u, w

1
2σ ‖Pu − b‖2 + αR(w)

subject to S u = Mw,

w ∈ {0, 1}Nd
,


(CFP)

which is a finite-dimensional MINLP with a convex objective and linear constraints. Here,

the matrix P is the interpolation of the states to the point-measurement locations. In par-

ticular, the ith row of the matrix P ∈ Rm×(N+1)d
contains the discretization of the receiver

function p(ri) on the mesh. In our experiments below, we assume point measurements at

the locations r1, . . . , rm and use a bi/trilinear spline interpolation to obtain the PDE solu-

tions at those points. Hence, each row of P contains only four/eight nonzero elements that

correspond to the interpolation weights. More information on the discretized regularizer,

R(w), can be found in Sharma et al. (2020a).

We note that the MINLP (CFP) contains special structure that is not typically present

in standard MINLPs, and we exploit this structure in the solution of the problem. Because

the stiffness matrix, S , is nonsingular by design, we can solve (4.3) uniquely for u, given

any choice of the discretized controls, w. Formally, we obtain u = S −1Mw and elim-

inate u, resulting in a pure integer nonlinear program over the controls, w, only. This

corresponds to a reduced-space approach. The feasibility of this approach hinges on an

efficient way to solve the PDE (operate with S −1). For some problems, one may be able

to obtain a factorization of the stiffness matrix and reuse it to evaluate the reduced-space

objective and gradients. For large-scale problems the reduced-space approach may still be
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feasible if an effective iterative method is available. This approach leads to the discretized

MIPDECO

minimize
w

J(w) =
1

2σ

∥∥∥PS −1Mw − b
∥∥∥2

+ αR(w) (4.4a)

subject to w ∈ {0, 1}Nd
. (4.4b)

We note that the regularization term in problem (4.4) can be reformulated so that (4.4)

becomes a mixed-integer second-order cone problem. The relaxation of (4.4) is

minimize
w

J(w) =
1

2σ

∥∥∥PS −1Mw − b
∥∥∥2

+ αR(w) (4.5a)

subject to w ∈ [0, 1]Nd
, (4.5b)

which we solve using a projected Gauss-Newton algorithm.

Remark on Structure of the MINLP (4.4)

1. The reduced-space approach presented here can be generalized to nonlinear PDEs.

In this case, however, the solution operator of the PDE (S −1 in the linear case) is

no longer a linear operator. This observation implies that we can no longer reuse

the factors of S and instead must “reinvert” the solution for every iterate in a quasi-

Newton process; see Biros and Ghattas (2005a), Biros and Ghattas (2005b), and

Akçelik et al. (2006) on how the reduced-space methods are applied to nonlinear

PDEs. The iterative process consists of a linearization of the optimality conditions,

a gradient calculation with adjoint based sensitivities, which consists of a linear

system solve with S T and a linearized objective function as a right hand side.

2. The reduced-space objective function in (4.4) will typically have a dense Hessian

matrix, even if S is sparse, and this can cause computational difficulties for MINLP

solvers as we increase the mesh size.

3. In general, it is difficult to obtain closed-form expressions for the coefficients of

the matrices S and M, making it cumbersome to state these equations in a self-

contained model.

The last point motivates us to present an alternative finite-difference discretization

that provides closed-form expressions for the coefficients of the discretized PDE to fa-

cilitate the reproducibility of our experiments; see Appendix E.1. The finite-difference

discretization again results in a MINLP with linear constraints and a convex objective

function. As before, we can eliminate the state variables using the discretized PDE and

boundary conditions.
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In the remainder of this chapter, we present our integrated rounding and trust-region

heuristic and our numerical results. We note that the rounding and trust-region schemes

are agnostic to the discretization scheme.

4.3 An Integrated Rounding and Trust-Region Heuristic

We show in our numerical results that standard MINLP methods cannot solve the dis-

cretized MIPDECOs from the preceding section within a reasonable amount of time, even

for coarse discretization levels, because the branch-and-bound tree becomes too large and

the subproblems at every node take too much time to solve. Hence, one must consider

heuristic techniques. We present a new ‘two-phase heuristic’ for MIPDECO. In the first

phase, we deploy a problem-specific rounding scheme whose solution is passed as an

initial guess to the next phase. The second phase is an ‘improvement heuristic’ that is

motivated by trust-region methods for nonlinear optimization; see, for example, Conn

et al. (2000), as well as local-branching heuristics for MINLP (Fischetti and Lodi (2002);

Nannicini et al. (2008)). We start our approach by first solving the continuous relaxation,

which is then rounded using different heuristics. In Section 4.5.3, we numerically illus-

trate that starting from various rounded initial points, we arrive at different final solutions

due to the different trust-region subproblems obtained at these initial solutions. Other

heuristics that have been proposed for MINLPs are large neighborhood search (Danna

et al. (2005a)) and feasibility pump (Fischetti et al. (2005); Bonami et al. (2009a)). How-

ever, we do not believe that the latter is practical for MIPDECOs because it would require

factorizations and rank-one updates of the basis matrices involving the discretized PDE,

which may be prohibitive or even impossible for small mesh sizes.

Our heuristic is agnostic to the discretization of the PDE or to the solution of the

continuous relaxation. Hence, we assume in the remainder that the control variables, wi,

either represent the values of the control in element i from the finite-element discretization

of Section 4.2.2 or represent a lexicographical ordering of the cell-centered controls, Wkl,

in the finite-difference discretization (see Appendix E.1).

4.3.1 Rounding Schemes for MIPDECO

The improvement heuristic used in our proposed method requires a starting solution.

To obtain such an integer feasible solution we present several rounding based schemes in

this section. Our results show that the naïve/standard rounding (using a cut-off of 0.5)

could fail to identify some sources. On the other hand, the existing NLP based rounding

heuristics from the literature (Sigmund and Maute (2013b)) does not produce competitive
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solutions in the sense that our trust-region method can improve these solutions objective

value by around 24%. Hence, we propose two new rounding schemes to obtain an integer

feasible solution, starting from the optimal solution of the continuous relaxation, which

can be used as a starting solution for our heuristics. The first scheme takes the objective

function into account while rounding, and the second aims to preserve the mass of the

sources; that is, it tries to keep
∫

Ω
w dx invariant. For both proposed heuristics, we let

w̃ ∈ [0, 1]Nd be the solution of the relaxation (4.5) or (FDM).

First we briefly discuss existing NLP based heuristics followed by the proposed

rounding schemes: objective-gap-reduction and mass-preserving.

Penalization Based NLP Heuristics. We implemented a penalty based rounding

scheme from the literature (Sigmund and Maute (2013b)) in which we relax the integral-

ity restrictions and instead solve a sequence of penalized NLPs for an increasing value of

penalty parameter to drive the integrality gap to zero. In particular, we add a penalty term

to the objective of (4.5) and (FDM), respectively, resulting in the following (nonconvex)

penalized formulation of (4.5) (the approach for (FDM) is similar)

minimize
w

1
2σ

∥∥∥PS −1Mw − b
∥∥∥2

+ αR(w) + β
∑Nd

i=1
(
wi (1 − wi)

)q

subject to w ∈ [0, 1]Nd
,

 (PBNLP)

where q is a positive integer and β is a penalty parameter that we increase until the in-

tegrality gap is sufficiently small. In our implementation, we use q = 1. We solve the

continuous relaxation with β = 0, set β = 10−6, and increase β by a factor 2 until the

integrality gap, max
i
{min{wi, 1 − wi}}, is sufficiently small (≤ ε := 10−4), and then round

the final w to its nearest integer. We summarize this approach in Algorithm 8.

Algorithm 8: Penalization Based NLP Heuristic for FEM Discretization.

1 Let w(0) be a solution of (PBNLP) with β = 0;

2 Choose integrality gap ε > 0, iteration limit, Kmax, set k := 0, and

β0 := βmin > 0;

3 while k < Kmax and max
i

{
min{w(k)

i , 1 − w(k)
i }

}
> ε do

4 Let w(k+1) solve the penalized relaxation (PBNLP) with β = βk;

5 Set βk+1 := 2 · βk and k := k + 1;

6 return Rounded w(k) ∈ {0, 1};
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Objective-Gap-Reduction Rounding. Given w̃ ∈ [0, 1]Nd , the first scheme selects a

cut-off value t such that the resulting rounded solution defined as

wi(t) =

 1, if w̃i ≥ t,

0, otherwise,
(4.6)

is as close as possible to the relaxation solution in terms of its objective value. Math-

ematically, the desired cut-off value, t, is the minimizer of the following optimization

problem

minimize
0≤t≤1

J(w(t)) − J(w̃) ⇔ minimize
0≤t≤1

J(w(t)). (4.7)

Consequently, we call this scheme objective gap-reduction rounding. The optimiza-

tion problem in (4.7) can be written as a convex MINLP and the upper bound on t can be

tightened to max
i=1,...,Nd

w̃i. Because this problem is hard to solve, we propose a simple iter-

ative algorithm to obtain an acceptable cut-off value for the rounding (see Algorithm 9),

because we are interested only in the approximate solution of (4.7). The process starts

by iteratively increasing t by a constant step T ∈ (0, 1) from a small initial value until t

exceeds tmax = max
i=1,...,Nd

w̃i and outputs the best cut-off value t∗. When t∗ = 0.5, this scheme

is the same as naïve rounding.

Algorithm 9: Objective-Gap-Reduction Rounding.

1 Let T ∈ (0, 1);

2 Set k := 0, tk := min
i=1,...,Nd

w̃i, t∗ := 0, J∗ := ∞, and tmax := max
i=1,...,Nd

w̃i;

3 while tk ≤ tmax do
4 Form w(tk);

5 Solve the discretized PDE (4.4a) with w = w(tk) and evaluate J(w(tk));

6 if J(w(tk)) < J∗ then
7 Set J∗ := J(w(ck)) and t∗ := tk;

8 Set k := k + 1 and tk := tk−1 + T ;

9 Output: The best cut-off value t∗ and the rounded solution, w = w(t∗);

Mass-Preserving Rounding. The scheme rounds the relaxation solution while preserv-

ing the mass of the sources in the relaxation solution as much as possible. The mass of

the sources in the relaxation solution is given by S̃ =

Nd∑
i=1

w̃i. Let S̄ =
[
S̃
]

be the nearest

integer to S̃ . To compute the rounded solution w, we first arrange the components of w in

decreasing order of w̃i values as

1 ≥ w̃i1 ≥ w̃i2 ≥ . . . ≥ w̃iNd
≥ 0.
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Next, the largest S̄ entries are set to 1, and the remaining entries are set to zero. The

resulting rounded solution is

wik =

 1, k = 1, . . . , S̄ ,

0, k = S̄ + 1, . . . ,Nd.
(4.8)

It follows that the difference in the mass of the sources between the rounded and the

relaxed solutions is less than 1. Unlike the first rounding scheme, this rounding scheme

does not require the solution of any additional PDEs once the relaxed problem (4.5) has

been solved.

4.3.2 Trust-Region Based Improvement Heuristic

Our trust-region based heuristic for solving (4.4) starts from a binary vector, w(0) ∈
{0, 1}Nd

, and iterates on the binary variables, w. Here w(0) = w, an integer feasible solution

from a rounding scheme in the first phase. At iteration k, we assume that we have solved

the discretized PDE in (4.4) with fixed binary vector w(k) ∈ {0, 1}Nd
and have evaluated

the objective function and its adjoint; see, for example, Biegler et al. (2003) and Akçelik

et al. (2006), with respect to the (relaxation of the) binary variables,

J(k) := J(u(k), w(k)) and J′(k) := ∇wJ(u(k), w(k)).

We then define the trust-region subproblem that aims to find an improved point, ŵ:

minimize
w

J(k) + J′(k)T
(w − w(k))

subject to
∥∥∥w − w(k)

∥∥∥
1
≤ ∆k, w ∈ {0, 1}Nd

,

 (TRP)

where ∆k > 0 is the trust-region radius and ∆k ∈ Z is the maximum number of components

of w that can flip from 0 to 1 or 1 to 0 during an iteration. It is well known that we can

rewrite the `1 trust-region constraint of (TRP) equivalently as a knapsack constraint∑
i:w(k)

i =0

wi +
∑

i:w(k)
i =1

(1 − wi) ≤ ∆k

⇔
∑

i:w(k)
i =0

wi −
∑

i:w(k)
i =1

wi ≤ ∆k −
∣∣∣∣{i : w(k)

i = 1
}∣∣∣∣ ,

because w(k) ∈ {0, 1}Nd
. This reformulation is the motivation for using the `1, rather than

the `2 trust-region, because it results in an easier to solve trust-region subproblem.

We also introduce an alternative trust-region subproblem that, in addition to the `1

trust-region constraint of (TRP), restricts the changes in w to components that are close

to current source locations. In particular, we let θ > 0 be a bound on the topological
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distance from the current solution, and we define the center of C(wi) as the coordinates

of the center of the element or cell, i, corresponding to wi. We define the topological

θ-neighborhood of the current iterate w(k) as

Nθ(w(k)) :=
{
i : ∃ j with

∥∥∥∥C(wi) −C(w(k)
j )

∥∥∥∥
2
≤ θ and w(k)

j = 1
}
, (4.9)

which defines an index set of the finite elements whose centroid is within a distance θ to

the centroids of the current estimate of the source, w(k)
j = 1. Our alternative trust-region

subproblem is then defined as the following problem in which the binary variables that lie

outside the neighborhood, Nθ(w(k)), are fixed at their current values 0

minimize
w

J(k) + J′(k)T
(w − w(k))

subject to
∥∥∥w − w(k)

∥∥∥
1
≤ ∆k,

wi = 0,∀i < Nθ(w(k)), w ∈ {0, 1}Nd
.


(NTRP)

Unlike (TRP), this problem takes the topology of the current iterate into account when

defining the trust-region subproblem, because values of wi that are far from the current

sources are fixed at zero. Given either of these trust-region subproblems, we now state

our improvement heuristic in Algorithm 10.

In Algorithm 10, we increase the trust-region radius if we observe good agreement

(as measured by ρk) between the objective function in (4.4) and its linear approximation

in (TRP). If the two do not agree, then we reduce the trust-region radius in the hope of

getting better agreement in a smaller region. We use the `1-norm trust-region, because

it corresponds to the Hamming distance for binary vectors, and the trust-region radius

can be interpreted as limiting the number of binary variables that can change from the

current iterate w(k). We also ensure that the trust-region radius is always an integer, and

the algorithm stops, once the radius becomes zero. The trust-region radius becomes zero

after a finite number of iterations, because the objective is bounded below by zero, there

exists a finite number of integer assignments, w, and the trust-region reduction uses the

floor operator.

4.3.3 Solving the Trust-Region Subproblems

The trust-region subproblems (TRP) and (NTRP) are linear binary optimization

problems with a single constraint. One can easily see that as long as the trust-region

radius is non-negative (i.e., as long as ∆k ≥ 0), the problem is feasible. Here we show

that this binary optimization problem can be solved to optimality efficiently by observing

that it can be reduced to a special knapsack problem for which efficient solution methods

exist.
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Algorithm 10: Trust-Region Based Improvement Heuristic.

1 Set the initial trust-region radius, ∆0 ∈ Z+, and let w(0) ∈ {0, 1}Nd
;

2 Choose constant 0 < γ < 1, and set k := 0;

3 while ∆k ≥ 1 do
4 Solve subproblem (TRP) or (NTRP) for ŵ := argmin(TRP) or (NTRP);

5 Solve the PDE for û := u(ŵ) and evaluate the objective J(ŵ);

6 Compute the ratio of actual over predicted reduction:

ρk :=
J(w(k)) − J(ŵ)

−J′(k)T (
ŵ − w(k))

if ρk > γ then
7 Accept the new point: w(k+1) = ŵ, solve the adjoint PDE to get J′(k+1);

8 if ‖w(k+1) − w(k)‖1 = ∆k then
9 Increase the trust-region radius ∆k+1 := 2∆k;

10 else if γ ≥ ρk > 0 then
11 Accept the new point w(k+1) := ŵ, solve the adjoint PDE to get J′(k+1);

12 Leave the trust-region unchanged ∆k+1 = ∆k;

13 else
14 Reject the new point, set w(k+1) := w(k), and set J′(k+1) := J′(k);

15 Reduce the trust region ∆k+1 = b∆k/2c;
16 Set k := k + 1;

We start by writing the trust-region subproblem as a generic binary linear program

of the form

minimize
w

gTw

subject to aTw ≤ b,

w ∈ {0, 1}p,


(BLP)

where g ∈ Rp is the gradient, a ∈ {−1, 1}p, and b ≥ 0 is a positive integer.

To extend the knapsack solution approach to our problem, we distinguish the fol-

lowing cases:

1. ai = 1 and gi > 0 implies that wi = 0 at a solution of (BLP) (because increasing wi

deteriorates both the objective and the constraint satisfaction).

2. ai = −1 and gi < 0 implies that wi = 1 at a solution of (BLP) (because decreasing

wi deteriorates both the objective and the constraint satisfaction).
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3. ai = −1 and gi ≥ 0: We replace the variable wi by its “inverse”, w̌i := 1 − wi.

This change of variable reverses the signs of gi and ai, which can be handled by the

knapsack approach. We also need to update the right-hand side of the constraint as

b̌ := b − ai = b + 1 > b.

We can now remove the variables wi that correspond to the first two cases and consider

a reduced knapsack problem in standard form with m̌ ≤ p binary variables in the trans-

formed data ǧ, ǎ, b̌

minimize
w̌

ǧT w̌

subject to ǎT w̌ ≤ b̌,

w̌ ∈ {0, 1}m̌,


( ˇBLP)

where ǎ = (1, . . . , 1)T , and b̌ ≥ 0. We now sort the indices in increasing order of coeffi-

cients

ǧi1 ≤ ǧi2 ≤ ǧik < 0 ≤ ǧik+1 ≤ · · · ≤ ǧim̌ ,

where ties are broken arbitrarily, and we set ik = 0 if ǧi ≥ 0 for all indices i. The

solution of the reduced knapsack problem ( ˇBLP) is obtained by setting w̌il = 1 for all

l = 1, . . . ,min(b̌, ik) and w̌il = 0 for all l > min(b̌, ik); see, for example, Balas (1975),

Horowitz and Sahni (1974), Martello and Toth (1990), Pisinger and Toth (1998), and

Martello et al. (1999).

4.4 Implementation and Experimental Setup

In this section, we describe our implementation and the generation of the test instances,

and we briefly comment on the calibration of the regularization parameter. We also review

a popular NLP based rounding heuristic that we use in our comparisons.

4.4.1 Implementation Details

We implemented prototype versions and test instances of the proposed algorithms

in Julia (Bezanson et al. (2012)), which will enable future algorithmic developments

thanks to Julia’s rapid prototyping capabilities, and AMPL, which facilitates testing dif-

ferent MINLP solvers and relaxation ideas for our problem. To enable the reproducibility

of our results, we provide a Julia module containing the source inversion problem and

an implementation of the trust-region method freely at www.github.com/JuliaInv/

ConvDiffMIPDECO.

www.github.com/JuliaInv/ConvDiffMIPDECO
www.github.com/JuliaInv/ConvDiffMIPDECO
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The module provides methods to compute the forward problem and matrix-vector

products with the adjoint. It also contains several interactive examples that can be mod-

ified and extended. The module depends on and extends jInv (Ruthotto et al. (2017)), a

toolbox for PDE-parameter estimation problem. Our module uses the existing methods in

jInv for numerical optimization, PDE solvers, regularization, and visualization in our ex-

periments. All models are solved on a system with two 64-bit Intel(R) Xeon(R) E5-2670

v2, 2.50 GHz CPUs having 10 cores each and sharing 128 GB of RAM. Using the module

JuMP (Dunning et al. (2017)), our module can also be used to interface with a variety of

integer-programming solvers.

In addition we created AMPL code that discretizes the PDE constraint and formu-

lates the MIPDECO, using the finite-difference discretization described below in Ap-

pendix E.1. The models and run scripts are freely available at https://github.com/

JuliaInv/ConvDiffMIPDECO/tree/master/examples/ampl.

We provide the AMPL model as well as scripts that run the penalization based NLP

heuristic described in Section 4.3.1 and scripts that allow the user to output images for

further processing in MATLAB. We do not directly compare the Julia runs with the AMPL

runs in terms of CPU time because this performance measure is strongly dependent on

how well the solvers can exploit the structure of the PDE constraint.

4.4.2 Generation of Test Problems and Regularization Parameter

Two-dimensional instance. Using the domain Ω = [0, 2] × [0, 1], we construct a 2D

source model by evaluating MATLAB peaks function at the cell centers of a grid with

550 × 256 equally sized cells. Rounding the function with a threshold of 2 results in two

sources, one of which we shift right along the x-axis. The true model can be seen in the

upper-left subplot of Figure 4.1.

To generate the measurements, we solve the PDE using the finite-element method

(FEM) discretization on this mesh with a velocity of v = (1, 0)> and a diffusion of c = 0.01

and then evaluate the PDE solution at 200 random receiver locations sampled from a

uniform distribution on Ω. We visualize the PDE solution and the receiver locations

(marked by red dots) in the upper-right subplot of Figure 4.1.

Three-dimensional instance. The data for the 3D instance is generated along the same

lines. Here, we choose the domain Ω = [0, 2]× [0, 1]× [0, 1], a mesh size of 128×64×64,

and construct a 3D source model by adding three scaled and shifted norm balls. We

visualize the true model in the lower-left subplot of Figure 4.1.

https://github.com/JuliaInv/ConvDiffMIPDECO/tree/master/examples/ampl
https://github.com/JuliaInv/ConvDiffMIPDECO/tree/master/examples/ampl
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To generate the measurements, we solve the PDE using the FEM on this mesh with

a velocity of v = (1, 0, 0)> and a viscosity of σ = 0.01, and we then evaluate the PDE

solution at 200 randomly spaced boreholes whose first two components are sampled from

a uniform distribution on [0, 2] × [0, 1]. In the third dimension, we place one receiver

at each mesh cell, which yields overall 12,800 measurements. We visualize the PDE

solution using an isocontour plot and the receiver locations (marked by red lines) in the

lower-right subplot of Figure 4.1. In Table 4.1 we show the problem sizes of the instances

that we solve in our experiments.

true source PDE solution and receivers

2D
in
st
an
ce

3D
in
st
an
ce

Figure 4.1: Visualization of the ground-truth sources (left column) and the generated test data

(right column) for the 2D (top row) and 3D (bottom row) instance. The data is obtained by sam-

pling the PDE solution associated with the source model at the randomly chosen receiver locations

(indicated by red dots and lines, respectively).

Because our inverse problem is underdetermined (we have fewer measurements than

unknown optimization variables, w), we must add a regularization term, R(w), in (4.2).

This regularization term requires us to choose the regularization parameter, α, in (CFP).

To find an effective regularization parameter, we use the continuous relaxation (4.5) and

follow the L-curve approach that we describe in more detail in Appendix E.2. Using this

process, we select the regularization parameters α = 8.531 · 10−3 for the 2D instance and

α = 5.298 · 10−3 for the 3D instance, respectively.
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Method Mesh size # States # Binary control # Constraints

FDM

16 × 8 180 128 180

32 × 16 612 512 612

64 × 32 2244 2048 2244

128 × 64 8580 8192 8580

256 × 128 33540 32768 33540

FEM
256 × 128 33153 32768 33153

96 × 48 × 48 232897 221184 232897

Table 4.1: Problem size for 2D and 3D MIPDECO instances: For each method and mesh size, we

show the number of discrete state, control variables, and constraints. 2D and 3D instances have

200 and 12, 800 number of measurements, respectively

4.5 Numerical Results and Discussion

In this section, we illustrate the performance of the different approaches to the discrete

source inversion problem using numerical experiments in two and three dimensions with

known ground truth. We show empirically that state-of-the-art MINLP solvers cannot

solve even small-scale two-dimensional instances of this problem. Next, we consider

naïve rounding (also referred to as standard rounding) and two proposed rounding heuris-

tics applied to the relaxed problem, and we show that they also fail to solve the problem.

The latter rounding schemes yield better solution than does naïve rounding. We then show

that our trust-region heuristic improves on rounding heuristics to produce good-quality

solutions in a reasonable amount of time in both two- and three-dimensional cases.

4.5.1 Performance of MINLP Solvers on 2D Instances

In this section, we explore the effectiveness of state-of-the-art MINLP solvers for

tackling the discretized MIPDECO (4.4) for the 2D instance. We use six state-of-the-art

MINLP solvers: SCIP (Achterberg (2009)), BONMIN (Bonami and Lee (2007)) using

its hybrid (Bonmin-Hyb), branch-and-bound (Bonmin-BnB), and outer-approximation

(Bonmin-OA) algorithms, and MINOTAUR (Mahajan et al. (2020)) with both its branch-

and-bound (Minotaur-Bnb) and LP/NLP based branch-and-bound (Minotaur-QG) algo-

rithms. We use the self-contained finite-difference discretized MIPDECO model (pre-

sented in (FDM)) for this comparison, because it allows us to easily explore the effect of

increasing the discretization and enables others to easily reproduce our results. Otherwise,

we use the same problem setup as described in Section 4.4.
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We solve a number of instances of the 2D test problem for mesh sizes between 16×8

to 256× 128. Table 4.1 reports the sizes of these instances. In this experiment, we use the

regularization parameter, α = 8.531 · 10−3, obtained following the L-curve approach. We

limit the CPU time for the MINLP solvers to 10 hours. We report the number of nodes

processed, runtime, lower and upper bounds, and percentage gap which is a measure of

the optimality gap, and is defined as 100 × UB−LB
|UB| , where UB and LB are the upper and

lower bounds, respectively, from these solvers. If any of these bounds is unknown, we set

the percentage gap to infinity. We note that SCIP reports that the optimality gap is infinite

if the lower and upper bounds have opposite signs.

We use the intersection-over-union (IoU) score (also known as Jaccard index) to

quantify the overlap between the true source and the reconstruction source; see Csurka

et al. (2013). Let Mtrue and Mrecon denote the sets for which the true source, w, and the

reconstructed source, wrecon, are indicator functions, respectively. The IoU score is then

defined as the volume of the intersection divided by the volume of the union of these sets:

IoU =
|Mtrue ∩ Mrecon|
|Mtrue ∪ Mrecon| ∈ [0, 1].

Higher values of the IoU score indicate a better overlap. Since the inversion is per-

formed on coarser meshes, we use a next-neighbor interpolation to refine the recon-

structed sources.

In Table 4.2, we summarize the performance of the MINLP solvers. We observe

that only the two branch-and-bound solvers, Bonmin-Bnb and Minotaur-Bnb, are able to

solve the smallest 16 × 8 instance; Bonmin-BnB also solved 32 × 16 but took around 454

minutes. All other runs time out after 10 CPU-hours, and in many cases the solvers fail to

even produce a feasible source, W, or at least one of the bounds (lower or upper), indicated

by ∞ in the last column. Bonmin-OA finds only the trivial feasible point, W = 0, on all

the instances, indicating that there are no sources. Hence, we excluded the Bonmin-OA

results.

Figure 4.2 shows the best solution, W, obtained by the MINLP solvers. The results

for the 16 × 8 case show that the upper bound by SCIP and Bonmin-Hyb are far from op-

timal; Minotaur-QG found the upper bound (which in this case is also optimal) but could

not improve its lower bound and thus finished with a positive optimality gap. As we in-

crease the size of the problem, the MINLP solvers tend to obtain poor reconstructions

with speckled areas that would make a source identification difficult. The worst perfor-

mance is at the finest discretization level, where only Bonmin-Hyb returns some speckled

sources and all other solvers fail to identify the sources.

One reason for this poor performance is that all MINLP methods solve a large num-

ber of relaxations of the original problem, such as linear programs, nonlinear programs,
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Table 4.2: Performance of MINLP solvers for instances of the 2D test problem with mesh sizes

ranging from 16 × 8 to 256 × 128. The rows represent different solvers and are grouped by mesh

sizes. The columns show (left to right) the mesh size, the name of the solver, the number of nodes

processed, the run-time in seconds (where TIME-OUT indicates that we reached the time limit of

10 CPU-hours), the lower and upper bounds, and the percentage gap remaining.

Solver # nodes Runtime [sec.] Bound Gap [%]

lower upper

16
×8

Scip 225691 TIME-OUT -0.5609 0.1733 ∞
Bonmin-Bnb 266 10.71 0.0530 0.0530 0

Bonmin-Hyb 2087613 TIME-OUT 0.0413 0.0612 32.40

Minotaur-Bnb 1043 163.87 0.0530 0.0530 0

Minotaur-QG 560436 TIME-OUT 0.0416 0.0530 21.51

32
×1

6

Scip 32868 TIME-OUT -1.6063 − ∞
Bonmin-Bnb 242126 27222.15 0.0393 0.0393 0

Bonmin-Hyb 1606956 TIME-OUT 0.0347 0.0634 45.24

Bonmin-OA 2087613 TIME-OUT 0.0413 0.0612 32.40

Minotaur-Bnb 58115 TIME-OUT 0.0364 0.0575 36.71

Minotaur-QG 265309 TIME-OUT 0.0347 0.0470 26.08

64
×3

2

Scip 183 TIME-OUT -2.0189 1.7104 ∞
Bonmin-Bnb 13569 TIME-OUT 0.0338 0.0369 8.38

Bonmin-Hyb 293128 TIME-OUT 0.0329 0.0859 61.64

Bonmin-OA 2087613 TIME-OUT 0.0413 0.0612 32.40

Minotaur-Bnb 956 TIME-OUT 0.0329 0.1570 79.03

Minotaur-QG 322969 TIME-OUT 0.0329 0.0449 26.61

12
8
×6

4 Scip 1 TIME-OUT − − ∞
Bonmin-Bnb 1 TIME-OUT 0.0323 0.0481 32.79

Bonmin-Hyb 17316 TIME-OUT 0.0293 0.1696 82.69

Bonmin-OA 2087613 TIME-OUT 0.0413 0.0612 32.40

Minotaur-Bnb 8 TIME-OUT 0.0322 − ∞
Minotaur-QG 77295 TIME-OUT 0.0322 0.0696 53.74

25
6
×1

28

Scip 811 TIME-OUT − − ∞
Bonmin-Bnb 1 TIME-OUT 0.0355 − ∞
Bonmin-Hyb 17316 TIME-OUT 0.0119 0.1725 93.1

Bonmin-OA 2087613 TIME-OUT 0.0413 0.0612 32.40

Minotaur-Bnb 1 TIME-OUT − − ∞
Minotaur-QG 1 TIME-OUT − − ∞
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Figure 4.2: Solutions (W) from MINLP solvers SCIP, Bonmin-Bnb, Bonmin-Hyb, Minotaur-

Bnb, and Minotaur-QG (row-wise) on mesh sizes of 16× 8, 32× 16, 64× 32, 128× 64, 256× 128

(column-wise). We indicate the IoU value in the lower-right corner of each image.

and mixed-integer linear programs, depending on the specific method. Moreover, the

problem size increases as we refine the computational mesh, making these problems larger

and computationally harder to solve. None of the off-the-shelf solvers exploit the special

structure that is inherent in the discretized PDEs and, for example, do not take advantage

of the fact that the stiffness matrix needs to be factorized only once.

Another factor that prevents the MINLP solvers from solving our problem is the

presolve techniques that SCIP and MINOTAUR employ, such as bound tightening, and

the derivation of implications, before starting (and intermittently during) the tree-search

(Achterberg (2009); Mahajan et al. (2020)). SCIP, for example, reformulates the origi-

nal problem by decomposing the nonlinear objective function into a set of quadratic and

nonlinear constraints whose number increases with the size of the instance. For mesh

size 128 × 64, the SCIP preprocessing step took 425.95 seconds and resulted in 8,002

added quadratic constraints, making relaxations harder to solve, especially in view of the

fact that our problem can be solved as a bound-constrained NLP by eliminating the PDE

states and constraint.

We note that the heuristics used in SCIP and cutting planes used in Bonmin-OA to

find better feasible solutions seem to be ineffective for our problems. For example, the

best solutions reported by Bonmin-OA for all instances is W = 0, which indicates that

there are no sources, which - even though feasible - is not a meaningful solution.
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We also observe that the optimality gap is high for most solvers, because the lower

and upper bounds are quite weak, leading to slow convergence. For mesh-size 256× 128,

Bonmin (in all algorithms) could not improve its starting lower bound even after the 10

CPU-hours, and MINOTAUR failed to report even a single lower bound because of a

restoration failure in IPOPT that assumed local infeasibility. Initially, we allowed only

two CPU-hours. Raising this limit to ten hours did not change the quality of the bounds,

indicating that these problems are unlikely to be solved within a reasonable time with

existing MINLP solvers.

4.5.2 Results for Rounding Approaches

Here, we compare the effectiveness of the different rounding schemes discussed in

Section 4.3.1, on the finest mesh (256 × 128). The naïve, mass-preserving, and gap-

reduction rounding schemes start from the continuous relaxation solution of (CFP) given

by (4.5). In contrast, the NLP based rounding heuristic solves a sequence of NLPs, taking

11 and 7 iterations for the 2D and 3D case, respectively. In Table 4.3 we report the

objective value, the solution time, and the number of PDEs of the solutions obtained

from these rounding schemes. For the first two rounding schemes, the number of PDE

solves is due to solving the relaxation (4.5). While the computational costs of the naïve

and mass-preserving scheme are negligible, the gap reduction rounding requires repeated

evaluation of the objective function and thus the PDE solves. Note that the factorizations

of the discretized PDEs were computed during the solution of the relaxed problem and

reused during the rounding. The additional costs are 16 and 13 PDE solves in the 2D

and 3D cases, respectively. The majority of the time required by these three rounding

schemes is from solving the relaxation. All the objective values reported henceforth are

the objective value as in (4.5).

2D 3D

Rounding Obj Time (s) # PDE solves Obj Time (s) # PDE solves

Naïve 0.1098 24.29 462 0.0246 587.27 565

Mass-pres 0.0780 24.25 462 0.0262 587.24 565

Gap-red 0.1027 24.76 478 0.0246 600.36 578

NLP based 0.0530 794.10 2750 0.0204 12920.39 1518

Table 4.3: Comparison of objective value, solving time, and number of the PDE solves of different

rounding schemes.
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In Figures 4.6 and 4.7 the first column shows the solution w from these rounding

schemes. The NLP based rounding resulted in a better solution than the rest but took

around 33 (22) times more time for 2D (3D) case. We applied the different schemes at

every iteration of the NLP based rounding heuristic. In the 2D case, we obtain better so-

lutions with proposed rounding schemes (mass-preserving and gap-reduction) than with a

simple rounding scheme, and in some iterations, our rounded solutions are better than any

solution of the NLP based rounding heuristic. In the 3D case, the naïve and gap-reduction

roundings resulted in the same solution. Figure 4.3 reports iteration statistics of the NLP

based rounding heuristic. The top row corresponds to the 2D case and bottom row to

the 3D case. In a row, the leftmost figure shows the number of PDE solves and solution

time at each iteration; the middle figure reports the optimal objective value (Obj val) and

objective value of the integer solution obtained by employing different rounding schemes

(naïve, mass-preserving, and gap-reduction) to the solution of NLP based heuristic at each

iteration; the rightmost figure shows the IoU values associated with different integer fea-

sible solution reported in the middle figure. These results encourage us to believe that

NLP based heuristic with higher integrality tolerance can also give a good-quality integer

solution when used in conjunction with the proposed simple rounding schemes. We note

that at iteration 10 of the 2D instance the objective value from the NLP based heuristic is

more than the rounded solution given by the gap-reduction rounding. This means that the

former is not a valid lower bound, because problem (PBNLP) is nonconvex, and we solve

it only with a (local) projected Gauss-Newton method.

4.5.3 An Integrated Rounding Heuristic and Trust-Region

Approach

We now apply our new trust-region approach to the intermediate solutions from

the NLP based rounding approach of Section 4.5.1 for both the 2D and 3D instances.

Note that the first iteration in the NLP based heuristic corresponds to the relaxation of

(CFP). For each iteration we consider three rounding schemes (naïve, mass-preserving,

and objective gap-reduction) and two versions of the trust-region approach (full re-

gion and neighborhood of 1 pixel), resulting in six combinations of our algorithm

(at each iteration). We refer to Nθ in (4.9) with θ =

√( 2
256

)2
+

( 1
128

)2
and θ =√( 2

96

)2
+

( 1
48

)2
+ +

( 1
48

)2
as neighborhood of 1 pixel in our 2D and 3D cases, respec-

tively. For the 2D instance, Figure 4.4 shows the objective and IoU values from each

of these combinations at each iteration; left and right columns are for the trust-region

approach on full-space and neighborhood of one pixel, respectively. From our compu-
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Figure 4.3: Detailed summary of solution time, # of PDE solves, objective value of the orig-

inal problem, and objective and IoU values of integer feasible solutions obtained by the naïve,

mass-preserving, and gap-reduction roundings of the solution at each iteration in the NLP based

heuristic. Top row is for 2D instance and bottom row is for 3D instance.

tational results we see that for the 2D instance, for all the iterations (other than iteration

7) the mass-preserving has performed better than the other rounding schemes. Also, the

mass-preserving and objective gap-reduction roundings give better solutions in terms of

objective than does naïve rounding for the trust-region approach in all the iterations other

than the last two. In the last two iterations the integrality gap in small and all three round-

ings result is the same initial and thus final solutions. Similar results for the 3D case are

reported in Figure 4.5.

Figure 4.6 shows the source reconstructions for the first iterate of the penalty method

applied to the 2D instance for each of the six combinations of our algorithm (first three

rows), and the last iterate considering only mass-preserving rounding (since the integrality

gap is small, all the three rounding schemes give same initial solution) in the last row.

Each row depicts the initial guess, the reconstruction computed by the full-space trust-

region method, and the reconstruction from the neighborhood trust-region method for a

given rounding scheme. The superimposed red lines depict the shape of the true source.

In each case, the overlap is improved by the trust-region method. Similar results for the

3D case are reported in Figure 4.7.

In the 2D case, we observe that for the first few iterations in the NLP based heuristics

naïve rounding identified the larger of the two sources and completely failed to identify

the second smaller source. However, the other two roundings, mass-preserving and gap-
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MIPDECO solution, full region MIPDECO solution, 1 pixel

Figure 4.4: Objective and IoU values of trust-region approach on the solutions obtained by the

naïve, mass-preserving, and gap-reduction roundings of the solution at each iteration in the penal-

ization based NLP heuristic for 2D instance.

Rounding 2D 3D

Full region 1 pixel Full region 1 pixel

Naïve 0.0473 0.0784 0.0209 0.0207

Mass-preserving 0.0431 0.0427 0.0208 0.0207

Gap-reduction 0.0428 0.0429 0.0209 0.0207

NLP heuristic 0.0428 0.0428 0.0204 0.0204

Table 4.4: Final objective value of rounding heuristics and trust-region approach.

reduction, identified both sources. When only one of the sources is recovered by using

a rounding schemes the neighborhood trust-region approach cannot identify the second

source, because it can change wi only near the initial guess. On the other hand, the full-
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MIPDECO solution, full region MIPDECO solution, 1 pixel

Figure 4.5: Objective and IoU values of trust-region approach on the solutions obtained by the

naïve, mass-preserving, and gap-reduction roundings of the solution at each iteration in the penal-

ization based NLP heuristic for 3D instance.

space trust-region algorithm discovers the second smaller source as well, independent of

the starting guess.

In 2D (3D) instances, the added runtime of the trust-region approaches is around 7

seconds (between 58 and 129 seconds) when the initial guess is obtained from the first

iteration of the NLP based heuristic and less than 3 (between 10 and 74 seconds) seconds

when the initial guess is from any other iteration (the largest number of PDE solves for

the trust-region scheme was 102 (82); combining this with the PDE solves required for

solving the relaxed problem, the total number of PDE solves was 564 (647)). We note that

the number of PDE solves is significantly lower than the total number of binary variables,

indicating that our solution approach is efficient for solving these large-scale MINLPs.

In Table 4.4 we report the final objective value obtained from our algorithms. In the

first three rows, the initial guess is obtained from rounding the relaxation solution. For
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Figure 4.6: 2D results of the full-space and neighborhood variant of the trust-region approach for

different rounding heuristics (row-wise). The left column shows the starting guess, obtained by

rounding the solution of the relaxed problem at the α value selected from the L-curve. The middle

and right columns depict the solutions obtained using the trust region methods. The superimposed

red line indicates the location of the true source. The overlap is quantified using the intersection-

over-union score (IoU) and printed in the lower-right corner of each image.

the NLP heuristic we used as a starting guess the final iteration solution with the naïve

rounding, because the other two rounding schemes also result in the same integer feasible

solution (due to the very small integrality gap). Using the proposed trust-region heuris-

tic, We obtain a percentage improvement of 132%, 82.67%, 139.39%, and 23.83% in the

objective values of naïve, mass-preserving, gap-reduction, and NLP heuristic rounding

solutions, respectively, for 2D case; and of 18.84%, 26.57%, and 18.84% in the objective

values of naïve, mass-preserving, and gap-reduction solutions, respectively, for the 3D

case.

Figure 4.8 shows the progress in objective value and the change in the trust-region

radius for the MIPDECO instances. Here we use the first iteration of the penalty method

as an initial guess. We observe that the trust-region algorithm terminates in a modest

number of iterations (typically in the range [25, 51]), which implies that we solved at most

twice the PDEs to obtain function and adjoint information (we do not need to solve the
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Figure 4.7: 3D results of the full-space and neighborhood variant of the trust-region approach for

different rounding heuristics (row-wise). The left column shows the starting guess, obtained by

rounding the solution of the relaxed problem at the α value selected from the L-curve. The middle

and right columns depict the solutions obtained using the trust region methods. The overlap is

quantified using the IoU and printed in the lower-right corner of each image.

adjoint equation on iterations on which we reject the step). These results are encouraging,

given that the bulk of the computational effort is the initial factorization of the stiffness

matrix, which we do once during the solution of the relaxed discretized MIPDECO and

after which we can reuse the factors for fast PDE solves. The reduction in the function

value that we obtain is also encouraging, showing that we can significantly improve the

objective value in our trust-region iterations.
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Figure 4.8: Convergence histories of the MIPDECO heuristics. Each plot shows the values of

the objective function (blue line, left y-axis) and the trust-region radius (red line, right y-axis) at

each iteration (x-axis). The rows correspond to the instances obtained for the naïve, the mass-

preserving, and the gap-reduction rounding, respectively. The columns represent the 2D and 3D

results of the full-space and reduced space methods.

4.6 Conclusions

We apply several solution approaches to a discrete source inversion problem for the

convection-diffusion equation. We discretize the given mixed-integer PDE-constrained

optimization (MIPDECO) problem using finite elements and obtain a large-scale convex

MINLP. Using numerical examples, we demonstrate that the discretization of this problem

can be solved neither by rounding solutions of the relaxed problem nor by state-of-the-art

MINLP solvers. We propose a new heuristic for MIPDECO that combines a problem-

specific rounding scheme with an improvement heuristic. The method is motivated by

trust-region methods for nonlinear optimization and is related to the neighborhood search

and local-branching heuristics for MINLP.

We show that our proposed heuristic can solve both 2D and 3D problem instances

with more than 65,000 binary variables. In particular, our full-space trust-region approach

can add sources even if the initial guess misses an existing source. The algorithm solves

at most two PDEs per iteration, and our Julia implementation reuses factorizations of the

stiffness matrix for computational efficiency. In most cases, the trust-region approach

converges in a modest number of iterations (often around 30).

There are several ways to further improve the efficiency of MINLP solvers, which

use IPOPT to solve the continuous relaxations and the nodes in the branch-and-bound
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tree. Because IPOPT is a general-purpose framework for solving optimization problems,

it does not take advantage of the structure of the discretized PDE. In particular, IPOPT

refactors the stiffness matrix on every iteration, although in principle one could rewrite

the linear algebra inside IPOPT to take advantage of these factors. On the other hand, the

PDECO solver jInv is geared toward PDE-constrained problems and includes a number

of choices that reduce the runtime for the specific instance. Since in the problem at hand

the PDE-operator does not depend on the optimization variable, our jInv uses a direct

method to factorize the stiffness matrix before solving the relaxed problem. While com-

puting the factorization in 3D takes a significant amount of time, subsequent evaluations

of the objective function, gradients, and matrix-vector products with the Hessians can be

computed quickly.



Chapter 5

Conclusions and Future Work

Although convex MINLPs are theoretically hard to solve, instances of reasonable sizes

can be solved in practice and faster by exploiting special mathematical structures (or

properties) present in their formulations. Thus, enlarging the scope of improvement in

commercial and open-source solvers for convex MINLPs. One such property is convexity,

which has been shown extremely helpful in obtaining useful problem reformulations and

polyhedral approximations.

In Chapter 2, we enhance the performance of a branch-and-cut based QG method by

adding extra valid linear inequalities at appropriate nodes of its branch-and-bound tree.

Tight relaxations, especially in the early stages of the branch-and-bound tree, prove quite

useful in reducing the overall size of the tree and solution times. Our computational ex-

periments using proposed linearization schemes in the QG algorithm report that, starting

with a tight root node relaxation reduces the distance between the root LP solution and

the feasible region of the continuous relaxation at the root node by a far greater extent

than the reduction achieved in the solution times. Also, exploiting special structures like

the univariate structure (US) in nonlinear constraints has a more significant impact than

general-purpose routines for generating additional linearizations. Overall, the proposed

linearization schemes have shown favorable results in terms of solution times and size of

the tree in both serial and parallel versions of the QG algorithm in the open-source solver

MINOTAUR.

In Chapter 3, we emphasize that convex MINLPs can be solved faster by exploiting

specific mathematical structures present in them. Reformulations that result by exploit-

ing these structures provide tighter relaxations or tighter polyhedral approximations. We

discuss problem reformulations using two structures: on-off sets and separable nonlinear

functions. Though finding these structures in the problem (P) is challenging in general,

we present computationally efficient ways to detect collections of constraints that appear
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as small blocks in (P) and are amenable to these reformulations. By automatically ex-

ploiting such reformulations in the branch-and-cut framework of QG in MINOTAUR, we

could solve many instances faster and solve some instances that could not be solved ear-

lier. Furthermore, we present that reformulations obtained by exploiting nonlinear func-

tion separability result in structures that become amenable to perspective reformulations,

further enhancing the performance in many instances.

Chapter 4 presents a MIPDECO problem, a relatively new and challenging class of

optimization problems. Most of the known approaches for solving these problems lead

to optimization problems with a large number of variables and an extensive system of

equations (the discretized PDEs) that describe the underlying physics. We apply several

solution approaches to a discrete source inversion problem for the convection-diffusion

equation. We discretize the given MIPDECO problem using the finite element approach

and obtain a large-scale convex MINLP. Using numerical examples, we demonstrate that

the discretization of this problem could neither be solved by rounding the solutions of the

relaxed problem nor by deploying state-of-the-art MINLP solvers directly. The primary

reason for this inability of the solvers is that they are not designed to exploit the discretized

PDE structure. We propose a new heuristic for such problems that combines a problem-

specific rounding scheme with an improvement heuristic. The method is motivated by the

trust-region methods for nonlinear optimization and is related to the neighborhood search

and local-branching heuristics for MINLPs. Using our modified trust-region method, we

show that three-dimensional instances of MIPDECO can be solved efficiently and in a

reasonable amount of time.

Following are some future research directions that involve some natural extension

of the presented work to more general MINLPs and the scope of applying other tools like

machine learning into such algorithmic frameworks.

• Structures exploitation in general MINLPs: Nonconvex MINLPs involve more

general nonlinear functions than convex MINLPs. Automatic detection of known

structures and finding new structures, especially whose convex hull description is

easy to find, are beneficial to advance the area of general MINLPs. With this ob-

jective in mind, we seek to first narrow down on special impactful structures in a

wide range of mathematical formulations and find efficient ways to automate the

identification of such structures in general MINLPs possibly.

• MILP based bounding in MINLP algorithms: Solving MILP relaxations (instead

of LPs) gives better dual bounds, and their solutions can be used as starting points

in the search heuristics and to solve fixed-NLPs to improve the primal bounds.
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These observations, along with advancements in state-of-art MILP solvers, have

motivated researchers to solve MILPs more frequently within the branch-and-cut

framework for solving MINLPs (Kılınç and Sahinidis (2018)). However, when

one should solve a more expensive relaxation like an MILP is crucial to ensure

effective computational resource usage. BARON (Sahinidis (1996)), another state-

of-art solver for MINLPs, decides to solve an MILP at a node based only on the

feasibility of integer solutions available from its ancestor nodes. We want to explore

strategies that leverage the tightness of an LP relaxation at a node to decide if an

MILP should be solved or not. The tightness of an LP relaxation can be estimated

using some violation measure of the nonlinear constraints at the LP solution at that

node.

• Learning in the algorithmic framework of MINLPs: In the last decade, ma-

chine learning is being used as a useful tool in combinatorial optimization for many

decisions - branching variable selection (Khalil et al. (2016)), node selection (He

et al. (2014)), parameter settings in solvers (Hutter et al. (2010)), primal heuristics

(Khalil et al. (2017)), cutting planes (Tang et al. (2019)), whether to solve an MILP

or an MIQP etc. - that are adaptive to the progress of the solution method. We

are interested in leveraging learning in decisions that can be benefited from data

generated during the MINLP solving, namely identifying good portions of the fea-

sible region and infeasible domains, generating and managing valid inequalities,

deciding when and which type of relaxations (LP, NLP, or a MILP) to be solved,

etc.



Appendix A

Mathematical Preliminaries

A vector of dimension n is denoted by x ∈ Rn, which is a point with n components

(x1, . . . , xn). Also, by a vector we mean a column vector and x> represents transpose of

x. We use Rn and Zn to denote the set of all n-dimensional vectors (or points) of real

and integer values, respectively, and {0, 1}n means collection of all n-dimensional vectors

of values 0 or 1. Given two n-dimensional vectors x and y, x>y is called inner (or dot)

product of x and y, and is given by x>y =
∑n

i=1 xiyi. Also, x>y = y>x. If b is a scalar, then

b ∈ R. A quantity is non-negative means it is greater than or equal to 0 and positive means

it is strictly greater than 0. A non-negative vector denoted as x ≥ 0, x ∈ Rn, means every

component takes a non-negative value. A nonzero vector suggests at least one component

takes a nonzero value. Symbols ⊆, ⊂,∀,∃ mean subset, proper subset, for all, and there

exists, respectively. Let S ⊆ Rn and T ⊆ Rn be two sets.

• If S is an empty set, then it is denoted by ∅.

• x ∈ S means that x is an element of the set S , x < S indicates that x is not an

element of S .

• S C = {x ∈ Rn|x < S } is called complement of set S .

• If the number of elements in a set S is finite, then |S | denotes the cardinality (number

of elements) of the set S .

• S ∪ T represents their union, S ∩ T denotes their intersection, and T\S is the set of

elements that are in T but not in S .

• For a x ∈ S and positive scalar δ ∈ R, Nx(δ) is called δ-neighborhood of x, which

is defined as the set of elements that are within δ distance (in Euclidean norm, ‖.‖2)

from x, that is, Nx(δ) = {y ∈ Rn| ‖x − y‖2 < δ}.
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Definition A.0.1. A set S ⊆ Rn is called

(a) open if for every x ∈ S there exists a δ-neighborhood Nx(δ) such that Nx(δ) ⊂ S .

(b) closed if its complement S C is open.

(c) bounded if there exists a positive scalar r such that for every x, y in S , ‖x − y‖2 < r.

(d) compact if and only is it is closed and bounded.

The intersection of any number of closed sets, and the union of any finite collection of

closed sets is a closed set.

Definition A.0.2. Let a ∈ Rn be a nonzero vector and b be a scalar,

(a) a halfspace is a set of the form {x ∈ Rn|a>x ≤ b}.

(b) a hyperplane is a set of the form {x ∈ Rn|a>x = b}.

Vector a in the definition of the hyperplane is orthogonal to the hyperplane.

Every hyperplane can be written as an intersection of two halfspaces, {x ∈ Rn|a>x ≤
b} and {x ∈ Rn| − a>x ≤ −b}. A halfspace is a closed set, thus, a hyperplane is also a

closed set.

Definition A.0.3. A polyhedron is a set of the form {x ∈ Rn| a>i x ≤ bi, i = 1, . . . ,m}, where

vector ai ∈ Rn, b is a scalar, and m is a non-negative integer.

In the compact form, a polyhedron can be represented as {x ∈ Rn|Ax ≤ b}, where

A is an m × n matrix and b ∈ Rm. Vector a>i forms ith row of matrix A. In addition, a

polyhedron can be seen as an intersection of finite number of halfspaces, that implies that

a polyhedron is also a closed set.

Definition A.0.4. Given a finite number of n-dimensional real vectors x1, . . . , xk,

(a) a convex combination of these vector is a vector of the form

x = λ1x1 + . . . + λkxk,

where λi ≥ 0,∀i = 1, . . . , k and
∑k

i=1 λi = 1.

(b) a convex hull of these vectors is the set of all the convex combinations of them.

Definition A.0.5. A set S ⊆ Rn is convex if all the convex combinations of any two points

x, y ∈ S also lie in the set S .
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All the convex combinations between two points constitute the line segment between

these points. Thus, a convex set contains the line segment between every pair of points

in it. Convex hull of any set S is always a convex set and is denoted by conv(S ). Also,

it is the smallest convex set that contains the set S . In addition, if S is a convex set, then

conv(S ) = S .

Theorem A.0.6. Intersection of convex sets is a convex set.

A halfspace is a convex set and, thus, every polyhedron is also a convex set.

Let f : Rn → R be a real-values function, then

• the gradient ∇ f and Hessian ∇2 f of function f are the vector of its first partial

derivatives and matrix of its second partial derivatives, respectively. Mathemati-

cally,

∇ f =


∂ f
∂x1
...
∂ f
∂xn


and ∇2 f =



∂2 f
∂x1

2

∂2 f
∂x1∂x2

· · · ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2 · · · ∂2 f
∂x2∂xn

...
...

. . .
...

∂2 f
∂x1

∂2 f
∂xn∂x2

· · · ∂2 f
∂xn

2


.

• a point x ∈ Rn is called a stationary point if ∇ f (x) = 0.

Definition A.0.7. Let S ⊆ Rn be a convex set and function f : S → R .

(a) f is convex if for every x, y ∈ S and λ ∈ [0, 1] following holds

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y). (A.1)

(b) α-sublevel set of f is a set of the form

S α = {x ∈ S | f (x) ≤ α},

where α ∈ R.

Equation (A.1) suggests that for a convex function, the graph of the function between

every pair of points in its domain lies no higher than the line segment between these two

points. Figure 4.1 shows its graphical interpretation.

If the sign of the inequality in A.1 is reversed, then the function becomes concave.

Thus, if f is convex, − f is concave, and vice-versa. All sublevel sets of a convex function

are convex sets, but the converse is false. In this thesis, we work majorly with convex and
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Figure A.1: An example of (Left) a convex function and (Right) a nonconvex function on set

S = [a, b]. Here z = λx + (1 − λ)y, λ ∈ [0, 1] is a convex combination of points x, y ∈ S .

smooth functions. We call a function smooth if it is twice-continuously differentiable on

its domain.

A n × n dimensional matrix A is called positive definite if x>Ax > 0 for all nonzero

vector x ∈ Rn, and positive semidefinite if x>Ax ≥ 0 for all x ∈ Rn. For a convex function,

Hessian at every point in its domain is positive semidefinite.

A useful mathematical tool for studying smooth functions is Taylor’s theorem. This

theorem allows one to derive useful approximations of a smooth function.

Theorem A.0.8. (Nocedal and Wright (2000)) Suppose that function f : Rn → R is

continuously differentiable and p ∈ Rn. Then

f (x + p) = f (x) + p>∇ f (x + tp),

for some t ∈ (0, 1).

Definition A.0.9. The first-order approximation or linear approximation of a differen-

tiable function f : Rn → R at a point y ∈ Rn is given by

f (x) = f (y) + (x − y)>∇ f (y).

Another useful result for a convex function is that every linear approximation un-

derestimates it. Theory and algorithms of mathematical optimization involving convex

functions make extensive use of this result.
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Theorem A.0.10. A differentiable function f : Rn → R is convex if and only if for every

x, y ∈ Rn

f (x) ≥ f (y) + (x − y)>∇ f (y),

and, f is strictly convex if and only if

f (x) > f (y) + (x − y)>∇ f (y).

An underestimator of a function f : S → R is another function f (x) : S → R such

that f (x) ≤ f (x),∀x ∈ S .

Solving an optimization problem means finding a point where the objective function

takes the minimum value among all the allowed values that the objective function can

assume. Formally, the notion of minimizer can be understood as follows.

Definition A.0.11. Given a set S ⊆ Rn and a function f : S → R

(a) a point x∗ is a local minimizer of f over S if there exists a δ-neighborhood of x∗,

Nx∗(δ), such that f (x∗) ≤ f (x),∀x ∈ Nx∗(δ).

(b) a point x∗ is a global minimizer of f over S if f (x∗) ≤ f (x),∀x ∈ S .

A minimizer (local or global) is called a strict minimizer if inequality in Defini-

tion A.0.11 holds at strict inequality. For a general optimization problem finding a global

minimizer can be difficult. Most algorithms can find only a local minimizer. However,

specific properties help in identifying global minimizer. One such property is the convex-

ity of the objective function and the feasible region.

Theorem A.0.12. (Nocedal and Wright (2000)) When f : S → R is convex, any local

minimizer x∗ is a global minimizer of f . If in addition, f is differentiable, then any

stationary point x∗ ∈ S is a global minimizer of f .

Theorem A.0.12 enables algorithms for convex optimization to seek a point where

gradient vanishes.
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Description of Test Instances

We have considered 334 convex MINLP instances from the benchmarking library

(Bussieck et al. (2003)) in our computational experiments in Chapter 2 and Chapter 3.

Following is a brief description of the applications and problems associated with these

instances. Symbol ∗ following the name of a problem denotes a collection of instances in

that class.

• alan: A mixed-binary quadratic program (MBQP) for mean-variance portfolio se-

lection problem (Manne (1986)).

• ball_mk∗: MINLPs representing intersection of a ball B(ρ, r) ⊂ Zn of radius

r =
√

(n − 1)/2 centered at ρ = (1/2, . . . , 1/2) with the vertices of the unit hy-

percube {0, 1}n (Hijazi et al. (2014)). These examples are constructed to study the

worst-case complexity of multi-tree methods presented in Chapter 1. These are

infeasible instances in which the outer-approximation method visits all the integer

combinations in the feasible region to establish infeasibility in the problem.

• batch∗: Mixed-binary nonlinear programs (MBNLPs) of batch processing from the

chemical processing industry. They model multi-product batch plant design prob-

lems with multiple units in parallel and intermediate storage tanks. The objective

of these problems is to determine the volume of the equipment, the number of units

in parallel, and the volume and location of the intermediate storage tanks. These

problems have a single nonlinear constraint, and a nonlinear objective involving an

exponential term (Ravemark and Rippin (1998); Vecchietti and Grossmann (1999)).

• clay∗: Constrained layout problems where non-overlapping rectangular units are

to be located within designated areas while minimizing the cost of connecting these

units (Sawaya and Grossmann (2008)). These problems are deliberately poorly
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modeled to ensure no feasible solution lies near the optimal solution of the contin-

uous relaxation of the problem. The instances with the suffix ‘h’ are MBNLPs, and

‘m’ are mixed-binary quadratically constrained problems (MBQCPs).

• cvxnonsep∗: Fabricated instances to test solvers’ capability to apply log and

power transformations and exploit nonlinear function separability. They have non-

separable functions that are highly nonlinear (in the sense that the Hessian of the

Lagrange function is dense). Outer-approximation and cutting-plane algorithms are

ineffective on these problems. The reformulated problems are separable and have

suffix ‘r’. Problems with ‘nsig’ and ‘psig’ in their names are amenable to log

transformation and ‘normcon’ and ‘pcon’ to power transformation (Kronqvist

et al. (2018b)). Problems with suffix ‘r’ and ‘normcon’ in their names are mixed-

integer quadratically constrained problems (MIQCPs) and others are MINLPs.

• du-opt∗: Mixed-integer quadratic programs (MIQPs) and enpro are MBNLPs

from batch processing application.

• ex1223, ex1223b, gams01, ibs2, ravempb, risk2b, st_e14
(MBNLPs), gbd, netmod∗ (MBQPs), ex1223a (MBQCQP) are modified text-

book examples (Floudas et al. (1999)), nvs∗ (IQCQPs), st_miqp1, st_miqp2,

st_miqp3, st_test∗ (IQPs), st_miqp4, st_miqp5 (MIQPs).

• ex4: Process synthesis problem (MBQCQP) that aims to determine the optimal

structure and operating conditions of a process while satisfying given design speci-

fications (Duran and Grossmann (1986)).

• fac∗ Multi-commodity capacity facility location-allocation problems. fac3 is a

MBQP and others are MBNLPs.

• flay∗ : Farmland layout problems (MBNLPs). These problems determine the op-

timal length and width of rectangular patches of land with the fixed area while

minimizing the set of patches’ perimeter (Sawaya and Grossmann (2008)).

• fo7, fo7_2, fo8, fo9, m3, m6, m7, o7, o7_2: Facility layout design

problem from manufacturing and service organizations (MBNLP). In this facility

layout problem, the objective is to find a non-overlapping arrangement of some

rectangular departments within a given rectangular facility while minimizing some

distance based measures and satisfying size and area requirements (Meller et al.

(1998)).



123

• fo7∗, fo8∗,fo9∗, m7∗, no7∗, o7∗, o8_ar4_1, o9_ar4_1: Block layout de-

sign problems (MINLPs). Very similar in spirit to facility layout design problems,

these problems strive to find the most efficient arrangement of a given number of

departments with unequal area requirements within a facility (Castillo et al. (2005)).

• hybriddynamic_fixed: Fixed length finite element discretization of the math-

ematical program with equilibrium constraints for the hybrid dynamic systems

(MBQP) (Baumrucker and Biegler (2009)).

• jit1: A MINLP from the just-in-time manufacturing systems. The objective of

this problem is to minimize the total cost of production, imbalance, and investment

while determining the number of machines for each stage of a multi-stage produc-

tion process (Gunasekaran et al. (1993); Gutierrez and Sahinidis (1996)).

• meanvar*: Standard mean-variance model from financial operations (MBQP)

(Dahl et al. (1989)).

• portfol∗: Portfolio optimization problems. portfol_buyin (MBNLP) is a

deterministic version of probabilistic mean-variance portfolio selection problems

that aim to construct a portfolio with minimal risk, and a prescribed return level

(Bonami and Lejeune (2009)). portfol_card (MBNLP) finds a portfolio by min-

imizing a utility function constructed based on the investor’s preferences (Ehrgott

et al. (2009)). portfol_classical∗ (MBQCP) conic quadratic programming of

the classical mean-variance problem (Vielma et al. (2008)). portfol_roundlot

(MINLP) is a modification mean-variable models to incorporate requirements to

buy assets in large lots (Bonami and Lejeune (2009)).

• procurement2mot: A MBNLP of the production planning decisions in a chemi-

cal process network. It involves optimal contract selection under uncertainty with

suppliers and product selling price optimization (Calfa and Grossmann (2015)).

• rsyn∗: Retrofit-synthesis problems (MBNLPs). They involve redesigning exist-

ing plants to increase throughput, reduce energy consumption, improve yields, and

reduce waste generation. Simultaneously, it synthesizes new plants. The objec-

tive is to identify design decisions that yield highest economic improvement over

the desired time horizon with limited capital investments (Sawaya and Grossmann

(2008)).

• slay∗: Safety Layout problems (MBQPs). These problems consist of placing a set

of units with fixed width and length so that the Euclidean distance between their
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center points and a prespecified point (called safety point) is minimized (Sawaya

and Grossmann (2008)).

• smallinvDAX∗: Small Investor Mean-Variance Portfolio Optimization problems

(MICQPs). They include constraints for small investors in the standard Markovitz

Mean-Variance-Optimization model.

• squfl∗: Separable quadratic uncapacitated facility location problems (MBQPs) as

described in (UFL) in Chapter 1 (Günlük et al. (2007)).

• sssd∗: Stochastic service system design problems (MBNLPs). The objective in

these problems is to minimize the operating and assignment cost associated with

allocating servers (operating at different service levels) to a set of customers (El-

hedhli (2006)).

• stockcycle: Inventory management problems (MBNLPs) that aim to minimize

the total average cycle cost subject to constraints on reordering intervals and the

total number of replenishments (Silver and Moon (1999)).

• syn∗: Synthesis problems (MBNLPs) that involve selecting optimal configura-

tion and parameters for synthesizing a processing system (Duran and Grossmann

(1986); Türkay and Grossmann (1996)).

• tls∗: Cutting stock or trim loss problems (MBNLPs). with the objective of meeting

the demand of a set of paper rolls from the raw rolls while minimizing the trim loss

and overproduction (Harjunkoski et al. (1998)).

• unitcommit∗: Short-term unit commitment problem in hydro-thermal power gen-

eration systems (MBQPs). These problems aim to find a set of hydro and thermal

generating units over a specified time horizon to satisfy a forecasted energy demand

at the minimum total cost (Zondervan and Grossmann (2009)).

• watercontamination∗: Discretized inverse problems for finding contamination

sources in municipal water networks (MBQPs) (Laird et al. (2006)).
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Test Sets for Linearization Schemes

Table C.1: Description of instances in the test set TS l for linearization schemes in Chapter 2. The

first column contains the name of the instance. For the instance on the first column, the second

column indicates the test set (TS 1 or TS 2) to which it belongs, third column reports whether the

objective function is nonlinear (1) or not (0), and the last column contains the number of nonlinear

constraints.

Instance Set O C

alan TS 2 1 0

ball_mk2_10 TS 2 0 1

ball_mk2_30 TS 2 0 1

ball_mk3_10 TS 2 0 1

ball_mk3_20 TS 2 0 1

ball_mk3_30 TS 2 0 1

ball_mk4_05 TS 2 0 1

ball_mk4_10 TS 2 0 1

ball_mk4_15 TS 2 0 1

batch0812 TS 2 1 1

batchdes TS 2 1 1

batch TS 2 1 1

batchs101006m TS 2 1 1

batchs121208m TS 2 1 1

batchs151208m TS 2 1 1

batchs201210m TS 2 1 1

clay0203h TS 2 0 24

clay0203m TS 2 0 24

clay0204h TS 2 0 32

clay0204m TS 2 0 32

clay0205h TS 2 0 40

clay0205m TS 2 0 40

clay0303h TS 2 0 36

clay0303m TS 2 0 36

clay0304h TS 2 0 48

clay0304m TS 2 0 48

clay0305h TS 2 0 60

clay0305m TS 2 0 60

Instance Set O C

cvxnonsep_normcon20 TS 2 0 1

cvxnonsep_normcon20r TS 1 0 20

cvxnonsep_normcon30 TS 2 0 1

cvxnonsep_normcon30r TS 1 0 30

cvxnonsep_normcon40 TS 2 0 1

cvxnonsep_normcon40r TS 1 0 40

cvxnonsep_nsig20 TS 2 0 1

cvxnonsep_nsig20r TS 1 0 20

cvxnonsep_nsig30 TS 2 0 1

cvxnonsep_nsig30r TS 1 0 30

cvxnonsep_nsig40 TS 2 0 1

cvxnonsep_nsig40r TS 1 0 40

cvxnonsep_pcon20 TS 2 0 1

cvxnonsep_pcon20r TS 2 0 19

cvxnonsep_pcon30 TS 2 0 1

cvxnonsep_pcon30r TS 2 0 29

cvxnonsep_pcon40 TS 2 0 1

cvxnonsep_pcon40r TS 2 0 39

cvxnonsep_psig20 TS 2 1 0

cvxnonsep_psig20r TS 1 0 21

cvxnonsep_psig30 TS 2 1 0

cvxnonsep_psig30r TS 1 0 31

cvxnonsep_psig40 TS 2 1 0

cvxnonsep_psig40r TS 1 0 41

du-opt5 TS 2 1 0

du-opt TS 2 1 0

enpro48pb TS 2 1 1

enpro56pb TS 2 1 1
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Instance Set O C

ex1223a TS 1 1 4

ex1223b TS 2 1 4

ex1223 TS 2 1 4

ex4 TS 2 1 25

fac1 TS 2 1 0

fac2 TS 2 1 0

fac3 TS 2 1 0

flay02h TS 1 0 2

flay02m TS 1 0 2

flay03h TS 1 0 3

flay03m TS 1 0 3

flay04h TS 1 0 4

flay04m TS 1 0 4

flay05h TS 1 0 5

flay05m TS 1 0 5

flay06h TS 1 0 6

flay06m TS 1 0 6

fo7_2 TS 1 0 14

fo7_ar2_1 TS 1 0 14

fo7_ar25_1 TS 1 0 14

fo7_ar3_1 TS 1 0 14

fo7_ar4_1 TS 1 0 14

fo7_ar5_1 TS 1 0 14

fo7 TS 1 0 14

fo8_ar2_1 TS 1 0 16

fo8_ar25_1 TS 1 0 16

fo8_ar3_1 TS 1 0 16

fo8_ar4_1 TS 1 0 16

fo8_ar5_1 TS 1 0 16

fo8 TS 1 0 16

fo9_ar2_1 TS 1 0 18

fo9_ar25_1 TS 1 0 18

fo9_ar3_1 TS 1 0 18

fo9_ar4_1 TS 1 0 18

fo9_ar5_1 TS 1 0 18

fo9 TS 1 0 18

gams01 TS 2 1 110

gbd TS 2 1 0

hybriddynamic_fixed TS 2 1 0

ibs2 TS 2 0 10

jit1 TS 2 1 0

m3 TS 1 0 6

m6 TS 1 0 12

m7_ar2_1 TS 1 0 14

m7_ar25_1 TS 1 0 14

m7_ar3_1 TS 1 0 14

m7_ar4_1 TS 1 0 14

m7_ar5_1 TS 1 0 14

Instance Set O C

m7 TS 1 0 14

meanvarx TS 2 1 0

meanvarxsc TS 2 1 0

netmod_dol1 TS 2 1 0

netmod_dol2 TS 2 1 0

netmod_kar1 TS 2 1 0

netmod_kar2 TS 2 1 0

no7_ar2_1 TS 1 0 14

no7_ar25_1 TS 1 0 14

no7_ar3_1 TS 1 0 14

no7_ar4_1 TS 1 0 14

no7_ar5_1 TS 1 0 14

nvs03 TS 1 1 1

nvs10 TS 2 1 2

nvs11 TS 2 1 3

nvs12 TS 2 1 4

nvs15 TS 2 1 0

o7_2 TS 1 0 14

o7_ar2_1 TS 1 0 14

o7_ar25_1 TS 1 0 14

o7_ar3_1 TS 1 0 14

o7_ar4_1 TS 1 0 14

o7_ar5_1 TS 1 0 14

o7 TS 1 0 14

o8_ar4_1 TS 1 0 16

o9_ar4_1 TS 1 0 18

portfol_buyin TS 2 0 2

portfol_card TS 2 0 2

portfol_classical050_1 TS 2 0 1

portfol_classical200_2 TS 2 0 1

portfol_roundlot TS 2 0 2

procurement2mot TS 1 0 12

ravempb TS 2 1 1

risk2bpb TS 2 1 0

rsyn0805h TS 2 0 3

rsyn0805m02h TS 2 0 6

rsyn0805m02m TS 1 0 6

rsyn0805m03h TS 2 0 9

rsyn0805m03m TS 1 0 9

rsyn0805m04h TS 2 0 12

rsyn0805m04m TS 1 0 12

rsyn0805m TS 1 0 3

rsyn0810h TS 2 0 6

rsyn0810m02h TS 2 0 12

rsyn0810m02m TS 1 0 12

rsyn0810m03h TS 2 0 18

rsyn0810m03m TS 1 0 18

rsyn0810m04h TS 2 0 24
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Instance Set O C

rsyn0810m04m TS 1 0 24

rsyn0810m TS 1 0 6

rsyn0815h TS 2 0 11

rsyn0815m02h TS 2 0 22

rsyn0815m02m TS 1 0 22

rsyn0815m03h TS 2 0 33

rsyn0815m03m TS 1 0 33

rsyn0815m04h TS 2 0 44

rsyn0815m04m TS 1 0 44

rsyn0815m TS 1 0 11

rsyn0820h TS 2 0 14

rsyn0820m02h TS 2 0 28

rsyn0820m02m TS 1 0 28

rsyn0820m03h TS 2 0 42

rsyn0820m03m TS 1 0 42

rsyn0820m04h TS 2 0 56

rsyn0820m04m TS 1 0 56

rsyn0820m TS 1 0 14

rsyn0830h TS 2 0 20

rsyn0830m02h TS 2 0 40

rsyn0830m02m TS 1 0 40

rsyn0830m03h TS 2 0 60

rsyn0830m03m TS 1 0 60

rsyn0830m04h TS 2 0 80

rsyn0830m04m TS 1 0 80

rsyn0830m TS 1 0 20

rsyn0840h TS 2 0 28

rsyn0840m02h TS 2 0 56

rsyn0840m02m TS 1 0 56

rsyn0840m03h TS 2 0 84

rsyn0840m03m TS 1 0 84

rsyn0840m04h TS 2 0 112

rsyn0840m04m TS 1 0 112

rsyn0840m TS 1 0 28

slay04h TS 2 1 0

slay04m TS 2 1 0

slay05h TS 2 1 0

slay05m TS 2 1 0

slay06h TS 2 1 0

slay06m TS 2 1 0

slay07h TS 2 1 0

slay07m TS 2 1 0

slay08h TS 2 1 0

slay08m TS 2 1 0

slay09h TS 2 1 0

slay09m TS 2 1 0

slay10h TS 2 1 0

slay10m TS 2 1 0

Instance Set O C

smallinvDAXr1b010-011 TS 2 0 1

smallinvDAXr1b020-022 TS 2 0 1

smallinvDAXr1b050-055 TS 2 0 1

smallinvDAXr1b100-110 TS 2 0 1

smallinvDAXr1b150-165 TS 2 0 1

smallinvDAXr1b200-220 TS 2 0 1

smallinvDAXr2b010-011 TS 2 0 1

smallinvDAXr2b020-022 TS 2 0 1

smallinvDAXr2b050-055 TS 2 0 1

smallinvDAXr2b100-110 TS 2 0 1

smallinvDAXr2b150-165 TS 2 0 1

smallinvDAXr2b200-220 TS 2 0 1

smallinvDAXr3b010-011 TS 2 0 1

smallinvDAXr3b020-022 TS 2 0 1

smallinvDAXr3b050-055 TS 2 0 1

smallinvDAXr3b100-110 TS 2 0 1

smallinvDAXr3b150-165 TS 2 0 1

smallinvDAXr3b200-220 TS 2 0 1

smallinvDAXr4b010-011 TS 2 0 1

smallinvDAXr4b020-022 TS 2 0 1

smallinvDAXr4b050-055 TS 2 0 1

smallinvDAXr4b100-110 TS 2 0 1

smallinvDAXr4b150-165 TS 2 0 1

smallinvDAXr4b200-220 TS 2 0 1

smallinvDAXr5b010-011 TS 2 0 1

smallinvDAXr5b020-022 TS 2 0 1

smallinvDAXr5b050-055 TS 2 0 1

smallinvDAXr5b100-110 TS 2 0 1

smallinvDAXr5b150-165 TS 2 0 1

smallinvDAXr5b200-220 TS 2 0 1

squfl010-025 TS 2 1 0

squfl010-040 TS 2 1 0

squfl010-080 TS 2 1 0

squfl015-060 TS 2 1 0

squfl015-080 TS 2 1 0

squfl020-040 TS 2 1 0

squfl020-050 TS 2 1 0

squfl020-150 TS 2 1 0

squfl025-025 TS 2 1 0

squfl025-030 TS 2 1 0

squfl025-040 TS 2 1 0

squfl030-100 TS 2 1 0

squfl030-150 TS 2 1 0

squfl040-080 TS 2 1 0

sssd08-04 TS 1 0 12

sssd12-05 TS 1 0 15

sssd15-04 TS 1 0 12

sssd15-06 TS 1 0 18



128 Test Sets for Linearization Schemes

Instance Set O C

sssd15-08 TS 1 0 24

sssd16-07 TS 1 0 21

sssd18-06 TS 1 0 18

sssd18-08 TS 1 0 24

sssd20-04 TS 1 0 12

sssd20-08 TS 1 0 24

sssd22-08 TS 1 0 24

sssd25-04 TS 1 0 12

sssd25-08 TS 1 0 24

st_e14 TS 2 1 4

st_miqp2 TS 2 1 0

st_miqp3 TS 2 1 0

st_miqp4 TS 2 1 0

st_miqp5 TS 2 1 0

stockcycle TS 2 1 0

st_test3 TS 2 1 0

st_test4 TS 2 1 0

st_test8 TS 2 1 0

st_testgr1 TS 2 1 0

st_testgr3 TS 2 1 0

st_testph4 TS 2 1 0

syn05h TS 2 0 3

syn05m02h TS 2 0 6

syn05m02m TS 1 0 6

syn05m03h TS 2 0 9

syn05m03m TS 1 0 9

syn05m04h TS 2 0 12

syn05m04m TS 1 0 12

syn05m TS 1 0 3

syn10h TS 2 0 6

syn10m02h TS 2 0 12

syn10m02m TS 1 0 12

syn10m03h TS 2 0 18

syn10m03m TS 1 0 18

syn10m04h TS 2 0 24

syn10m04m TS 1 0 24

syn10m TS 1 0 6

syn15h TS 2 0 11

syn15m02h TS 2 0 22

syn15m02m TS 1 0 22

syn15m03h TS 2 0 33

syn15m03m TS 1 0 33

syn15m04h TS 2 0 44

Instance Set O C

syn15m04m TS 1 0 44

syn15m TS 1 0 11

syn20h TS 2 0 14

syn20m02h TS 2 0 28

syn20m02m TS 1 0 28

syn20m03h TS 2 0 42

syn20m03m TS 1 0 42

syn20m04h TS 2 0 56

syn20m04m TS 1 0 56

syn20m TS 1 0 14

syn30h TS 2 0 20

syn30m02h TS 2 0 40

syn30m02m TS 1 0 40

syn30m03h TS 2 0 60

syn30m03m TS 1 0 60

syn30m04h TS 2 0 80

syn30m04m TS 1 0 80

syn30m TS 1 0 20

syn40h TS 2 0 28

syn40m02h TS 2 0 56

syn40m02m TS 1 0 56

syn40m03h TS 2 0 84

syn40m03m TS 1 0 84

syn40m04h TS 2 0 112

syn40m04m TS 1 0 112

syn40m TS 1 0 28

synthes1 TS 2 1 2

synthes2 TS 1 1 3

synthes3 TS 1 1 4

tls12 TS 2 0 12

tls2 TS 2 0 2

tls4 TS 2 0 4

tls5 TS 2 0 5

tls6 TS 2 0 6

tls7 TS 2 0 7

unitcommit1 TS 2 1 0

unitcommit_50_20_2_mod_8 TS 2 1 0

unitcommit_200_100_1_mod_8 TS 2 1 0

unitcommit_200_100_2_mod_8 TS 2 1 0

watercontamination0202 TS 2 1 0

watercontamination0202r TS 2 1 0

watercontamination0303 TS 2 1 0

watercontamination0303r TS 2 1 0



Appendix D

Test Sets for Reformulations Techniques

Table D.1: Description of instances with collections (C1), (C2), and (C3) in Chapter 3. First col-

umn shows instance name and the entries (bv, tv, f v, b0, b1, b01, v0, v1, v01) in the second column

are: bv denotes the number of binary variables, tv indicates the total number of variables, f v reports

the number of binary variables that are fixed as part of structure identification, b0 and b1 represent

the number of binary variables z and 1− z, respectively, controlling at least one other variable, b01

denotes number of binary variables z such that both z and 1 − z control another variable, v0 and v1

report the number of variables controlled by a binary variable z and 1 − z respectively, v01 is the

number of variables controlled by a binary variable z and also 1 − z.

Instance (bv, tv, f v, b0, b1, b01, v0, v1, v01)

alan (4, 4, 0, 4, 0, 0, 4, 0, 0)

batch0812 (60, 60, 28, 0, 32, 0, 0, 70, 0)

batchdes (9, 9, 1, 0, 8, 0, 0, 12, 0)

batch (24, 24, 2, 0, 22, 0, 0, 30, 0)

batchs101006m (120, 120, 0, 0, 120, 0, 0, 140, 0)

batchs121208m (191, 191, 0, 0, 191, 0, 0, 215, 0)

batchs151208m (188, 188, 0, 0, 188, 0, 0, 212, 0)

batchs201210m (225, 225, 0, 0, 225, 0, 0, 249, 0)

clay0203h (18, 18, 0, 0, 0, 18, 60, 12, 6)

clay0203m (18, 18, 0, 0, 12, 6, 0, 12, 6)

clay0204h (32, 32, 0, 0, 0, 32, 112, 24, 8)

clay0204m (32, 32, 0, 0, 24, 8, 0, 24, 8)

clay0205h (50, 50, 0, 0, 0, 50, 180, 40, 10)

clay0205m (50, 50, 0, 0, 40, 10, 0, 40, 10)

clay0303h (21, 21, 0, 0, 0, 21, 66, 21, 0)

clay0303m (21, 21, 0, 0, 21, 0, 0, 21, 0)

clay0304h (36, 36, 0, 0, 0, 36, 120, 36, 0)

clay0304m (36, 36, 0, 0, 36, 0, 0, 36, 0)

clay0305h (55, 55, 0, 0, 0, 55, 190, 55, 0)

clay0305m (55, 55, 0, 0, 55, 0, 0, 55, 0)

color_lab2_4x0 (28920, 28920, 0, 0, 28680, 240, 28680, 240, 0)

color_lab6b_4x20 (27730, 27730, 0, 0, 27495, 235, 27495, 235, 0)

enpro48pb (92, 92, 0, 0, 92, 0, 0, 108, 0)

enpro56pb (73, 73, 0, 0, 73, 0, 0, 85, 0)

fac1 (6, 6, 0, 2, 0, 4, 16, 0, 4)

fac2 (12, 12, 0, 3, 0, 9, 54, 0, 9)

fac3 (12, 12, 0, 3, 0, 9, 54, 0, 9)

flay02h (4, 4, 0, 0, 0, 4, 32, 4, 0)

flay02m (4, 4, 0, 0, 4, 0, 0, 4, 0)

Instance (bv, tv, f v, b0, b1, b01, v0, v1, v01)

flay03h (12, 12, 0, 0, 0, 12, 96, 12, 0)

flay03m (12, 12, 0, 0, 12, 0, 0, 12, 0)

flay04h (24, 24, 0, 0, 0, 24, 192, 24, 0)

flay04m (24, 24, 0, 0, 24, 0, 0, 24, 0)

flay05h (40, 40, 0, 0, 0, 40, 320, 40, 0)

flay05m (40, 40, 0, 0, 40, 0, 0, 40, 0)

flay06h (60, 60, 0, 0, 0, 60, 480, 60, 0)

flay06m (60, 60, 0, 0, 60, 0, 0, 60, 0)

gams01 (110, 110, 0, 0, 100, 0, 0, 100, 0)

hybriddynamic_fixed (1, 1, 0, 0, 0, 1, 8, 0, 2)

ibs2 (1500, 1500, 0, 0, 0, 1500, 1500, 1500, 0)

meanvarx (12, 12, 0, 2, 0, 10, 12, 10, 0)

meanvarxsc (22, 22, 0, 12, 0, 10, 12, 10, 0)

netmod_dol1 (462, 462, 0, 0, 0, 462, 1524, 462, 0)

netmod_dol2 (455, 455, 0, 0, 79, 367, 973, 440, 6)

netmod_kar1 (136, 136, 0, 0, 15, 121, 255, 136, 0)

netmod_kar2 (136, 136, 0, 0, 15, 121, 255, 136, 0)

pedigree_ex1058 (49386, 49386, 0, 112, 48387, 865, 48387, 112, 865)

pedigree_ex485_2 (7136, 7136, 0, 110, 6710, 294, 6710, 110, 294)

pedigree_ex485 (7136, 7136, 0, 110, 6710, 294, 6710, 110, 294)

pedigree_sim400 (11226, 11226, 0, 51, 11076, 99, 11076, 51, 99)

pedigree_sp_top4_250 (11694, 11694, 0, 243, 10981, 414, 10981, 243, 414)

pedigree_sp_top4_300 (5969, 5969, 0, 160, 5496, 244, 5496, 160, 244)

pedigree_sp_top4_350tr (3100, 3100, 0, 105, 2838, 145, 2838, 105, 145)

pedigree_sp_top5_200 (32120, 32120, 0, 336, 30862, 871, 30862, 336, 871)

pedigree_sp_top5_250 (17028, 17028, 0, 243, 16193, 536, 16193, 243, 536)

portfol_buyin (8, 8, 0, 8, 0, 0, 8, 0, 0)

portfol_card (8, 8, 0, 8, 0, 0, 8, 0, 0)

portfol_classical050_1 (50, 50, 0, 50, 0, 0, 50, 0, 0)

129



130 Test Sets for Reformulations Techniques

Instance (bv, tv, f v, b0, b1, b01, v0, v1, v01)

portfol_classical200_2 (200, 200, 0, 200, 0, 0, 200, 0, 0)

procurement2mot (60, 60, 0, 19, 3, 38, 77, 18, 23)

ravempb (53, 53, 0, 0, 53, 0, 0, 65, 0)

risk2bpb (12, 12, 0, 0, 12, 0, 0, 183, 0)

rsyn0805h (37, 37, 0, 3, 0, 34, 84, 32, 26)

rsyn0805m02h (148, 148, 0, 3, 0, 145, 171, 37, 166)

rsyn0805m02m (148, 148, 0, 3, 64, 81, 19, 53, 118)

rsyn0805m03h (222, 222, 0, 3, 0, 219, 255, 42, 264)

rsyn0805m03m (222, 222, 0, 3, 96, 123, 27, 66, 192)

rsyn0805m04h (296, 296, 0, 3, 0, 293, 339, 47, 362)

rsyn0805m04m (296, 296, 0, 3, 128, 165, 35, 79, 266)

rsyn0805m (37, 37, 0, 3, 32, 2, 8, 32, 2)

rsyn0810h (41, 41, 0, 3, 0, 38, 95, 34, 26)

rsyn0810m02h (166, 166, 0, 3, 0, 163, 187, 47, 182)

rsyn0810m02m (166, 166, 0, 3, 64, 99, 35, 63, 134)

rsyn0810m03h (249, 249, 0, 3, 0, 246, 278, 57, 289)

rsyn0810m03m (249, 249, 0, 3, 96, 150, 50, 81, 217)

rsyn0810m04h (332, 332, 0, 3, 0, 329, 369, 67, 396)

rsyn0810m04m (332, 332, 0, 3, 128, 201, 65, 99, 300)

rsyn0810m (41, 41, 0, 3, 32, 6, 19, 34, 2)

rsyn0815h (44, 44, 0, 3, 0, 41, 105, 35, 27)

rsyn0815m02h (182, 182, 0, 3, 0, 179, 204, 57, 197)

rsyn0815m02m (182, 182, 0, 3, 64, 115, 52, 73, 149)

rsyn0815m03h (273, 273, 0, 3, 0, 270, 303, 72, 312)

rsyn0815m03m (273, 273, 0, 3, 96, 174, 75, 96, 240)

rsyn0815m04h (364, 364, 0, 3, 0, 361, 402, 87, 427)

rsyn0815m04m (364, 364, 0, 3, 128, 233, 98, 119, 331)

rsyn0815m (44, 44, 0, 3, 32, 9, 29, 35, 3)

rsyn0820h (49, 49, 0, 3, 0, 46, 116, 35, 29)

rsyn0820m02h (202, 202, 0, 3, 0, 199, 223, 67, 214)

rsyn0820m02m (202, 202, 0, 3, 64, 135, 71, 83, 166)

rsyn0820m03h (303, 303, 0, 3, 0, 300, 330, 87, 339)

rsyn0820m03m (303, 303, 0, 3, 96, 204, 102, 111, 267)

rsyn0820m04h (404, 404, 0, 3, 0, 401, 437, 107, 464)

rsyn0820m04m (404, 404, 0, 3, 128, 273, 133, 139, 368)

rsyn0820m (49, 49, 0, 3, 32, 14, 40, 35, 5)

rsyn0830h (58, 58, 0, 6, 0, 52, 136, 37, 30)

rsyn0830m02h (240, 240, 0, 6, 0, 234, 259, 90, 243)

rsyn0830m02m (240, 240, 0, 6, 64, 170, 107, 106, 195)

rsyn0830m03h (360, 360, 0, 6, 0, 354, 381, 120, 387)

rsyn0830m03m (360, 360, 0, 6, 96, 258, 153, 144, 315)

rsyn0830m04h (480, 480, 0, 6, 0, 474, 503, 150, 531)

rsyn0830m04m (480, 480, 0, 6, 128, 346, 199, 182, 435)

rsyn0830m (58, 58, 0, 6, 32, 20, 60, 37, 6)

rsyn0840h (66, 66, 0, 6, 0, 60, 157, 38, 33)

rsyn0840m02h (276, 276, 0, 6, 0, 270, 295, 110, 275)

rsyn0840m02m (276, 276, 0, 6, 64, 206, 143, 126, 227)

rsyn0840m03h (414, 414, 0, 6, 0, 408, 433, 150, 437)

rsyn0840m03m (414, 414, 0, 6, 96, 312, 205, 174, 365)

rsyn0840m04h (552, 552, 0, 6, 0, 546, 571, 190, 599)

rsyn0840m04m (552, 552, 0, 6, 128, 418, 267, 222, 503)

rsyn0840m (66, 66, 0, 6, 32, 28, 81, 38, 9)

Instance (bv, tv, f v, b0, b1, b01, v0, v1, v01)

slay04h (24, 24, 0, 0, 0, 24, 96, 24, 0)

slay04m (24, 24, 0, 0, 24, 0, 0, 24, 0)

slay05h (40, 40, 0, 0, 0, 40, 160, 40, 0)

slay05m (40, 40, 0, 0, 40, 0, 0, 40, 0)

slay06h (60, 60, 0, 0, 0, 60, 240, 60, 0)

slay06m (60, 60, 0, 0, 60, 0, 0, 60, 0)

slay07h (84, 84, 0, 0, 0, 84, 336, 84, 0)

slay07m (84, 84, 0, 0, 84, 0, 0, 84, 0)

slay08h (112, 112, 0, 0, 0, 112, 448, 112, 0)

slay08m (112, 112, 0, 0, 112, 0, 0, 112, 0)

slay09h (144, 144, 0, 0, 0, 144, 576, 144, 0)

slay09m (144, 144, 0, 0, 144, 0, 0, 144, 0)

slay10h (180, 180, 0, 0, 0, 180, 720, 180, 0)

slay10m (180, 180, 0, 0, 180, 0, 0, 180, 0)

squfl010-025 (10, 10, 0, 10, 0, 0, 250, 0, 0)

squfl010-040 (10, 10, 0, 10, 0, 0, 400, 0, 0)

squfl010-080 (10, 10, 0, 10, 0, 0, 800, 0, 0)

squfl015-060 (15, 15, 0, 15, 0, 0, 900, 0, 0)

squfl015-080 (15, 15, 0, 15, 0, 0, 1200, 0, 0)

squfl020-040 (20, 20, 0, 20, 0, 0, 800, 0, 0)

squfl020-050 (20, 20, 0, 20, 0, 0, 1000, 0, 0)

squfl020-150 (20, 20, 0, 20, 0, 0, 3000, 0, 0)

squfl025-025 (25, 25, 0, 25, 0, 0, 625, 0, 0)

squfl025-030 (25, 25, 0, 25, 0, 0, 750, 0, 0)

squfl025-040 (25, 25, 0, 25, 0, 0, 1000, 0, 0)

squfl030-100 (30, 30, 0, 30, 0, 0, 3000, 0, 0)

squfl030-150 (30, 30, 0, 30, 0, 0, 4500, 0, 0)

squfl040-080 (40, 40, 0, 40, 0, 0, 3200, 0, 0)

sssd08-04 (44, 44, 0, 0, 32, 12, 12, 44, 0)

sssd12-05 (75, 75, 0, 0, 60, 15, 15, 75, 0)

sssd15-04 (72, 72, 0, 0, 60, 12, 12, 72, 0)

sssd15-06 (108, 108, 0, 0, 90, 18, 18, 108, 0)

sssd15-08 (144, 144, 0, 0, 120, 24, 24, 144, 0)

sssd16-07 (133, 133, 0, 0, 112, 21, 21, 133, 0)

sssd18-06 (126, 126, 0, 0, 108, 18, 18, 126, 0)

sssd18-08 (168, 168, 0, 0, 144, 24, 24, 168, 0)

sssd20-04 (92, 92, 0, 0, 80, 12, 12, 92, 0)

sssd20-08 (184, 184, 0, 0, 160, 24, 24, 184, 0)

sssd22-08 (200, 200, 0, 0, 176, 24, 24, 200, 0)

sssd25-04 (112, 112, 0, 0, 100, 12, 12, 112, 0)

sssd25-08 (224, 224, 0, 0, 200, 24, 24, 224, 0)

st_miqp2 (2, 2, 0, 2, 0, 0, 2, 0, 0)

st_miqp4 (2, 2, 0, 2, 0, 0, 2, 0, 0)

stockcycle (432, 432, 0, 0, 432, 0, 0, 480, 0)

st_test3 (5, 5, 0, 3, 0, 0, 3, 0, 0)

syn05h (5, 5, 0, 3, 0, 2, 8, 0, 2)

syn05m02h (20, 20, 0, 3, 0, 17, 19, 13, 14)

syn05m02m (20, 20, 0, 3, 0, 17, 19, 13, 14)

syn05m03h (30, 30, 0, 3, 0, 27, 27, 18, 24)

syn05m03m (30, 30, 0, 3, 0, 27, 27, 18, 24)

syn05m04h (40, 40, 0, 3, 0, 37, 35, 23, 34)

syn05m04m (40, 40, 0, 3, 0, 37, 35, 23, 34)
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Instance (bv, tv, f v, b0, b1, b01, v0, v1, v01)

syn05m (5, 5, 0, 3, 0, 2, 8, 0, 2)

syn10h (9, 9, 0, 3, 0, 6, 19, 2, 2)

syn10m02h (38, 38, 0, 3, 0, 35, 35, 23, 30)

syn10m02m (38, 38, 0, 3, 0, 35, 35, 23, 30)

syn10m03h (57, 57, 0, 3, 0, 54, 50, 33, 49)

syn10m03m (57, 57, 0, 3, 0, 54, 50, 33, 49)

syn10m04h (76, 76, 0, 3, 0, 73, 65, 43, 68)

syn10m04m (76, 76, 0, 3, 0, 73, 65, 43, 68)

syn10m (9, 9, 0, 3, 0, 6, 19, 2, 2)

syn15h (12, 12, 0, 3, 0, 9, 29, 3, 3)

syn15m02h (54, 54, 0, 3, 0, 51, 52, 33, 45)

syn15m02m (54, 54, 0, 3, 0, 51, 52, 33, 45)

syn15m03h (81, 81, 0, 3, 0, 78, 75, 48, 72)

syn15m03m (81, 81, 0, 3, 0, 78, 75, 48, 72)

syn15m04h (108, 108, 0, 3, 0, 105, 98, 63, 99)

syn15m04m (108, 108, 0, 3, 0, 105, 98, 63, 99)

syn15m (12, 12, 0, 3, 0, 9, 29, 3, 3)

syn20h (17, 17, 0, 3, 0, 14, 40, 3, 5)

syn20m02h (74, 74, 0, 3, 0, 71, 71, 43, 62)

syn20m02m (74, 74, 0, 3, 0, 71, 71, 43, 62)

syn20m03h (111, 111, 0, 3, 0, 108, 102, 63, 99)

syn20m03m (111, 111, 0, 3, 0, 108, 102, 63, 99)

syn20m04h (148, 148, 0, 3, 0, 145, 133, 83, 136)

syn20m04m (148, 148, 0, 3, 0, 145, 133, 83, 136)

syn20m (17, 17, 0, 3, 0, 14, 40, 3, 5)

syn30h (26, 26, 0, 6, 0, 20, 60, 5, 6)

syn30m02h (112, 112, 0, 6, 0, 106, 107, 66, 91)

syn30m02m (112, 112, 0, 6, 0, 106, 107, 66, 91)

syn30m03h (168, 168, 0, 6, 0, 162, 153, 96, 147)

Instance (bv, tv, f v, b0, b1, b01, v0, v1, v01)

syn30m03m (168, 168, 0, 6, 0, 162, 153, 96, 147)

syn30m04h (224, 224, 0, 6, 0, 218, 199, 126, 203)

syn30m04m (224, 224, 0, 6, 0, 218, 199, 126, 203)

syn30m (26, 26, 0, 6, 0, 20, 60, 5, 6)

syn40h (34, 34, 0, 6, 0, 28, 81, 6, 9)

syn40m02h (148, 148, 0, 6, 0, 142, 143, 86, 123)

syn40m02m (148, 148, 0, 6, 0, 142, 143, 86, 123)

syn40m03h (222, 222, 0, 6, 0, 216, 205, 126, 197)

syn40m03m (222, 222, 0, 6, 0, 216, 205, 126, 197)

syn40m04h (296, 296, 0, 6, 0, 290, 267, 166, 271)

syn40m04m (296, 296, 0, 6, 0, 290, 267, 166, 271)

syn40m (34, 34, 0, 6, 0, 28, 81, 6, 9)

synthes1 (3, 3, 0, 0, 1, 1, 1, 2, 0)

synthes2 (5, 5, 0, 1, 1, 3, 3, 2, 2)

synthes3 (8, 8, 0, 3, 1, 4, 8, 3, 2)

tls12 (489, 489, 0, 12, 465, 12, 0, 504, 129)

tls2 (31, 31, 0, 2, 29, 0, 0, 18, 17)

tls4 (85, 85, 0, 4, 81, 0, 0, 76, 25)

tls5 (131, 131, 0, 5, 126, 0, 0, 125, 31)

tls6 (165, 165, 0, 6, 159, 0, 0, 156, 45)

tls7 (278, 278, 0, 7, 271, 0, 0, 266, 61)

unitcommit1 (427, 427, 0, 9, 235, 179, 310, 196, 83)

unitcommit_200_100_1_mod_8 (4380, 4380, 0, 3843, 0, 537, 13245, 398, 190)

unitcommit_200_100_2_mod_8 (4400, 4400, 0, 3969, 0, 431, 13148, 530, 230)

unitcommit_50_20_2_mod_8 (1093, 1093, 0, 991, 0, 102, 3259, 132, 58)

watercontamination0202 (7, 7, 0, 7, 0, 0, 521, 0, 0)

watercontamination0202r (7, 7, 0, 7, 0, 0, 188, 0, 0)

watercontamination0303 (14, 14, 0, 14, 0, 0, 1046, 0, 0)

watercontamination0303r (14, 14, 0, 14, 0, 0, 370, 0, 0)
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Table D.2: Description of test set Tpr of 104 instances with structures, (PS 1) and (PS 2), amenable

to perspective reformulation in the Chapter 3. The entry in the first column is the instance name

and for each instance the entries in the second column are as follows: ts denotes total number of

nonlinear constraints, pc shows the number of PR amenable constraints, s1 and s2 report number

of constraints (out of pc) of type (S 1) and (S 2), respectively, and the last entry ub denotes the

number of unique variables associated with PR amenable constraints.

Instance (tc, pc, s1, s2)

clay0203h (24, 24, 24, 0)

clay0204h (32, 32, 32, 0)

clay0205h (40, 40, 40, 0)

clay0303h (36, 36, 36, 0)

clay0304h (48, 48, 48, 0)

clay0305h (60, 60, 60, 0)

rsyn0805h (3, 3, 3, 0)

rsyn0805m02h (6, 6, 6, 0)

rsyn0805m02m (6, 6, 6, 0)

rsyn0805m03h (9, 9, 9, 0)

rsyn0805m03m (9, 9, 9, 0)

rsyn0805m04h (12, 12, 12, 0)

rsyn0805m04m (12, 12, 12, 0)

rsyn0805m (3, 3, 3, 0)

rsyn0810h (6, 6, 6, 0)

rsyn0810m02h (12, 12, 12, 0)

rsyn0810m02m (12, 12, 12, 0)

rsyn0810m03h (18, 18, 18, 0)

rsyn0810m03m (18, 18, 18, 0)

rsyn0810m04h (24, 24, 24, 0)

rsyn0810m04m (24, 24, 24, 0)

rsyn0810m (6, 6, 6, 0)

rsyn0815h (11, 11, 11, 0)

rsyn0815m02h (22, 22, 22, 0)

rsyn0815m02m (22, 22, 22, 0)

rsyn0815m03h (33, 33, 33, 0)

rsyn0815m03m (33, 33, 33, 0)

rsyn0815m04h (44, 44, 44, 0)

rsyn0815m04m (44, 44, 44, 0)

rsyn0815m (11, 11, 11, 0)

rsyn0820h (14, 14, 14, 0)

rsyn0820m02h (28, 28, 28, 0)

rsyn0820m02m (28, 28, 28, 0)

rsyn0820m03h (42, 42, 42, 0)

rsyn0820m03m (42, 42, 42, 0)

Instance (tc, pc, s1, s2)

rsyn0820m04h (56, 56, 56, 0)

rsyn0820m04m (56, 56, 56, 0)

rsyn0820m (14, 14, 14, 0)

rsyn0830h (20, 20, 20, 0)

rsyn0830m02h (40, 40, 40, 0)

rsyn0830m02m (40, 40, 40, 0)

rsyn0830m03h (60, 60, 60, 0)

rsyn0830m03m (60, 60, 60, 0)

rsyn0830m04h (80, 80, 80, 0)

rsyn0830m04m (80, 80, 80, 0)

rsyn0830m (20, 20, 20, 0)

rsyn0840h (28, 28, 28, 0)

rsyn0840m02h (56, 56, 56, 0)

rsyn0840m02m (56, 56, 56, 0)

rsyn0840m03h (84, 84, 84, 0)

rsyn0840m03m (84, 84, 84, 0)

rsyn0840m04h (112, 112, 112, 0)

rsyn0840m04m (112, 112, 112, 0)

rsyn0840m (28, 28, 28, 0)

syn05h (3, 3, 3, 0)

syn05m02h (6, 6, 6, 0)

syn05m02m (6, 6, 6, 0)

syn05m03h (9, 9, 9, 0)

syn05m03m (9, 9, 9, 0)

syn05m04h (12, 12, 12, 0)

syn05m04m (12, 12, 12, 0)

syn05m (3, 3, 3, 0)

syn10h (6, 6, 6, 0)

syn10m02h (12, 12, 12, 0)

syn10m02m (12, 12, 12, 0)

syn10m03h (18, 18, 18, 0)

syn10m03m (18, 18, 18, 0)

syn10m04h (24, 24, 24, 0)

syn10m04m (24, 24, 24, 0)

syn10m (6, 6, 6, 0)

Instance (tc, pc, s1, s2)

syn15h (11, 11, 11, 0)

syn15m02h (22, 22, 22, 0)

syn15m02m (22, 22, 22, 0)

syn15m03h (33, 33, 33, 0)

syn15m03m (33, 33, 33, 0)

syn15m04h (44, 44, 44, 0)

syn15m04m (44, 44, 44, 0)

syn15m (11, 11, 11, 0)

syn20h (14, 14, 14, 0)

syn20m02h (28, 28, 28, 0)

syn20m02m (28, 28, 28, 0)

syn20m03h (42, 42, 42, 0)

syn20m03m (42, 42, 42, 0)

syn20m04h (56, 56, 56, 0)

syn20m04m (56, 56, 56, 0)

syn20m (14, 14, 14, 0)

syn30h (20, 20, 20, 0)

syn30m02h (40, 40, 40, 0)

syn30m02m (40, 40, 40, 0)

syn30m03h (60, 60, 60, 0)

syn30m03m (60, 60, 60, 0)

syn30m04h (80, 80, 80, 0)

syn30m04m (80, 80, 80, 0)

syn30m (20, 20, 20, 0)

syn40h (28, 28, 28, 0)

syn40m02h (56, 56, 56, 0)

syn40m02m (56, 56, 56, 0)

syn40m03h (84, 84, 84, 0)

syn40m03m (84, 84, 84, 0)

syn40m04h (112, 112, 112, 0)

syn40m04m (112, 112, 112, 0)

syn40m (28, 28, 28, 0)

synthes2 (3, 1, 1, 0)

synthes3 (4, 2, 1, 1)
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Table D.3: Description of the instances in the test set TS sep for separability based reformulation

in the Chapter 3. First column shows the instance name and the entries (nc, sp, os, us, rs) in the

second column are: nc and sc number of nonlinear constraints and number of separable nonlinear

constraints, respectively, os indicates whether objective function is separabe (1) or not (0), us is the

number of unique separable parts considering all separable constraints and objective function, rs

is the number of separable parts that are repeated. 26 instances also belonging to the test set TS ps

(that became amenable to perspective reformulation after the reformulation based on separability

of nonlinear constraints and objective) are highlighted in bold.

Instance (nc, sp, os, us, rs)

ball_mk2_10 (1, 1, 0, 10, 0)

ball_mk2_30 (1, 1, 0, 30, 0)

ball_mk3_10 (1, 1, 0, 10, 0)

ball_mk3_20 (1, 1, 0, 20, 0)

ball_mk3_30 (1, 1, 0, 30, 0)

ball_mk4_05 (1, 1, 0, 5, 0)

ball_mk4_10 (1, 1, 0, 10, 0)

ball_mk4_15 (1, 1, 0, 15, 0)

batch0812 (2, 2, 0, 20, 0)

batchdes (2, 2, 0, 5, 0)

batch (2, 2, 0, 11, 0)

batchs101006m (2, 2, 0, 29, 0)

batchs121208m (2, 2, 0, 35, 0)

batchs151208m (2, 2, 0, 38, 0)

batchs201210m (2, 2, 0, 43, 0)

clay0203m (24, 24, 0, 24, 24)

clay0204m (32, 32, 0, 32, 32)

clay0205m (40, 40, 0, 40, 40)

clay0303m (36, 36, 0, 36, 36)

clay0304m (48, 48, 0, 48, 48)

clay0305m (60, 60, 0, 60, 60)

enpro48pb (2, 2, 0, 13, 0)

enpro56pb (2, 2, 0, 12, 0)

ex1223a (5, 2, 0, 6, 0)

ex1223b (5, 5, 0, 12, 5)

ex1223 (5, 5, 0, 12, 5)

ex4 (26, 26, 0, 125, 2)

fac1 (1, 0, 1, 2, 0)

fac2 (1, 0, 1, 3, 0)

fac3 (1, 0, 1, 3, 0)

gams01 (111, 0, 1, 10, 0)

hybriddynamic_fixed (1, 0, 1, 11, 0)

immun (1, 0, 1, 6, 0)

netmod_dol1 (1, 0, 1, 6, 0)

netmod_dol2 (1, 0, 1, 6, 0)

netmod_kar1 (1, 0, 1, 4, 0)

Instance (nc, sp, os, us, rs)

netmod_kar2 (1, 0, 1, 4, 0)

nvs03 (2, 0, 1, 2, 0)

nvs10 (3, 0, 1, 2, 0)

pedigree_ex1058 (1, 1, 0, 28, 0)

pedigree_ex485_2 (1, 1, 0, 28, 0)

pedigree_ex485 (1, 1, 0, 28, 0)

pedigree_sp_top4_250 (1, 1, 0, 58, 0)

pedigree_sp_top4_300 (1, 1, 0, 74, 0)

pedigree_sp_top4_350tr (1, 1, 0, 17, 0)

pedigree_sp_top5_200 (1, 1, 0, 54, 0)

pedigree_sp_top5_250 (1, 1, 0, 58, 0)

portfol_classical050_1 (1, 1, 0, 50, 0)

portfol_classical200_2 (1, 1, 0, 200, 0)

risk2bpb (1, 0, 1, 3, 0)

slay04h (1, 0, 1, 8, 0)

slay04m (1, 0, 1, 8, 0)

slay05h (1, 0, 1, 10, 0)

slay05m (1, 0, 1, 10, 0)

slay06h (1, 0, 1, 12, 0)

slay06m (1, 0, 1, 12, 0)

slay07h (1, 0, 1, 14, 0)

slay07m (1, 0, 1, 14, 0)

slay08h (1, 0, 1, 16, 0)

slay08m (1, 0, 1, 16, 0)

slay09h (1, 0, 1, 18, 0)

slay09m (1, 0, 1, 18, 0)

slay10h (1, 0, 1, 20, 0)

slay10m (1, 0, 1, 20, 0)

squfl010-025 (1, 0, 1, 250, 0)

squfl010-040 (1, 0, 1, 400, 0)

squfl010-080 (1, 0, 1, 800, 0)

squfl015-060 (1, 0, 1, 900, 0)

squfl015-080 (1, 0, 1, 1200, 0)

squfl020-040 (1, 0, 1, 800, 0)

squfl020-050 (1, 0, 1, 1000, 0)

squfl020-150 (1, 0, 1, 3000, 0)

Instance (nc, sp, os, us, rs)

squfl025-025 (1, 0, 1, 625, 0)

squfl025-030 (1, 0, 1, 750, 0)

squfl025-040 (1, 0, 1, 1000, 0)

squfl030-100 (1, 0, 1, 3000, 0)

squfl030-150 (1, 0, 1, 4500, 0)

squfl040-080 (1, 0, 1, 3200, 0)

st_e14 (5, 5, 0, 12, 5)

st_miqp1 (1, 0, 1, 5, 0)

st_miqp2 (1, 0, 1, 2, 0)

st_miqp4 (1, 0, 1, 3, 0)

st_miqp5 (1, 0, 1, 2, 0)

stockcycle (1, 0, 1, 48, 0)

st_test1 (1, 0, 1, 4, 0)

st_test2 (1, 0, 1, 5, 0)

st_test3 (1, 0, 1, 5, 0)

st_test4 (1, 0, 1, 2, 0)

st_test5 (1, 0, 1, 7, 0)

st_test6 (1, 0, 1, 10, 0)

st_test8 (1, 0, 1, 24, 0)

st_testgr1 (1, 0, 1, 10, 0)

st_testgr3 (1, 0, 1, 20, 0)

st_testph4 (1, 0, 1, 3, 0)

synthes2 (4, 0, 1, 3, 0)

synthes3 (5, 2, 0, 6, 1)

tls12 (12, 12, 0, 144, 0)

tls2 (2, 2, 0, 4, 0)

tls4 (4, 4, 0, 16, 0)

tls5 (5, 5, 0, 25, 0)

tls6 (6, 6, 0, 36, 0)

tls7 (7, 7, 0, 49, 0)

unitcommit1 (1, 0, 1, 240, 0)

unitcommit_200_100_1_mod_8 (1, 0, 1, 4662, 0)

unitcommit_200_100_2_mod_8 (1, 0, 1, 4639, 0)

unitcommit_50_20_2_mod_8 (1, 0, 1, 1152, 0)

watercontamination0202 (1, 0, 1, 4017, 0)

watercontamination0303 (1, 0, 1, 4521, 0)



Appendix E

Discretization of Source Inversion
Problem

E.1 Finite-Difference Discretization of Source Inversion

Problem

We discretize both the source, w, and the state, u, in the cell-centered points of our Nx×Ny

computational mesh as

Wkl ' w
(
kLx − Lx/2, lLy − Ly/2

)
, Ui j ' u

(
iLx − Lx/2, jLy − Ly/2

)
,

where Lx = 2/Nx and Ly = 1/Ny are the discretization steps in the x and y direction,

respectively, and k = 1, . . . ,Nx, l = 1, . . . ,Ny, i = 0, . . . ,Nx + 1, j = 0, . . . ,Ny. Here, the

variables Ui,0,UNx+1, j,Ui,Ny+1 approximate the PDE solution at ghost points placed along

ΓN , and the variables U0, j are the ghost points near ΓD.

Let us further define V ∈ Rm to obtain the bilinear interpolation from the cell-

centered points of the mesh closest to the receiver locations r1, r2, . . . , rm. Mathematically,

for each receiver location rk = (rk
x, r

k
y), k = 1, . . . ,m, we define variable Vk as

Vk =
1

LxLy

iLx +
Lx

2
− rk

x

rk
x − iLx +

Lx

2


T  Ui, j Ui, j+1

Ui+1, j Ui+1, j+1


 jLy +

Ly
2
− rk

y

rk
y − jLy +

Ly
2

 , (E.1)
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where, i = b rk
x

Lx
+ 0.5c and j = b rk

y

Ly
+ 0.5c, leading to the mixed-integer quadratic program

of the form

minimize
U, W

1
2σ

(∑m
k=1

(
Vk − bk

)2)
+αLxLy

∑Nx
k=2

∑Ny

l=2

√(Wkl−W(k−1)l

Lx

)2
+

(Wkl−Wk(l−1)

Ly

)2
+ κ,

subject to c
4Ui j − U(i−1) j − U(i+1) j − Ui( j−1) − Ui( j+1)

Lx
2Ly2 ,

+
Ui j − U(i−1) j

Lx
= Wi j, i = 1, . . . ,Nx, j = 1, . . . ,Ny,

UNx+1, j = UNx, j, Ui,0 = Ui,1, Ui,Ny+1 = Ui,Ny
,U0, j = −U1, j,

i = 0, . . . ,Nx, j = 0, . . . ,Ny,

W ∈ {0, 1}Nx×Ny ,U ∈ R(Nx+2)×(Ny+2).



(FDM)

Here, the fifth row explicitly encodes the Neumann and Dirichlet boundary conditions.

As before, we can again eliminate the state variables U using the discretized PDE and

boundary conditions and the state variables V using (E.1), resulting in a problem that

has similar structure to (4.4). As before, the objective function is second-order cone

representable.

E.2 Selection of Regularization Parameter for Relaxed

Problem

To find an effective regularization parameter, we consider the continuous relaxation (4.5)

and follow the L-curve procedure; see Hansen (1998) for details. In the inversions we use

coarser meshes with 256×128 and 96×48×48 cells for the 2D instance and 3D instance,

respectively. We consider the datasets generated in the preceding section and perturb the

generated data with 10% iid Gaussian white noise.

To compute the L-curve, we solve 30 instances of the continuous relaxation for

different values of α that are logarithmically spaced between 1 and 10−6. To accelerate

the computation, we initialize the optimization with the solution from the previous α. For

each value of α, we use up to 20 Gauss-Newton iterations and approximately compute the

search direction using 5 iterations of projected preconditioned CG that use the Hessian

of the regularization function as a preconditioner. For each experiment, we store the

reconstructed source, the predicted data, the value of the misfit function, and the values

of the regularization function (without the factor α). The L-curve shown in Figure E.2

show the value of the regularizer and the value of the misfit of these optimal solutions.
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Figure E.1: L-curve plots for the relaxed optimization problem (4.5) for the two-dimensional

instance (left) and three-dimensional instance (right). In both cases, we solve the relaxed problem

for 30 α values logarithmically spaced between 1 and 10−6. We plot the value of the regularizer and

misfit at the computed solution in a loglog plot. To highlight the impact of α on the smoothness of

the reconstructed images, we provide snapshots of the reconstructed source at the extremal values

and one value that provides a good trade-off (values are marked with a circle).

As is common, the axes are scaled logarithmically; and to provide additional insight, we

have added visualizations of the reconstructed sources for the largest and smallest value

of α (resulting in overly smoothed and very noisy reconstructions, respectively) as well

as solutions that provide a good trade-off. Using this process we select the regularization

parameters α = 8.531 · 10−3 for the two-dimensional instance and α = 5.298 · 10−3 for

the three-dimensional instance, respectively. Computing the L-curves took about 4 and

48 minutes and involved 32,580 and 30,892 PDE solves in 2D and 3D, respectively. The

large number of PDE solves underscores the importance of computing a factorization (or

a good preconditioner in large-scale problems) apriori.
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