International Journal of Industrial Engineering, 11(2), 151-160, 2004.

DESIGN AND DEVELOPMENT OF A PROTOTYPE DISTRIBUTED
SIMULATION FOR EVALUATION OF SUPPLY CHAINS

Jayendran Venkateswaran, Young-Jun Son

Department of Systems and Industrial Engineering
University of Arizona
1127 E. North Campus Drive
Engineering Building #20, Room 111
Tucson, AZ 85721
Email: Young-Jun Son, son@sie.arizona.edu

In this paper, a prototype distributed simulation system is proposed to evaluate viability of a simulated supply chain.
Members of a supply chain, activity definitions for each member, and information and material flow among members are
discussed. IDEFY functional modeling tool has been used to model the functions of the system and the relationships
among the functions. The interaction between the members of the system is then illustrated using time-sequence diagrams,
and the behavior of each member is represented using the deterministic finite state automata. These formal models have
formed the basis for the development of the distributed simulation system. Reusable simulation models for each of the
members of the system have been developed using commercial simulation tools such as Arena™ and ProModel™. The
High Level Architecture (HLA) Run Time Infrastructure (RTI) has been used to provide an interface to create the
distributed simulation system. Preliminary performance tests have been conducted to evaluate the suitability of the
proposed system in the Internet environment.

Significance: This paper addresses the application of distributed simulation technology to evaluation of potential supply
chains. The use of distributed simulation technology allows each potential partner to hide any proprietary
information in the implementation of the individual simulation, but still provide enough information to
evaluate the supply chain as a whole.

Keywords: Simulation, Distributed simulation, IDEF, Supply chain.

(Received 20 September 2001; Accepted in revised form 31 July 2002)

1. INTRODUCTION

Today’s manufacturing industries face the challenge of responding more rapidly and efficiently to changing markets driven
by customized products. The agile manufacturing paradigm has been proposed to resolve this problem. Agile
manufacturing is a technology for achieving flexibility and rapid responsiveness to changing market and customer needs.
Agile manufacturing enables a firm to quickly respond to customers’ requirements and then design, prototype, manufacture,
test and deliver a high-quality product to the market in the minimum possible time (Cheng et al., 1998).

One way in which manufacturing industries can take advantage of their agility is to form supply chains. Supply chains
are ephemeral organizations in which several companies collaborate to produce a single product or product line.
Participating in supply chains allows an agile company to use its knowledge, resources, and particular manufacturing
expertise to take advantage of business opportunities that exist on a larger scale than the company could handle alone. To
facilitate the creation of supply chains, potential partners must be able to quickly evaluate whether it will be profitable for
them to participate in a proposed supply chain. Simulation technology in general, and distributed simulation technology in
particular, can be used to enable the evaluation process. Each partner can use a simulation of its facilities to determine
whether it has the capability to perform its individual function in the supply chain. Then, these simulations can be
integrated into a distributed simulation of the complete supply chain, and used to predict viability and profitability of the
proposed product collaboration. Use of distributed simulation technology allows each potential partner to hide any
proprietary information in implementation of the individual simulation, but still provide enough information to evaluate the
supply chain as a whole.

In this paper, a prototype for a distributed simulation that could be used to evaluate the viability of a supply chain will
be described. The supply chain is comprised of several component manufacturers, final assembly plants, transportation
systems, and warehouses. Potential information flows and material flows between supply chain members will be described.

ISSN 1072-4761 @INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING

Distributed Simulation for Supply Chain Evaluation - 152

Finally, a strategy for implementing a reusable simulation of a component manufacturer using commercially available
simulation tools will be described in detail.

A sample supply chain to be used for the prototype distributed simulation system will be described in Section 2. The
IDEFQ functional models among models in the distributed system will be presented in Section 3.1. Section 3.2 illustrates
the time-sequence interactions between various members. Section 3.3 then shows the Deterministic Finite State Automata
graph showing the behavior of various members. Details regarding the design, development, implementation and
demonstration of the distributed simulation system are also made available in Section 4. Formal models described in
Sections 3.1, 3.2, and 3.3 will form the basis for the work described in Section 4. A description of testing of the system and
results inferred is discussed before we conclude the paper.

2. SUPPLY CHAIN SCENARIO

This section presents a prototype supply chain for manufacturing a product. Supply chain configurations will differ
depending on production requirements and characteristics of potential collaborating companies. The prototype supply
chain considered in this paper is composed of an assembly, two suppliers and a transportation system (see Figure 1). Note
that the same formal modeling tools and techniques proposed in this paper can be used for differently configured supply
chains. Four simulation models have been built to represent each of the above-mentioned players. These players interact
with each other through technology that will be described in Section 4. The Assembly produces final products by
assembling part A and part B. Part A is produced by Supplier A, and part B is produced by Supplier B. Assembly
maintains a stock of the parts. When the stock falls below the prescribed threshold, it sends an order to the corresponding
supplier for more parts. The roles of individual members of the supply chain are as follows:
s Parts Suppliers (Supplier A and Supplier B)

Suppliers manufacture parts as necessary and use the Transporter to deliver manufactured parts to Assembly.
* Assembly

Assembly puts together the final product by using the components sent by Parts Suppliers.
e Transporter

Transporter moves parts from Parts Suppliers to Assembly.

Component A
Supplier i

Transporter Final Assembly Line ,:Customer I

Component B
Supplier

Supply chain model

Figure 1. Prototype supply chain model

This supply chain system depicted in Figure 1 is a pull system. The assembly line maintains a buffer stock of both of
components. When the stock of either component falls below the prescribed threshold level, a purchase order is issued to
the corresponding supplier. Suppliers also continuously maintain a minimum level of stock to ensure that the assembly line
always gets its requirements immediately. Interactions between the assembly line and the suppliers are initiated by the
assembly line only. A ‘handshake’ interaction is performed to open as well as close a transaction.

3. MODELING SUPPLY CHAIN
3.1 Functional Modeling using IDEFJ

A functional model is a structured representation of the information and objects that define a correspondence between the
activities occurring in a manufacturing system (Mayer, 1992). The primary focus of function modeling is on information
and objects that create a unique occurrence of a given activity (Mayer, 1992). In this section, information flows as well as
material flows among activities are identified using the IDEF@ formal function modeling method. The IDEF@ method has
been used for modeling functions in an organization or a system and relationships between those functions (Mayer, 1992).

Venkateswaran and Son - 153

The function of the supply chain is composed of three sub-functions as shown in Figure 2. Each of these sub-functions
represents one or more members of the system. The function Al, Final Assembly plant, interacts with both internal
members of the system, as well as external players that do not belong to the system. The function A2, Component
Suppliers, interacts with internal members and external members. The function A3, Transportation system, interacts with
only other internal members. Two external players interacting with the system are raw material suppliers and customers.
Customers put demands on the system, and raw material suppliers provide the required materials to make products to
satisfy those demands.

The IDEF@ diagrams represent interactions that occur among various players. However, they cannot represent when
and in what sequence those interactions occur. Therefore, the following sections will present time-sequence diagrams and
finite state automata for the supply chain.

Inventory
\p Process capabulity

N Resource availability

|

! =5 "
| - ‘Yl L A r»'imshed products

|
Raw materlals r — e -
! Assemble e - e Tt P unioad_parts_al-— ‘
\

>

cpen_lransachon_as

Al
AQ

i .
close transaction as
! h \
oad _parts s

order 33‘5123455 Pa - —— %

|
| ‘T..V. o SEESE SN, . # | \
i ; |
- Supply parts | load_parts_ok_sl ‘
A P i T — |
| A2} |
&
A0 1| {
| \
s /
close_lransaction_ok_sa ! !
| = e S 2L ——
open_lransaction_ok s3————— At o - ¥ Transport parts
| A A -
transport order st . A3
‘~—unload_parts_ok_ta e st S saeas Jeoess Moy
|
-unlcad_parts_ok_la - s ‘
L\r‘ N r
NN ‘u\'\ N\

Assembly Parts supplier Transporlation

Figure 2. Second level decomposition of supply chain activities
3.2 Time Sequence Diagram

The sequence of interactions between Assembly, Supplier and Transporter is as shown in Figure 3. A sequence diagram
has two dimensions: the vertical dimension represents time and the horizontal dimension represents different objects. An
object’s role in a Sequence diagram is shown as a vertical dashed line called the “lifeline”. The lifeline represents existence
of the object at a particular time. An object symbol is drawn at the head of the lifeline. A message is shown as a horizontal
solid arrow from the lifeline of one object to the lifeline of another object. A message is communication between objects
that conveys information with the expectation that action will ensue. Receipt of a message is similar to an event.

The assembler initiates interactions with the message open_transaction_as to the supplier. The supplier responds with
the message open_transaction_ok_sa. The assembler’s next message to the supplier is the order_as$123458. The supplier
then interacts with the transporter to load the parts. The supplier sends the message transport_order_st to transporter. The
transporter then asks the supplier to load_parts_ts. The supplier confirms loading with the message load_parts_ok_st. The
transporter then communicates with assembly to unload parts. The transporter sends the delivery_order_ta to the assembly.
The assembly then asks it to unload_parts_at. The transporter confirms unloading by the message unload_parts_ok_ta. The

Distributed Simulation for Supply Chain Evaluation - 154

assembly, which initiated the transaction, also closes the transaction with that supplier, with the messages
close_transaction_as and close_transaction_ok_sa.

This section described the interactions between one instance of the assembly model, supplier model and transporter
model. It should be noted that the same approach could be extended for multiple instances of all of the objects. The

description of activities or tasks carried out by each object between messages is presented in the next section using finite
state automata.

Assembly Supplier Transporter

I I
= ! =
open_transaclion_as

open_lransaclion_ok_sa

P e - ———— —]

order_as$123458

transporter_order st

load_parts ts

load parts ok st

delivery order ta

I

unload_parts_al
Ll

[

unload_parts_ck_ta

close_transaction_as

close_transaction_ok_sa

Figure 3. Time-sequence diagram for supply chain system
3.3 Modeling Behavior among Members using Finite State Automata

The coordination needed between components suppliers and the final assembly plant is performed using the Deterministic
Finite State Automata (DFSA) (Martin, 1996). The DFSAs for the final assembly plant, the component suppliers and the
transporter are shown in Figure 4. While the time sequence diagram shown in Figure 3 represents interactions among
members as a whole, finite state automata graphs in Figure 4 represent behaviors within each individual member. Note that
the two models basically convey the same information in different ways.

In Figure 4, circles with numbers indicate states or nodes. The arrows indicate action that on completion will allow the
system fo proceed to the next state. The actions need to be performed in the sequence shown. The “I”, “O” and “T” in
Figure 4 denote the incoming messages, outgoing messages and the tasks carried out, respectively. The “Ob” in Figure 4
denotes the observation carried out. In addition, messages ending with “as” denote messages from the assembly plant to a
component supplier. Similarly, messages ending with “sa” denote messages from a component supplier to the assembly
plant; messages ending with “at” denote messages from assembly to transporter; messages ending with “ta” denote
messages from transporter to assembly; messages ending with “st” denote messages from component supplier to
transporter; and messages ending with “ts” denote messages from transporter to supplier.

Initially, component suppliers, final assembly plant and transporter are at zero state (node). In this state, the final
assembly plant observes or checks the quantity of component available, for every given time period. If the number is above
the prescribed threshold (detect_above_threshold), it remains in the same state. If the number of components falls below the
threshold (detect_below_threshold), it moves to the next state. Once it has reached state I(node 1), it will not check the
quantity of components again until the entire transaction is completed and it returns to zero state. The final assembly
initiates the transaction between it and the supplier by sending the message open_transaction_as (Figures 4(a) and 4(b)). It
then waits for the response, open_transaction_ok_sa (Figures 4(a) and 4(b)). Upon receiving this message it generates a

Venkateswaran and Son - 155

purchase order specifying component details and supplier details. Component details include information such as the
component ID, component name, quantity required, price, expected delivery date, etc. Supplier details include information
like the supplier name, supplier address, etc. For the current prototype under development, information used for component
details includes component name, component ID, and quantity required; information used for supplier details includes the
supplier name. The above purchase order generation is represented by the task generate order (Figure 4(a)). After
successful generation of the purchase order, the final Assembly plant sends the message order_as$12345% (Figures 4(a)
and 4(b)). The number enclosed by the $ signs denotes the purchase order ID. The Supplier, on receiving the message,
seizes the purchase order based on the number provided. The Supplier then generates a transport order, represented by the
task generate_transport_order (Figures 4(b) and 4(c)), for sending the quantity of components requested. It is assumed
that that quantity is always available immediately. It then sends the transport order, represented by the message
transport_order_st (Figures 4(b) and 4(c)), to the Transporter. The Transporter on receiving the transport order, send back
the message load_parts_ts (Figures 4(b) and 4(c)), to that Supplier, asking the Supplier to load the parts into the truck. The
supplier then removes the quantity to be sent to the assembly from the buffer, shown by the task remove_entity (Figure
4(b)). After the task is complete, the Supplier sends the output load_parts_st_ok (Figures 4(b) and 4(c)), indicating to the
Transporter that part loading is complete. Upon receiving this confirmation from the Supplier, the Transporter simulates the
task loading (Figure 4(c)) through a time delay, also generating the entities. Then it transports parts from the Supplier to the
Assembly, denoted by the task transport (Figure 4(c)). On reaching the Assembly, the Transporter submits the delivery
order, shown by the message delivery_order_ta (Figures 4(a) and 4(c)), asking for permission to unload the parts. The
Assembly on receiving the delivery order sends the message unload_parts_at (Figures 4(a) and 4(c)) to the Transporter.
The Transporter then removes entities through the task wunloading (Figure 4(c)). Then it sends the message
unload_parts_ok_ta (Figures 4(a) and 4(c)) to the Assembly. The Assembly now knows that parts have been unloaded. So
it generates the specified number of entities, represented by the task generate_entity (Figure 4(a)). After generating the
components, the Assembly closes the transaction by sending the message close_transaction_as (Figures 4(a) and 4(b)). The
response close_transaction_ok_sa (Figures 4(a) and 4(b)) returns final assembly and suppliers to the initial state. Note that
the supplier remains in its initial state until it receives the initial message from the final assembly plant. The final assembly
plant maintains a different finite state automata graph for each supplier. The messages are differentiated by adding the
suffix “#1” or “#2”, the numbers corresponding to suppliers.

Ob:detect_above

_threshold
Ob:detect_belo O:open_tra L:open_transa T:generat O:order_as L:delivery_
w_threshold /D nsaction_as Kz\:tion_ok_sa /3\ ¢_order /D $12345% G\ order_ta 6
v l:close_transav 0:close_trav T:generat v I:unload _pa\\J O:unload
ction_ok_as nsaction_as e_entity rts_ok_ta _parts_at
(a) Finite state automata for assembly
I:open_tran O:open_trans I:order_a T:generate_tr O:transport I:load_pa

@ saction_as /1\ action_ok_sa m s12345/'\ ansport_order /‘—‘\ _order_st @ rts_ts 6
\'/ lose trva}/ I:close_tran \-/ O:load _paw T:remove

@ action_ok_sa fg\ saction_as @ s_ok_st /7\4 _entity
\Z/ o o/

(b) Finite state automata for component supplier

I:transport_or O:load_part I:load_parts_ O:delivery_
@ der st /'1\ s_ts fi\ ok_ts @_Ti)_ad_‘@ T:transport fs\jrder_ta
U J O:unload_p v I:unload_

arts_ok_ta T:unload parts_at
@ m F\

(c) Finite state automata for transporter

Figure 4. Finite state automata for supply chain system

Distributed Simulation for Supply Chain Evaluation - 156

4. DISTRIBUTED SIMULATION

This section presents an overview of distributed simulation to be used to evaluate potential supply chain systems. Again,
the use of distributed simulation technology allows each potential partner to hide proprietary information about internal
workings of a simulated system, but still provide enough information to evaluate the supply chain as a whole. The formal
models presented in Section 3 have formed the basis for design and development of the distributed simulation system. A
distributed simulation can be seen as a simulation that is comprised of multiple software processes that are independently
executing and interacting with each other. The Department of Defense’s High Level Architecture (HLA) (Kuhl et al., 1999;
Fujimoto, 1998) for modeling and simulation can certainly be regarded as the state of the art in distributed simulation. The
HLA establishes common high-level simulation architecture to facilitate interoperability of all types of models and
simulations. The Run-Time Infrastructure (RTI) software implements the specification. It provides services in a manner
that is comparable to the way a distributed operating system provides services to applications.

Figure 5 illustrates the relationships between the components of the distributed manufacturing simulation execution
environment. An HLA-based simulation is called a federarion (Kuhl et al., 1999). Each simulator that is integrated by the
HLA RTI is called a federate (Kuhl et al., 1999). One common data definition is created for domain data that 1s shared
across the entire federation. It is called the federation object model (FOM) (Kuhl et al., 1999). Note that each simulation
model can be a legacy simulation system, and the models can be implemented in different languages (e.g., Arena™,
AutoMod™, ProModel™, etc). The direct interaction of the simulation federates with the Runtime Infrastructure is quite
complex and cumbersome. NIST has developed Distributed Manufacturing Simulation (DMS) Adapter to provide
mechanisms for distributed simulation similar to those provided by the HLA RTI, but with a level of complexity that is
manageable by the development resources available in the manufacturing community (Riddick and McLean, 2000). The
interface of the adapter with simulation applications like Arena™ and ProModel™ will be discussed in upcoming sections.

Suppliers Assembly Transporter
lRepresented by ﬂRepresented by ﬂRepresemed by
Simulation Model Simulation Model Simulation Model
(Arena: Federate) (ProModel: Federate) (AutoMod: Federate)
Adapter Adapter Adapter
I 4 [y
RTI Services, RTI Services, RTI Services,
i FOM Objects & Interactions | FOM Objects & Interactions | FOM Objects & Interactions

RTI (Runtime Infrastructure)

Figure 5. HLA based simulation integration architecture

The interactions among the members of the supply chain - the assembly, parts suppliers and the transporter, have been
implemented using standard commercial simulation packages. In total, four simulation models have been created, one each
for Assembly, Supplier A, Supplier B and Transporter (refer to Section 2 for the scenario). “Assembly”, “Supplier B”, and
“Transporter” have been modeled using Arena™ 5.0, and “Supplier A” has been modeled using ProModel™ 4.0.

4.1 Modeling using Arena™

A generic interface module has been developed both for Arena™ and ProModel™ so that simulation models in these
languages can interface with the RTI and the adapter. Since the developed interface modules are generic, the same modules
have been used for component suppliers and the final assembly plant, with minor customizations. The simulation model
can be broadly classified into 2 parts: the time management part (interface module) and the actual model.

The logic used in the time management part is shown in Figure 6. Note that the same concepts can be used when
implementing the model using other discrete event simulation packages. One entity is created at zero time, and it is in
charge of interface with the RTI and the adapter. As soon as it is created, it invokes a procedure, and delays for an amount

Venkateswaran and Son - 157

of time determined by the procedure. After delaying for the specified amount of time, it invokes the same procedure again.
The entity repeats this process until the simulation is terminated. The pseudo code contained in the procedure is also shown
in Figure 6. The first “if” condition checks whether the time of the local simulation is behind the current time of the global
distributed simulation. If this gap is larger than the simulation step size (S;), then the procedure advances the local
simulation time by S;. If the gap is smaller than S;, then it advances the local simulation time by the amount of the gap. In
the latter case, the local simulation time becomes equal to the global distributed simulation time. Note that time
advancement in the local simulation is performed by specifying “a_time” value and delaying the simulation for “a_time™
amount of time. If the simulation advance request from the local simulation has not been completed, the procedure halts
the local simulation until it is completed. In other words, the local simulation needs to wait physically until all the other
legacy simulations within the same federation catch up to the current time of the global distributed simulation.

i i s T NPT TR G |] g 8 S I L g T PO VOIS G DL, v 20 e b, e . S o - NOMPERE RA M Y: da

C = current time in distributed simulation
Tnow = current time in local simulation

One entity is
created at time 0

I Tnow <= C And (simulation advance has been completed) Then
If (this is the first time after Tnow = C) Then

Tell the RTI that I want to move forward
Invoke

a procedure

If (C - Tnow) > S Then
a_time=S§

Else
a_time = (C - Tnow)

Else
While (simulation advance has not been completed)
<do nothing -- physical halt>
Wend

Delay
for “a_time”

Figure 6. Logic used to interface with adapter and HLA

As discussed in earlier sections, the coordination needed between the two component suppliers and the final assembly
plant is performed using the deterministic finite state automata (DFSA). Using global variables and arrays, the DFSA has
been implemented. The procedure handling the message transactions is also contained in the procedure in Figure 6.
However, due to limited space, the detailed procedure is not presented in this paper. The developed procedure is a generic
procedure designed to handle any interaction between different companies, not restricted to the prototype discussed here.

4.2 Modeling using ProModel™

The “Supplier A” model has been built using ProModel™ 4.0. The same logic or algorithm (see Figure 6) specified for
Arena™ is used to implement the Supplier model in ProModel™. In Arena™, a Visual Basic Application™ is used to
implement the time and message management logic. For ProModel™ models, the time and message management is
implemented using a dynamic link library (DLL) that has been compiled from C++ code. This DLL is interfaced with the
ProModel™ model with the help of the ‘External Files’ feature of ProModel™.

4.3 Demonstration

Four simulation models (three models using Arena™ and one model using ProModel™) residing on different local area
networks have run and interacted successfully. When the run begins, each model initializes with the RTI and a federation is
created consisting of all four simulation models. Each model provides a message box after it initializes, to indicate that it is
ready to advance to the running state. Only after the message box has appeared for every model in the supply chain can the
models run simultaneously and interactively. Once the simulation completes, the models resign from the federation and the
federation is destroyed in the RTI. Some important criteria to be considered in evaluating potential supply chains may
include cost, quality of products with respect to manufacturers’ capabilities, delivery times, and so on. Application of
activity based costing (ABC) (Cooper and Kaplan, 1992) for cost analysis within the supply chain is left for future research.

4.4 Performance Testing

Preliminary performance tests have been conducted to evaluate the suitability of the proposed system in the Internet
Environment. This prototype system developed has sufficient interactions among its different players to provide

Distributed Simulation for Supply Chain Evaluation - 158

researchers with data for analysis of its performance. The performance measures (responses) taken into account include 1)
time taken by the simulation models to initialize, 2) time taken to transition from initialization state to running state, 3) time
taken to advance the simulation time, 4) time taken to send messages and 5) time taken to terminate its connection. The
factors determined to affect the system’s performance are 1) the type of network, 2) the type of modeling tool used to build
the simulation models and 3) the size of the messages exchanged between the models. The factors and levels are
summarized in Table 1.

Table 1. Factors and their levels considered in the experiment

Factors (with description) Levels Description
LAN The RT1 and the simulation models are executed
NETWORK: Refers to the network connection between on different computers within the same LAN.

computers on which the RTI and federates are executed. The RTI and the simulation models are executed

Internet
on computers across the Internet.

MODELING TOOL: Refers to the simulation modeling
tool. The difference arises due to the ways in which the | Single
functions in the DMS Adapter are called. In Arena™ the
functions are called through a VBA. In ProModel™, the
functions are called through a C++ dynamic link library. | Multiple

All the simulation models are built using a
single tool (Arena™).

At least one simulation model is built using a
different tool (Arena™ and ProModel™ used).

Small The number of characters that are sent as a
MESSAGE SIZE: Refers to the size of messages message is less than 30.

exchanged between federates. L The number of characters that are sent as a
& message is more than 300.

The following settings were used to conduct the experiment:
Computer Type 1: Pentium III, 933MHz, Windows NT 4.0 Operating System.
Computer Type 2: Pentium III, 933MHz, Windows 2000 Operating System.
For all test runs with modeling tool factor = Single, all models were built using Arena™.
For all test runs with modeling tool factor = Multiple, the Supplier A model was built using ProModel™, and the other
models were built using Arena™,
The HLA RTI (server) was always run on a Type 1 computer at The University of Arizona.

* For test runs within a LAN where modeling tool factor = Single, the simulation models were run on different Type 2
computers at The University of Arizona. Whenever a model used two simulations, the simulations were run on
different computers.

» For test runs within a LAN where modeling tool factor = Multiple, the Supplier A model was run on the same Type 1
computer as the RTI. The other models were run on different Type 2 computers. Whenever a model used two
simulations, the simulations were run on different computers.

* For test runs across the Internet where modeling tool factor = Single, the Supplier A model was run on 2 Type 2
computer at Arizona State University. The other three simulation models and the RTI were run on a single Type 1
computer at The University of Arizona across the Internet.

¢ For test runs across the Internet where modeling tool factor = Multiple the Supplier B model was run on a Type 2
computer at Arizona State University. The other three simulations models and the RTI were run on a single Type 1
computer at The University of Arizona across the Internet.

A total of 2* (three factors, two levels each) x 5 (five replications) test problems were generated by a permutation of the
selected factors and their levels. The results of this test are shown in Table 2. Only the data collected for Supplier A is
shown. The response shown in Table 2 is for the performance measure “time taken to send messages”. For each problem,
the response reported is the average of 11 observations made within each replication. The full factorial fit as calculated by
Minitab™ for the response parameter and the three factors as independent parameters is shown in Tables 3 and 4. The
level of significance (o value) selected is 0.05 for the analysis. The analysis of variance table (Table 3) gives a summary of
the main effects and interactions. A p-value less than the o value (0.05) indicates that the corresponding effect is
significant. Table 3 shows that the main effects, two-way interaction and the three-way interaction are all significant. The
estimated effects and coefficients (Table 4) are calculated to evaluate the strength of the main effects and the interaction
effects. The three-way interaction effect (network*modeling tool*message size), the two-way interaction effects
(network*modeling tool and network*message size) and the main effects (network, modeling tool and message size) are all
significant. Also, looking at the value of the effects, we determine the relative strength of each of the effects. Network has
the greatest effect (20.568) on the time taken to send messages, the three-way interaction has the second greatest effect
(10.015), and so on.

Venkateswaran and Son - 159

Table 2. Results of experiment, showing the average time taken to send messages

’ Avg. time y Avg. time
Network Modeling Me§sage e e Notwork Modeling Me§sage taken to seind
tool size ; tool size message in
message in ms s
INTERNET | SINGLE SMALL 69.0909 INTERNET | MULTIPLE | LARGE 71.8333
LAN MULTIPLE | LARGE 46.6666 INTERNET | MULTIPLE | LARGE 78.4167
LAN SINGLE LARGE 55.0000 LAN MULTIPLE | SMALL 60.2500
INTERNET | MULTIPLE | LARGE 74.1667 LAN MULTIPLE | SMALL 55.8333
INTERNET | SINGLE LARGE 61.9090 INTERNET | SINGLE SMALL 59.2727
LAN MULTIPLE | LARGE 36.4545 LAN MULTIPLE | LARGE 47.2727
INTERNET | MULTIPLE | SMALL 87.8462 INTERNET | MULTIPLE | SMALL 89.2500
INTERNET | SINGLE LARGE 38.0909 INTERNET | MULTIPLE | LARGE 82.0833
INTERNET | MULTIPLE | SMALL 75.8333 LAN SINGLE LARGE 53.9090
LAN SINGLE LARGE 58.4166 LAN MULTIPLE | LARGE 43.3333
LAN SINGLE LARGE 54.2500 LAN SINGLE SMALL 42.8181
LAN MULTIPLE | LARGE 39.2500 INTERNET | SINGLE LARGE 61.9166
INTERNET | MULTIPLE | SMALL 78.3333 LAN SINGLE SMALL 46.6666
LAN SINGLE SMALL 37.5000 INTERNET | SINGLE SMALL 75.1667
LAN MULTIPLE | SMALL 53.5000 LAN SINGLE LARGE 51.8333
LAN SINGLE SMALL 42,5833 LAN MULTIPLE | SMALL 60.9090
INTERNET | SINGLE LARGE 50.9090 LAN SINGLE SMALL 47.5833
INTERNET | MULTIPLE | SMALL 63.5000 INTERNET | SINGLE SMALL 75.1966
LAN MULTIPLE | SMALL 41.8333 INTERNET | SINGLE LARGE 43.6767
INTERNET | MULTIPLE | LARGE 76.0000 INTERNET | SINGLE SMALL 74.7272
Table 3. Analysis of Variance for response (time taken to send messages)
Significant
Source DF SS MS F P ot 0105
Main Effects 3 5202.16 1734.05 35.66 0.000 Yes
2-Way Interactions 3 1049.91 349.97 7.20 0.001 Yes
3-Way Interactions 1 1002.95 1002.95 20.62 0.000 Yes
Error 32 1556.10 48.63
Table 4. Estimated effects and coefficient for response (time taken to send messages)
: Standard Error Significant at
Term Effect | Coefficient | \oc o T P g;“ 2 i
Constant 59.077 1.103 53.58 0.000
Network 20.568 10.284 1.103 9.33 0.000 Yes
Modeling 8.102 4.051 1.103 3.67 0.001 Yes
Message -5.615 -2.808 1.103 -2.55 0.016 Yes
Network*Modeling 8.628 4314 1.103 3.91 0.000 Yes
Network*Message -5.306 -2.653 1.103 -2.41 0.022 Yes
Modeling*Message -1.546 -0.773 1.103 -0.70 0.488 No
Network*Modeling*Message 10.015 5.007 1.103 4.54 0.000 Yes

An experimental approach similar to the one detailed above was used to analyze the other performance measures. The
significance of the different factors’ effects on the various performance measures and their interactions are summarized in
Table 5. Network is found to be a significant factor for all the performance measures. This indicates that a good network

connection will improve the performance of distributed simulation. With the current growth of technology, higher speed
communication lines will make network a less significant factor. The statistical significance of the message size factor can
be curbed by using standard, consistent and concise messages throughout the distributed simulation.

Finally, other

Distributed Simulation for Supply Chain Evaluation - 160

interesting observations made during the experiment include: 1) 95% confidence interval for the time taken to initialize
when tested within the LAN is 6.0 — 6.8 seconds, 2) 95% confidence interval for the time taken to initialize when tested
across Internet is 12.7 — 24.4 seconds, and 3) the time taken to perform the different Adapter functions during the first
replication is not significantly different from the time taken by the rest of the replications.

Table 5. Factors having significant effect on the different performance measures

Performance measure Significant Factors (in order from top to bottom)
Time taken to initialize Network (LAN takes lesser time)
Time for transition from initial state to

i Network (LAN takes lesser time)
running state

Two-way interaction of Network*Modeling tool

Time taken to advance simulation Modeling tool (Single takes lesser time)

Network (LAN takes lesser time)

Network (LAN takes lesser time)

Three-way interaction of Network*Modeling tool*Message size
Two-way interaction of Network*Modeling tool

Modeling tool (Single takes lesser time)

Message size (Small takes lesser time)

Two-way interaction of network and message size

Time taken to terminate simulation Network (LAN takes lesser time)

Time taken to send messages

5. CONCLUSION

In this paper, a prototype for a distributed manufacturing simulation was described. First, the information flow as well as
material flow has been modeled using the IDEF@, a formal modeling tool. Second, the sequence of interactions has been
represented using the time sequence diagram and the finite state automata. These formal models have formed the basis for
the development of the proposed distributed simulation system. Third, mechanisms have been described to govern time
management and communication between the member simulations in a distributed simulation. Fourth, these mechanisms
have been implemented and demonstrated using commercially available simulation packages. Fifth, some factors affecting
the performance of the distributed simulation have been identified. Tests were conducted and the data analyzed using
statistical software. Factors such as network, software used and size of messages exchanged were found to be significant.
However, with the current pace of technology growth and with the use of standardized tools, these factors can be made less
significant. Thus, based on the preliminary results obtained, it is found that distributed simulation technology is viable to
analyze complex, globally dispersed supply chains. This technology will help gain a deeper insight about supply chain
system behavior, which in turn will lead to better decision making throughout the supply chain.

6. REFERENCES

1. Cheng, K, Harrison, D. K., and Pan, P. Y. (1998). Implementation of agile manufacturing — an Al and Internet based
approach. Journal of Materials Processing Technology, 76: 96 - 101.

2. Cooper, R., and Kaplan, R. S. (1992). Activity-based systems: measuring the costs of resource usage. Accounting
Horizons, September, pp. 1-13.

3. Fujimoto, R. M. (1998). Time management in the High Level Architecture. Simulation. 76:6, pp. 388 - 400.

4, Kuhl, F., Weatherly, R., and Dahmann, J. (1999). Creating Computer Simulations: An Introduction to the High Level
Architecture. Prentice-Hall, Upper Saddle River, NJ.

5. Martin, J. C. (1996). Introduction to Languages and the Theory of Computation. McGraw-Hill, 2" Edition, New York.

6. Mayer, R. J. (1992). IDEF® Function Modeling Method Report, Knowledge Based Systems Inc., College Station, TX.

7. Riddick, F., and McLean, C. (2000). The IMS Mission architecture for distributed manufacturing simulation.
Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, December 10-13.

