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Previous Lecture:

I Exponential Family of Distributions

I Population and Random Sampling

I Sample mean, variance and standard deviation

I Sampling from Normal distribution

I Student’s t-distribution

This Lecture:

I F-distributions

I Convergence of RVs

I Consistency

I Order Statistics

I Generating Random Samples



F-distributions

We would be interested in variability of populations:

(X1,X2, . . . ,Xn) are iid and Xi ∼ N (µX , σ
2
X ) ∀ i

(Y1,Y2, . . . ,Ym) are iid and Yj ∼ N (µY , σ
2
Y ) ∀j

We would estimate
S2
X

S2
Y

. What is its distribution?

S2
X/S

2
Y

σ2X/σ
2
Y

=
S2
X/σ

2
X

S2
Y /σ

2
Y

=
(n − 1)S2

X/(n − 1)σ2X
(m − 1)S2

Y /(m − 1)σ2Y
=

χ2
n−1/(n − 1)

χ2
m−1/(m − 1)

S2
X/S

2
Y

σ2X/σ
2
Y

has F-distribution with (n-1) and (m-1) degree of freedom

F -dsitribution is named in the honor of Sir Ronald Fisher!
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F-distributions contd...

PDF of F distribution with p and q degrees of freedom (Fp,q)

fF (x) =
Γ
(p+q

2

)
Γ
(p
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)
Γ
(q
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) (p

q

)2 xp/2−1

[1 + (p/q)x ](p+q)/2
x > 0

Fp,q =
U/p

V /q
where U ∼ χ2

p,V ∼ χ2
q, and independent

Derivation of pdf of Fp,q

I X = U/p
V /q = q

p
U
V and Y = V

I As U,V are independent f (U,V ) = f (U)f (V )

I Find joint distribution of (X ,Y ) be applying transformations

I Find marginal distribution of X
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Properties of F -distribution

I Claim 1: If X ∼ Fp,q, then 1/X ∼ Fq,p

X = U/p
V /p where U ∼ χ2

p,V ∼ χ2
q and are independent

1/X = V /q
U/p , hence 1/X ∼ Fq,p

I Claim 2:if X ∼ tp, then X 2 ∼ F1,p
X = U√

V /p
, where U ∼ N (0, 1),V ∼ χ2

p and are independent

X 2 = U2/(V /p) = χ2
1/(V /p) = (χ2

1/1)/(χ2
p/p) ∼ F1,p

I Claim 3: if X ∼ Fp,q, then (p/q)X
1+(p/q)X ∼ beta(p/2, q/2)

(Exercise!)
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Convergence of Sequence of RVs

What happens when the number of samples goes to infinity
(theoretical artifact)

Convergence in Probability: A sequence of RVs X1,X2, . . . ,
converge in probability to a random variable X if, for an ε > 0,

lim
n→∞

P(|Xn − X | ≥ ε) = 0 or lim
n→∞

P(|Xn − X | < ε) = 1

I In the definition X1,X2, · · · need not be i.i.d or independent

I Compactly written as Xn
p−→ X in probability.
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I Suppose X1,X2, . . . are i.i.d. with common mean µ and
variance σ2 >∞. From LLN, we know

X̄n :=
1

n

n∑
i=1

Xi
p−→ µ

I For an ε > 0

P(|X̄n − µ| ≥ ε) ≤
E
(
|X̄n − µ|2

)
ε2

=
Var(X̄n)

ε2
=
σ2/n

ε
→ 0

I Sample mean converges to population mean!

I E(X̄n) = µ (unbiased).
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Consistency of Sample mean an Sample Variance

Consistency: A sample quantity is consistent if its sequence
converges to a constant

I Sample mean is consistent: X̄n
p−→ µ (by LLN)

I Is sample variance consistent?
S2
n = 1

n−1
∑n

i=1(Xn − X̄ )2. We know E(S2
n ) = σ2

P(|S2
n − σ2| ≥ ε) ≤

E
(
(S2

n − σ2
)2

)

ε2
=

Var(S2
n )

ε2

if Var(S2
n )→ 0, then S2

n
p−→ σ2 (hence consistent)

I Is sample standard deviation consistent? (Exercise!)
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Other Convergence types

Almost sure convergence: A sequence of RVs X1,X2, · · ·
convergence to X almost surely if P

(
lim
n→∞

Xn = X
)

= 1.

Denoted as Xn
a.s−→ X .

Convergence in distribution: A sequence of RVs X1,X2, · · ·
convergence to X in distribution if lim

n→∞
FXn(x) = FX (x) for

all continuity points of FX . Denoted as Xn
d−→ X

Xn
a.s−→ X =⇒ Xn

p−→ X =⇒ Xn
d−→ X .
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Order Statistics
Smallest, largest, middle observation of a random sample are useful

I Highest temperature in the last 50 years

I Lowest rainfall in the last 50 years

I median value of stock index in the last month

The order static of a random sample X1,X2, . . . ,Xn are the
sample value placed in the ascending order, denotes by
X(1),X(2), . . . ,X(n) where X(1) ≤ X(2) ≤ . . . ,≤ X(n)

X(1) = min
1≤i≤n

Xi

X(2) =second smallest Xi

...

X(n) = max
1≤i≤

Xi
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Sample mean vs Sample Median

I Sample range: X(n) − X(1)

I Sample median:

M =

{
X((n+1)/2) if n is odd

(X(n/2) + X((n/2)+1))/2 if n is even

I Example:
Random sample: 24, 89, 59, 34, 55, 81, 45, 93, 85, 50
Order statistic: 24, 34, 45, 50, 55, 59, 81, 85, 89, 93
Sample range: 93− 24 = 69
Sample mean: 61.5
Median: 57

I Median gives better indication of ”typical” values than means!
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Sample Percentile

For any p ∈ [0, 1], the (100p)the percentile is the observation
such that approximately np of the observations are less than
this observation and n(1− p) of the observation are greater.

I For p = 0.5, 50the percentile gives median

I For any b ∈ R+, define

{b} =

{
dbe if dbe ≤ b + 0.5

bbc if b − 0.5 < bbc

I 1
2 < np < n − 1

2 =⇒ 1
2n < p < 1− 1

2n
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Lower and Upper Quartile

(100p)th sample percentile is =

{
X({np}) if p < 0.5

X(n+1−{n(1−p)}) if p > 0.5

Example 1: n = 50, p = .35, np = 17.5, {np} = 18. 35th sample
percentile is X(18)

Example 2: n = 50, p = .65, n(1− p) = 17.5, {n(1− p)} = 18
n + 1− {n(1− p)} = 50 + 1− 18 = 33. 65th sample
percentile is X(33)

I For p < 0.5 and p > 0.5 sample percentiles exhibit symmetry

I if (100p)th sample percentile is ithe smallest observation, then
100(1− p)the sample percentile is the ith largest observation

I 25th sample percentile is called lower quartile

I 75the sample percentile is called upper quartile
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Distribution of Order Statistics

Discrete Case:
Random sample X1,X2, . . . ,Xn come from a discrete distributions
with pmf PX (xi ) = pi , where x1 < x2 < · · · are the possible
realizations in ascending order. For any xi , what is P(X(j) ≤ xi )?

P0 =0

P(X ≤ x1) = P1 =p1

P(X ≤ x2) = P2 =p1 + p2
...

P(X ≤ xi ) = Pi =p1 + p2 + . . . ,+pi
...
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Discrete Case contd..
I Fix some xi . Define Yj = 1{Xj≤xi} for all j = 1, 2, . . . , n

I P(Yj = 1) = Pi for all j = 1, 2, . . . , n

I Y =
∑n

j=1 Yj , Y ∈ {0, 1, 2, . . . , n}
I As Xi s are i.i.d, Yjs are i.i.d. Yj ∼ Ber(Pi ).

I Y ∼ Bin(n,Pi ). Y is sum of n Ber(Pi ) RVs

I {X(j) ≤ xi} = {Y ≥ j}. Hence P(X(j) ≤ xi ) = P(Y ≥ i)

I P(Y ≥ j) =
∑n

k=j

(n
k

)
Pk
i (1− Pi )

n−k .

P(X(j) ≤ xi ) =
n∑

k=j

(
n

k

)
Pk
i (1− Pi )

n−k

P(X(j) = xi ) =P(X(j) ≤ xi )− P(X(j) ≤ xi−1)

=
n∑

k=j

(
n

k

)(
Pk
i (1− Pi )

n−k − Pk
i−1(1− Pi−1)n−k

)
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Continuous case

Random sample X1,X2, . . . ,Xn come from a population with pdf
fX (x), and CDF FX (x). Let X(1),X(2), . . . ,X(n) denote the order
statistics. Then, pdf of X(j) is

fX(j)(x) =
n!

(j − 1)!(n − j)!
fX (x) (FX (x))j−1 (1− FX (x))n−j

Joint pdf of X(i) and X(j) for 1 ≤ i < j ≤ n is

fX(i),X(j)
(u,v) =

n!

(i − 1)!(j − 1− i)(n − j)!
×

fX (u)fX (v) (FX (u))i−1 (FX (v)− FX (u))j−1−i (1− FX (v))n−j

IE605:Engineering Statistics Manjesh K. Hanawal 16


