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Simple Linear Regression

I Assume: Each sample has one feature/attribute (xi ∈ R)

I We will fit line of the from y = β1x + β0

I x is called the independent/predictor variable

I y is called the dependent/response variable

I β1 is the slope and β0 is the intercept

I We will get different lines for different choice of (β0, β1)

I How to quantify how good is a line?

I Choose the best line!
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Probabilistic Model for Linearly Related Data

I Instead of yi = β1xi + β0 assume data is perturbed by noise

I yi = β1xi + β0 + εi , where εi is random perturbation (noise)

I perturbation denotes that data won’t be fit the model
perfectly

I We assume that εi ∼ N (0, σ2), where σ2 is known
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Quantify goodness of a line: Mean Squared Error

I Minimize the distance between the line and points

I distance of point (xi , yi ) from line (β0, β1) (error)

yi − (β1xi + β0)

I As staying above or below line are equally bad we can take

|yi − (β1xi + β0)| absolute error

(yi − (β1xi + β0))2 squared error

I We take goodness of line (β0, β1) as sum of the squared errors

1

m

n∑

=1

(yi − (β1xi + β0))2

Mean Squared Error (MSE)
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The best line: Least Squared Regression

min
(β0,β1)

1

m

n∑

=1

(yi − (β1xi + β0))2

Alternate derviation from MLE
I yi = β1xi + β0 + εi =⇒ yi ∼ N (β1xi + β0, σ

2)
I (ε1, ε2, . . . , εn) are iid hence (y1, y2, . . . , yn) are iid.
I Likelihood of y = (y1, y2, . . . , ym) under the parameters
β = (β0, β1) is

L(y |β) =
m∏

i=1

f (yi |β) =
m∏

i=1

1√
2πσ2

exp
{
−(yi − β1xi − β0)2/2σ2

}

=
1

(2πσ2)m/2
exp

{
−

m∑

i=1

(yi − β1xi − β0)2/2σ2

}

arg max
β

L(y |β) = arg min
β

m∑

i=1

(yi − β1xi − β0)2
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Least Squared Solution

(β̂0, β̂1) = arg min
(β0,β1)

1

m

n∑

i=1

(yi − (β1xi + β0))2

β̂1 =
1
m (
∑m

i=1 xiyi )−
(
1
m

∑m
i=1 xi

) (
1
m

∑m
i=1 yi

)

1
m

(∑m
i=1 x

2
i

)
−
(
1
m

∑m
i=1 xi

)2

β̂0 =

(
1

m

m∑

i=1

yi

)
− β̂1

(
1

m

m∑

i=1

xi

)
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Expressing the solutions in terms of statistics

Given a random sample (X1,X2, . . . ,Xm)

I Sample mean: X̄ = 1
m (
∑m

i=1 Xi )

I Sample variance: S2
X = 1

m−1

(∑m
i=1(Xi − X̄ )2

)

I Sample standard deviations: SX =
√
S2
X .

For give data S = {(x1, y1), (x2, y2), . . . (xm, ym)}

x̄ =
1

m

(
m∑

i=1

xi

)
sx =

1

m − 1

(
m∑

i=1

(xi − x̄)2

)

ȳ =
1

m

(
m∑

i=1

yi

)
sy =

1

m − 1

(
m∑

i=1

(yi − ȳ)2

)

r =
1

m − 1

m∑

i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
Correlation coefficient
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Prediction

β̂1 = r
sy
sx

and β̂0 = ȳ − β̂1x̄

Given any sample x , its predicted label is

y = β̂1x + β̂0

For what all x we can get prediction?

Statistics for Research Projects Chapter 3

Example: The perils of extrapolation

By fitting a line to the Rotten Tomatoes ratings for movies that M. Night Shyamalan directed over time,
one may erroneously be led to believe that in 2014 and onward, Shyamalan’s movies will have negative
ratings, which isn’t even possible!

y = -4.6531x + 9367.7 
R² = 0.6875 
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⌅ 3.3 Multiple Linear Regression

Now, let’s talk about the case when instead of just a single scalar value x, we have a vector
(x1, . . . , xp) for every data point i. So, we have n data points (just like before), each with p
di↵erent predictor variables or features. We’ll then try to predict y for each data point as
a linear function of the di↵erent x variables:

y = �1x1 + �2x2 + · · · + �pxp. (3.14)

Even though it’s still linear, this representation is very versatile; here are just a few of the
things we can represent with it:
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Correlation coefficient

r =
1

m − 1

m∑

i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)

I −1 ≤ r ≤ 1. Measure how much y is related to x

I if r is positive y increases in x

I if r is negative y decreases in x
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Figure 3.2: An illustration of correlation strength. Each plot shows data with a particular correla-
tion coe�cient r. Values farther than 0 (outside) indicate a stronger relationship than values closer
to 0 (inside). Negative values (left) indicate an inverse relationship, while positive values (right)
indicate a direct relationship.

where x̄, ȳ, sx and sy are the sample means and standard deviations for x values and y
values, respectively, and r is the correlation coe�cient, defined as

r =
1

n � 1

nX

i=1

⇣xi � x̄

sx

⌘⇣yi � ȳ

sy

⌘
. (3.6)

By examining the second equation for the estimated slope �̂1, we see that since sample
standard deviations sx and sy are positive quantities, the correlation coe�cient r, which is
always between �1 and 1, measures how much x is related to y and whether the trend is
positive or negative. Figure 3.2 illustrates di↵erent correlation strengths.

The square of the correlation coe�cient r2 will always be positive and is called the coe�cient
of determination. As we’ll see later, this also is equal to the proportion of the total
variability that’s explained by a linear model.

As an extremely crucial remark, correlation does not imply causation! We devote the entire
next page to this point, which is one of the most common sources of error in interpreting
statistics.

4

I r2 is called coefficient of determination (explains how well
data is fit).
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Multiple Linear Regression
S = {(x1, y1), (x2, y2), . . . , (xm, ym)}, xi ∈ Rd , where d > 1.
Each sample point xi = (xi1, xi2, . . . , xid).

I We can write linear relation: yi =
∑d

j=1 xijβj + β0

I yi =
∑d

j=0 xijβj , where xi0 = 1 for all i = 1, 2 . . . ,m

I set β = (β0, β1, β2, . . . , βd) and xi = (1, xi1, xi2, . . . , xid)

I Compactly yi = xiβ
T for all i = 1, 2, . . . ,m

I The probabilistic model is yi = xiβ
T + εi , εi ∼ N (0, σ2).



y1
y2
...
ym


 =




1 x11 x12 . . . x1d
1 x21 x22 . . . x2d
...
1 xm1 xm2 . . . xmd







β0
β1
...
βd




y = XβT where X is data matrix

The probabilistic model is then

y = XβT + ε
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Solution of Multiple Linear Regression

β̂ = arg min
β

m∑

i=1

(yi − xiβ
T )2

β̂ = (XTX )−1XT y
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Model Evaluation:

Suppose every point yi is very close to ȳ =⇒ yi does not
dependent much on xi and there is not much random error.

Statistics for Research Projects Chapter 3

(xi , yi )

(x , ŷ)

ŷi � ȳ

y � ŷi

Figure 3.5: An illustration of the components contributing to the di↵erence between the average
y-value ȳ and a particular point (xi, yi) (blue). Some of the di↵erence, ŷi � ȳ, can be explained by
the model (orange), and the remainder, yi � ŷi, is known as the residual (green).

contribute to yi. In particular, let’s look at how far yi is from the mean ȳ. We’ll write this
di↵erence as:

yi � ȳ = (ŷi � ȳ)| {z }
di↵erence explained by model

+ (yi � ŷi)| {z }
di↵erence not explained by model

(3.18)

In particular, the residual is defined to be yi � ŷi: the distance from the original data point
to the predicted value on the line. You can think of it as the error left over after the model
has done its work. This di↵erence is shown graphically in Figure 3.5. Note that the residual
yi � ŷ isn’t quite the same as the noise "! We’ll talk a little more about analyzing residuals
(and why this distinction matters) in the next chapter.

If our model is doing a good job, then it should explain most of the di↵erence from ȳ, and
the first term should be bigger than the second term. If the second term is much bigger,
then the model is probably not as useful.

If we square the quantity on the left, work through some algebra, and use some facts about
linear regression, we’ll find that

X

i

(yi � ȳ)2

| {z }
SStotal

=
X

i

(ŷi � ȳ)2

| {z }
SSmodel

+
X

i

(yi � ŷi)
2

| {z }
SSerror

, (3.19)

where “SS” stands for “sum of squares”. These terms are often abbreviated as SST, SSM,
and SSE respectively.

If we divide through by SST, we obtain

1 =
SSM

SST| {z }
r2

+
SSE

SST|{z}
1�r2

,

12

yi − ȳ = (ŷi − ȳ)︸ ︷︷ ︸
explained by model

+ (yi − ŷi )︸ ︷︷ ︸
not explained by odel
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Coefficient Determination

∑

i

(yi − ȳ)2

︸ ︷︷ ︸
SST

=
∑

i

(ŷi − ȳ)2

︸ ︷︷ ︸
SSM

+
∑

i

(yi − ŷi )
2

︸ ︷︷ ︸
SSE

1 =
SSM

SST︸ ︷︷ ︸
r2

+
SSE

SST︸ ︷︷ ︸
1−r2

I r2 is called the coefficient of determination (square of
coefficient of correlation!)

I Captures the fraction of variability explained by model

I It is a measure that allows us to determine how certain one
can be in making predictions from a certain model/graph

I closer to 1, the better.
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