Autumn Semester 2020 December 31, 2021

IE 605: Engineering Statistics

Solutions of tutorial 5

Solution 1

Part 1: Add and subtract = from the expression on the left hand side and then expand

as follows
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we can write the middle term in above eqn. ans simplify
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Then, we get
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Now, it can be verifies that above eqn. attains minimum at a = .

Part 2: Now, consider
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Solution 2
Part 1

The pdf of V' ~ X%—l is given by

1 n—
fv(v) = —le_le_”/2; v>0

n—1

25r ()

The pdf of U ~ N(0,1) is given by
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Part 2:
Given, X = —%— and Y = V Then the inverses are given as, U = X,/ %

\%
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and V' =Y and the jacobian is given as,
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Now, the joint pdf of X and Y is given as,

Fxy (@) = fov(u,v)]  whereu = x| pandv =y
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Part 3

The marginal distribution of X is given by,

Ix(z) = /OOO fxy(z,y)dy
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Part 4

We know that t-distribution with n-1 degrees of freedom is given as,

= fT(t) = F(TLT_I)F(

The above distribution is same as the distribution of X obtained in Part 3. Hence,

X has t-distribution with n-1 degrees of freedom

Solution 3

Let X = number of defective parts in the sample. Then X ~ hypergeometric(N =
100, M, K') where M = number of defectives in the lot and K = sample size.

1. If there are 6 or more defectives in the lot, then the probability that the lot is
accepted (X = 0) is at most

P(X =0|M =100,N = 6,K) =

100

(%)
(100 — K)(100 — K — 5)
- 100. . ... 95

By trial and error we find P(X = 0) = .10056 for K = 31 and P(X =0) =
.09182 for K = 32. So the sample size must be at least 32.



Solution 4

Calculating the cdf of Z? = [min(X,Y)]? = Z2? > 0, we obtain

Fpa(z) = ]P’{(min(X,Y))2 <z}
=P{-vz <min(X,Y) < vz}
=P {min(X,Y) <z} —P{min(X,Y) < —/z}
=[1-P{min(X,Y) > vz}] — [1 = P{min(X,Y) > —/2}]
=P {min(X,Y) > -z} — P{min(X,Y) > vz}
=P{X > —Vz}P{Y > -z} —P{X > Vz} P{Y > 2},
where we use the independence of X and Y. Since X and Y are identically
distributed, P{X > a} =P{Y >a} =1— Fx(a), so

Fp2(2) = (1 = Fx(=v2))* = (1 — Fx(V/2))?
since 1 — Fx(1/z) = Fx(—+/z). Differentiating and substituting gives
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Vor

the pdf of a x? random variable.

Solution 5

It can be verified that X2 + Y2 ~ x2. Thus

L o—z/2

1
P(X? Y2<1:/ dr =1— — =0.3935.

Solution 6

The pdf of beta distribution with parameters o and 3 where both a and 3 are unknown

is given by,

1
B(a, B)

To show: Beta distribution with parameters « and 8 where both a and (5 are

f(z|a, B) = 2 t1-2)f o<z <1l,a>0,8>0.



unknown belongs to Exponential family.
Exponential Family: A family of pdfs and pmfs is called an Exponential family if
it can be expressed as

k
f(z]0) = h(z)c(0)exp (Z wi(G)ti(:c)) ,
i=1

where h(xz) > 0 and t1(z), ..., tx(x) are real-valued functions of the observation
x (they cannot depend on #), and ¢(f) > 0 and w1(0), ..., wk(0) are real-valued
functions of the possibly vector-valued parameter 6.

In this case:

f(zla, B) = Ijpy(x)

B @ {(0 = 1)log(a) + (3 — 1) log(1 - )}
where h(z) = Ijq(v),cla,8) = %,wl(a) = a— 1Lti(zx) =
log(z),wa(B) = B — 1, ta(x) = log(1 — z).

Solution 7

n

The sample mean is given by X = X;.
1

S

=

3

The sample variance is given by 5% = 1+ ‘ 1(X,- - X)2
(]

Here we use the theorem that states,

Theorem 1. Let Xy, Xo, ..., X, are independent random variables. Let g;(X;) be
a function of only z;,i = 1,2, ..., n. Then the random variables U; = ¢;(X;),i =

1,2,...,n are mutually independent.

Applying the above theorem, we can write S? as a function of (n — 1) deviations.
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Thus S? can be written as a function only of (X2 — X, ..., X,, — X). We will now
show that these random variables are independent of X . The joint pdf of the sample

X1, Xo,..., X, is given by

1 125
i=1

f(xl,...,xn)zwe y
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Make the transformations

Y1 =T,

y2:$2—.i',

Yn = Tn — X,

This is a linear transformation with a Jacobian equal to 1/n (Verify it). We have

no L e —(1/2) 3 itun)? ,
9(Y1, - Yn) = (2%)”/26 (/2 -Eim v i=2 , —oo<y <oo,Vi=1,...,n
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Since the joint pdf of Yi,...,Y,, factors, it follows from theorem that Y7 is
independent of Y5, . .., Y,, and, hence, it follows from theorem that X is independent

of S2.

Solution 8

The pdf of X ~ Gamma(a, \) is given by

AOL
flx) = () )xa_le_”; 0<z<oo,a>0,A>0
(o))

The mgf is given by
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The function in the last (underbraced) integral is a p.d.f. of gamma distribution

I'(a, A — t) and, therefore, it integrates to 1. We get,

Mx(t) = <)\)\—t> )



Now,
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Solution 9
The pdf of X ~ X% is given by
f(l') _ #xrﬂ—le—x/& x>0
2/2T(r/2) ’

The MGF of X is calculated as follows:
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[The second half of the above expression is a p.d.f. of Gamma distribution, therefore

it integrates to 1].



We then have, )

(1 —2t)r/2
Now, let us define Y = >~ | X; where X; ~ x2 fori=1,...,n.
Then, MGF of Y is given by,

Mx(t) =

-
(1 —2t)ni/2

since X; ~ X?u
i=1
1

n
= 7(1 o0 where p = Zlnl
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By uniqueness of MGF, we can then conclude that Y = """ | X; ~ X]% where
b= Z?:1 n;

Solution 10

Let X1,..., X, beiid with pdf fx(z). Let X be the sample mean and X = n.X.
Therefore, X = X + -+ + X,,. Then X = (1/n)X , a scale transformation.
Therefore the pdf of X is

Fx(e) = th fx () = nfx (na).

Solution 11

Given: Let X,and S? are sample mean and sample variance of random sample
X1, Xo,..., X, Let Xffjrl sample is obtained.

e To show: X, 11 = 7X"+nl:1”X".
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