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IE 605: Engineering Statistics

Solutions of tutorial 8

Solution 1

The sample density is given by

n∏
i=1

f(xi|θ) =
n∏
i=1

1

2iθ
I(−i(θ − 1) ≤ xi ≤ i(θ + 1))

=

(
1

2θ

)n( n∏
i=1

1

i

)
I
(

min
xi
i
≥ −(θ − 1)

)
I
(

max
xi
i
≤ θ + 1

)
.

Thus (min Xi
i ,max Xi

i ) is sufficient for θ.

Solution 2

Let X1, X2 be iid Poisson(λ) RVs.

1. To check: T1 = X1 +X2 is sufficient for λ or not.

Solution:

P {X1 = x1, X2 = x2|T = t} = P {X1 = x1, X2 = x2|X1 +X2 = t}

=


P{X1=x1,X2=t−x1}

P{X1+X2=t} , if t = x1 + x2, xi = 0, 1, 2, . . . ,

0 otherwise.

Thus, for xi = 0, 1, 2, . . . , i = 1, 2, x1 + x2 = t, we have

P {X1 = x1, X2 = x2|X1 +X2 = t} =

(
t

x1

)(
1

2

)t
,

which is independent of λ. Hence, T is sufficient statistics.

2. To check: T2 = X1 + 2X2 is sufficient for λ or not.

Solution:

P {X1 = 0, X2 = 1|X1 + 2X2 = 2} =
P {X1 = 0, X2 = 1}
P {X1 + 2X2 = 2}

=
e−λ(λe−λ)

P {X1 = 0, X2 = 1}+ P {X1 = 2, X2 = 0}

=
λe−2λ

λe−2λ + (λ2/2)e−2λ



=
1

1 + (λ/2),

and we see that T = X1 + 2X2 is not sufficient for λ.

Solution 3

To show: T =
∑n

i=1Xi is sufficient for θ
We have

P (X1 = x1, X2 = x2, ..., Xn = xn|T = t) =
P (X1 = x1, X2 = x2, ..., Xn = xn)

P (T = t)

Bearing in mind that the Xi can take on only the values 0s or 1s, the probability
in the numerator is the probability that some particular set of t Xi are equal to 1s
and the other n − t are 0s. Since the Xi are independent, the probability of this
is θt(1 − θ)n−t. To find the denominator, note that the distribution of T , the total
number of ones, is binomial with n trials and probability of success θ. Therefore the
ratio in the above equation is

θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=
1(
n
t

)
The conditional distribution thus does not involve θ at all. Given the total number of
ones, the probability that they occur on any particular set of t trials is the same for
any value of θ so that set of trials contains no additional information about θ.

To show: T =
∑n

i=1Xi is complete

E [g(T )] =
n∑
t=0

g(t)

(
n

t

)
θt(1− θ)n−t = 0 for all θ ∈ (0, 1)

may be rewritten as

(1− θ)n
n∑
t=0

g(t)

(
n

t

)(
θ

1− θ

)t
= 0 for all θ ∈ (0, 1).

This is a polynomial in θ
1−θ . Hence the coefficients must vanish, and it follows that

g(t) = 0 for t = 0, 1, 2, . . . , n, as required. Hence T =
∑n

i=1Xi is complete.

Solution 4

For x = (x1, ..., xn), the joint pdf of X1, ..., Xn is

fn(x|µ) =

n∏
i=1

1√
2πσ

exp

[
−(xi − µ)2

2σ2

]
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This could be rewritten as

fn(x|µ) =
1

(2π)n/2σn
exp

(
−
∑n

i=1 x
2
i

2σ2

)
exp

(
µ

σ2

n∑
i=1

xi −
nµ2

2σ2

)

It can be seen that fn(x|µ) has now been expressed as the product of a function that
does not depend on µ and a function the depends on x only through the value of∑n

i=1 xi. It follows from the factorization theorem that T =
∑n

i=1Xi is a sufficient
statistic for µ.

Since
∑n

i=1 xi = nx̄, we can state equivalently that the final expression depends
on x only through the value of x̄, therefore X̄ is also a sufficient statistic for µ. More
generally, every one to one function of X̄ will be a sufficient statistic for µ.

Solution 5

The p.d.f. f(x|β) of each individual observation Xi is

f(x|β) =


Γ(α+β)

Γ(α)Γ(β)x
α−1(1− x)β−1 for 0 ≤ x ≤ 1

0 otherwise.

Therefore, the joint p.d.f. fn(x|β) of X1, X2, ..., Xn is

f(x|β) =

n∏
i=1

Γ(α+ β)

Γ(α)Γ(β)
xα−1
i (1− xi)β−1

f(x|β) =
n∏
i=1

Γ(α+ β)

Γ(α)Γ(β)
xα−1
i (1− xi)β−1

= Γ(α)−n
(

n∏
i=1

xi

)α−1
(Γ(α+ β)

Γ(β)

)n( n∏
i=1

(1− xi)

)β−1


We define T ′ = (X1, X2, ...Xn) =
∏n
i=1(1−Xi), and because α is known, so we

can define

u(x) = Γ(α)−n
(

n∏
i=1

xi

)α−1

, v(T ′, β) =

(
Γ(α+ β)

Γ(β)

)n
T ′(x1, x2, ..., xn)β−1

We can see that the function v depends on x only through T ′, therefore T ′ is a
sufficient statistic. It is easy to see that

T = g(T ′) =
log(−T ′)3

n

and the function g is a one-to-one mapping. Therefore T is a sufficient statistic.
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Solution 6

f(x|θ)
f(y|θ)

=
e
−

n∑
i=1

(xi−θ)

n∏
i=1

1 + e−(xi−θ)

n∏
i=1

1 + e−(yi−θ)

e
−

n∑
i=1

(yi−θ)

= e
−

n∑
i=1

(yi−xi)

n∏
i=1

1 + e−(yi−θ)

n∏
i=1

1 + e−(xi−θ)

This is constant as a function of θ if and only if x and y have the same order statistics.
Therefore, the order statistics are minimal sufficient for θ.

Solution 7

SupposeX1, X2, . . . , Xn are iid uniform observation on the interval (θ, θ+1),−∞ <

θ <∞. Thus the joint pdf of X is,

f(x|θ) =

 1, θ < xi < θ + 1, i = 1, 2, . . . , n

0, otherwise

which can be written as,

f(x|θ) =

 1, maxi xi − 1 < θ < mini xi

0, otherwise

Thus for two sample points x and y, the numerator and denominator of the ratio
f(x|θ)
f(y|θ) will be positive for the same values of θ if and only if mini xi = mini yi and
maxi xi = maxi yi. And, if the minima and maxima are equal, then the ratio is
constant and, in fact, equals 1. Thus, letting X(1) = miniXi and X(n) = maxiXi,
we have T (X) = (X(1), X(n)) is a minimal sufficient statistic. This is a case in
which the dimension of a minimal sufficient statistic does not match the dimension of
the parameter.

To prove T (X) = (X(1), X(n)) is not complete, we want to find g[T (X)] such
that E [g[T (X)]] = 0 for all θ, but g[T (X)] 6= 0 . A natural candidate is R =

X(n) − X(1), the range of R does not depend on θ [Verify]. It can be shown that
R ∼ beta(n− 1, 2) [Verify]. Thus E [R] = (n− 1)/(n+ 1) does not depend on θ,
and E [R− E [R]] = 0 for all θ.

Thus

g[X(n), X(1)] = X(n) −X(1) − (n− 1)/(n+ 1) = R− E [R]

is a non-zero function whose expected value is always 0. So, (X(1), X(n)) is not
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complete.
NOTE: This problem can be generalized to show that if a function of a sufficient

statistic is ancillary, then the sufficient statistic is not complete, because the
expectation of that function does not depend on θ. That provides the opportunity to
construct an unbiased, nonzero estimator of zero.

Solution 8

Let X1, X2, . . . , Xn be a sample from N(θ, θ2) where θ > 0.

To show: T = (
n∑
i=1

Xi,
n∑
i=1

X2
i ) is sufficient for θ but T is not complete.

Solution: The joint distribution function of X1, . . . , Xn is

fθ(x1, . . . , xn) =
1

(2πθ2)n
exp

{
−1

2θ2

n∑
i=1

x2
i +

1

θ

n∑
i=1

xi −
1

2

}
.

By factorisation theorem, T = (
n∑
i=1

X2
i ,

n∑
i=1

Xi) is sufficient statistic.

Note that

E

[
n∑
i=

X2
i

]
= nE

[
X2

1

]
= 2nθ2

and E

[
n∑
i=1

Xi

]2

= nθ2 + (nθ)2

= (n+ n2)θ2.

Let h(t1, t2) =
1

2n
t1 −

1

n(n+ 1)
t22.

Then h(t1, t2) 6= 0 but E [h(T )] = 0 for any θ.

Hence T is not complete.

Solution 9

Let X1, X2, . . . , Xn be a sample from N(θ, αθ2), where α is known constant and
θ > 0.

To show: T = (X̄, S2) is sufficient statistics for θ.
Solution: the joint pdf of x = (X1, X2, . . . , Xn) is given by

fθ(x) =

(
1

2παθ2

)n/2
exp

{
−1

2αθ2

(
n∑
i=1

(xi − x̄)2 + n(x̄− θ)2

)}
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By Factorization Theorem, the joint pdf can be written as

fθ(x) =

(
1

2παθ2

)n/2
exp

{
−1

2αθ2

(
(n− 1)t2 + n(t1 − θ)2

)}
=⇒ fθ(x) = g(T1(x), T2(x)|θ)h(x)

where T1 = X̄, T2 = S2 = 1
n−1

n∑
i=1

(Xi − X̄)2 and h(X) = 1.

Therefore, by Factorisation Theorem, T (X) = (T1(X), T2(X)) = (X̄, S2) is a
sufficient statistic for θ.

To show: T = (X̄, S2) is not complete.
Solution:

E
[
S2
]

= αθ2 and E
[
X̄2
]

= V arX̄ + (E
[
X̄
]
)2 =

αθ2

n
+ θ2 =

(α+ n)θ2

n
.

Therefore, E
[

n

α+ n
X̄2 − S2

α

]
=

(
n

α+ n

)(
α+ n

n
θ2

)
− 1

α
αθ2 = 0, for all θ.

Thus g(X̄, S2) =
n

α+ n
X̄2 − S2

α
has zero expectation

=⇒ (X̄, S2) is not complete.

Solution 10

Let Y1 = log(X1) and Y2 = log(X2). Then Y1 and Y2 are iid and, the pdf of each is

f(y|α) = α exp{αy − eαy}

=
1

1/α
exp

{
y

1/α
− ey/(1/α)

}
,−∞ < y <∞.

We see that the family of distributions of Yi is a scale family with scale parameter
1/α. Thus, by the following Theorem which states that,

Theorem 1. Let f(.) be the pdf. Let µ be any real number, and let σ be any positive
real number. Let X is a random variable with pdf (1/σ)f

(x−µ
σ

)
iff there exists a

random variable Z with pdf f(z) and X = σZ + µ.

We can write Yi = 1
αZi, where Z1 and Z2 are a random sample from f(z|1).

Then

logX1

logX2
=
Y1

Y2

=
(1/α)Z1

(1/α)Z2

=
Z1

Z2

Because the distribution of Z1
Z2

does not depend on α, logX1

logX2
is an ancillary statistic.
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Solution 11

Suppose X1, X2, . . . , Xn are iid uniform observation on the interval (θ, θ + 1),
−∞ < θ <∞. Thus the joint pdf of X is,

f(x|θ) =

 1, θ < xi < θ + 1, i = 1, 2, . . . , n

0, otherwise

which can be written as,

f(x|θ) =

 1, maxi xi − 1 < θ < mini xi

0, otherwise

Thus for two sample points x and y, the numerator and denominator of the ratio
f(x|θ)
f(y|θ) will be positive for the same values of θ if and only if mini xi = mini yi and
maxi xi = maxi yi. And, if the minima and maxima are equal, then the ratio is
constant and, in fact, equals 1. Thus, letting X(1) = miniXi and X(n) = maxiXi,
we have T (X) = (X(1), X(n)) is a minimal sufficient statistic. This is a case in
which the dimension of a minimal sufficient statistic does not match the dimension of
the parameter.

A minimal sufficient statistics is not unique. A one-to-one function of minimal
sufficient statistic is also a minimal sufficient statistic.
So, T (X) = ((X(n)−X(1)), (X(n) +X(1))/2) is also a minimum sufficient statistics.

Solution 12

Let X1, X2, . . . , Xn be i.i.d. Uniform observations on the interval (θ, θ + 1),−∞ <

θ <∞. Let X(1), X(2), . . . , X(n) be the order statistics from the sample. We show
below that the range statistics R = X(n) −X(1) is an ancillary statistic by showing
that the pdf of R does not depend on θ.

The cdf of each Xi is

F (x|θ) =


0, x ≤ θ

x− θ, θ < x < θ + 1

1, θ + 1 ≤ x

Thus, the joint pdf of X(1) and X(n)

g(x(1),x(n)
(x1, xn|θ) =

 n(n− 1)(xn − x1)n−2, θ < x1 < xn < θ + 1

0, otherwise

Making the transformation R = X(n) − X(1) and (M = X(n) + X(1))/2 which
has the inverse transformation X(1) = (2M −R)/2 and X(n) = (2M +R)/2 with

7



Jacobin 1, joint pdf of R and M :

h(r,m|θ) =

 n(n− 1)rn−2, 0 < r < 1, θ + (r/2) < m < θ + 1− (r/2)

0, otherwise

Thus pdf for R is:

h(r|θ) =

∫ θ+1−(r/2)

θ+(r/2)
n(n− 1)rn−2dm

= n(n− 1)rn−2(1− r)

This is pdf with α = n− 1 and β = 2. More important, the pdf is the same for all θ.
Thus, the distribution of R does not depend on θ, and R is ancillary.

Solution 13

• (a) Using the definition of minimal sufficient statistics,

f(x, n|θ)
f(y, n′|θ)

=
f(x|θ,N = n)P (N = n)

f(y|θ,N = n′)P (N = n′)

=

(
n
x

)
θx(1− θ)n−xpn(

n′

y

)
θy(1− θ)n′−ypn′

= θx−y(1− θ)n−n′−x+y

(
n
x

)
pn(

n′

x

)
pn′

The last ratio does not depend on θ. The other terms are constant as a function
of θ if and only if n = n′ and x = y. So (X,N) is minimal sufficient for θ.
Because P {N = n} = pn does not depend on θ, N is ancillary for θ. The
point is that although N is independent of θ, the minimal sufficient statistic
contains N in this case. A minimal sufficient statistic may contain an ancillary
statistic.

• (b)

E
[
X

N

]
= E

[
E
[
X

N

∣∣∣∣N]]
= E

[
1

N
E [X|N ]

]
= E

[
1

N
Nθ

]
= θ
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V ar

(
X

N

)
= V ar

(
E
[
X

N

∣∣∣∣N])+ E
[
V ar

(
X

N

∣∣∣∣N)]
= V ar (θ) + E

[
1

N2
V ar (X|N)

]
= 0 + E

[
Nθ(1− θ)

N2

]
= θ(1− θ)E

[
1

N

]
We used the fact that X|N ∼ binomial(N, θ).

Solution 14

The likelihood function is given by,

L(θ|x, n) = f(x, n|θ) = f(x|θ,N = n)P {N = n} =

(
n

x

)
θx(1−θ)n−xpn (1)

. It can be said that X|N = n ∼ Bin(n, θ). Therefore, the likelihood function of
X|N = n is given by,

L(θ,N = n|x) = f(x|θ,N = n) =

(
n

x

)
θx(1− θ)n−x (2)

. For a fixed sample point (x, n) by eq. (1) and (2) we get,

L(θ|x, n) = pnL(θ,N = n|x)⇒ L(θ|x, n)∞L(θ,N = n|x)

Therefore, it implies that by the Formal Likelihood Principle we can conclude that θ
should not depend on the fact that the sample size n was chosen randomly.

Solution 15

Let 1 = success and 0 = failure. The four sample points are {0, 10, 110, 111}. From
the likelihood principle, inference about p is only through L(p|x). The values of the
likelihood are 1, p, p2, and p3, and the sample size does not directly influence the
inference.

Solution 16

Let X have a negative binomial distribution with r = 3 and success probability p.
If x = 2 is observed, then the likelihood function is the fifth-degree polynomial on
0 ≤ p ≤ 1 defined by

L(p|2) = Pp(X = 2) =

(
4

2

)
p3(1− p)2.
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In general, if X = x is observed, then the likelihood function is the polynomial of
degree 3 + x,

L(p|x) =

(
3 + x− 1

x

)
p3(1− p)x.

Solution 17

• (a) This pdf can be written as

f(x|, λ) =

(
λ

2π

)1/2( 1

x3

)1/2

exp

(
λ

µ

)
exp

{
− λ

2µ2
x− λ

2

1

x

}

This is an exponential family with t1(x) = x and t2(x) = 1/x.

We use the Theorem of the property of complete statistics of the exponential
family as stated below,

Theorem 2. Let X1, X2, . . . , Xn be iid observations from an exponential
family with pdf or pmf of the form

f(xθ) = h(x)c(θ) exp

 k∑
j=1

w(θj)tj(x)


where θ = (θ1, θ2, . . . , θk). Then the statistics

T (X) =

(
n∑
i=1

t1(Xi),
n∑
i=1

t2(Xi), . . . ,
k∑
i=1

tk(Xi)

)

is complete as long as the parameter space Θ contains an open setRk.

By using the above theorem, the statistic (
∑

iXi,
∑

i(1/Xi)) is a complete
sufficient statistic. (X̄, T ) given in the problem is a one-to-one function of
(
∑

iXi,
∑

i(1/Xi)). Thus, (X̄, T ) is also a complete sufficient statistic.

• This can be accomplished using the methods from (Refer Section 4.3 of the
book Statistical Inference by George Casella) by a straightforward but messy
two-variable transformation U = (X1 +X2)/2 and V = 2λ/T = λ[(1/X1) +

(1/X2)(2/[X1 +X2])]. This is a two-to-one transformation.

Solution 18

Suppose that (X1, Y1), ..., (Xn, Yn) are independent and identically distributed
random 2-vectors having the normal distribution with E [X1] = E [Y1] =

0, V ar(X1) = V ar(Y1) = 1, and Cov(X1, Y1) = θ ∈ (−1, 1).

1. To find: Find a minimal sufficient statistic for θ.
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Solution: The joint distribution function of (X1, Y1), . . . , (Xn, Yn) is

(
1

2π
√

1− θ2

)n
exp

{
− 1

1− θ2

n∑
i=1

(x2
i + y2

i ) +
2θ

1− θ2

n∑
i=1

xiyi

}
.

Let η =

(
− 1

1− θ2
,

2θ

1− θ2

)
.

The parameter space {η : −1 < θ < 1} is a curve in R2. We can find that

(T1, T2) =

(
n∑
i=1

(X2
i + Y 2

i ),
n∑
i=1

XiYi

)
is minimal sufficient (Check!).

2. To show: The minimal sufficient statistic obtained in (i) is complete or not.

Solution:

Here (X,Y ) follows Bivariate Normal distribution with parameters
as (0, 0; 1, 1; θ). By the properties of Bivariate Normal distribution,

X + Y ∼ Normal(0, 2(1 + θ)) =⇒
n∑
i=1

(Xi+Yi)
2

2(1+θ) ∼ χ
2
n.

Note that E

[
1

1 + θ

(
n∑
i=1

(X2
i + Y 2

i ) + 2
n∑
i=1

XiYi

)]
− 2n = 0,

E
[

1

1 + θ
(T1 + 2T2)

]
− 2n = 0,

but
1

1 + θ
(T1 + 2T2)− 2n 6= 0

Therefore, the minimal sufficient statistic is not complete.

3. To prove: T1 =
n∑
i=1

X2
i and T2 =

n∑
i=1

Y 2
i are both ancillary but (T1, T2) is not

ancillary.

Solution: Both T1 and T2 have the chi-square distribution χ2
n, which does not

depend on θ. Hence both T1 and T2 are ancillary. Note that

E [T1T2] = E

( n∑
i=1

X2
i

) n∑
j=1

Y 2
j


= E

[
n∑
i=1

X2
i Y

2
i

]
+ E

∑
i 6=j

X2
i Y

2
j


= nE

[
X2

1Y
2

1

]
+ n(n− 1)E

[
X2

1

]
E
[
Y 2

1

]
= n(1 + 2θ2) + 2n(n− 1),

which depends on θ. Therefore the distribution of (T1, T2) depends on θ and
(T1, T2) is not ancillary.
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Solution 19

Given that T1 is sufficient and T2 is minimal sufficient, U is an unbiased estimator of
θ, and define U1 = E [U |T1] and U2 = E [U |T2].

• (a) This is seen by first noting that because T2 = φ(T1) for some function φ,
then

U2 = E [U |T2] = E [E [U |T2]|T1] = E [E [U |T1]|T2] = E [U1|T2] .

• (a) Hence, by applying the we obtain

V arθ(U1) = E [V ar(U1|T2)]+V ar(E [U1|T2]) ≥ V ar(E [U1|T2]) = V ar(U2).

If T1 and T2 are both minimally sufficient, then there is a one-to-one function
such that T2 = φ(T1), so it follows that U1 = U2.

Solution 20

Let (X1, ..., Xn) be a random sample of random variables having the Cauchy
distribution with location parameter µ and scale parameter σ, where µ ∈ R and
σ > 0 are unknown parameters.

To show: The vector of order statistics is minimal sufficient for (µ, σ).
Solution: The joint distribution function of (X1, . . . , Xn) is

fµ,σ(x) =
σn

πn

n∏
i=1

1

σ2 + (xi − µ)2
, x = (x1, . . . , xn).

For any x = (x1, . . . , xn) and y = (y1, . . . , yn), suppose that

fµ,σ(x)

fµ,σ(y)
= ψ(x, y)

holds for any µ and σ, where ψ does not depend on (µ, σ). Let σ = 1. Then we must
have

n∏
i=1

[1 + (yi − µ)2] = ψ(x, y)
n∏
i=1

[1 + (xi − µ)2]

for all µ. Both sides of the above identity can be viewed as polynomials of degree 2n

in µ. Comparison of the coefficients to the highest terms gives ψ(x, y) = 1. Thus,

n∏
i=1

[1 + (yi − µ)2] =
n∏
i=1

[1 + (xi − µ)2]

for all µ. As a polynomial of µ, the left-hand side of the above identity has 2n complex
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roots xi ±
√
−1, i = 1, . . . , n, while the right-hand side of the above identity has

2n complex roots yi ±
√
−1, i = 1, . . . , n. By the unique factorization theorem for

the entire functions in complex analysis, we conclude that the two sets of roots must
agree. This means that the ordered values of xi’s are the same as the ordered values
of yi’s. Therefore, the order statistics of X1, . . . , Xn is minimal sufficient for (µ, σ).
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