IE 605: Engineering Statistics

Tutorial 5

Example 1. Let x_1, x_2, \ldots, x_n be any number. Define $\bar{x} = \frac{1}{n} \sum_{i=1}^n$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$. Show that

- $\min_a \sum_{i=1}^{n} (x_i a)^2 = \sum_{i=1}^{n} (x_i \bar{x})^2$
- $s^2 = \frac{1}{n-1} \sum_{i=1}^n x_i^2 n\bar{x}$

Example 2. Let $U \sim \mathcal{N}(0,1)$ and $V \sim \chi^2_{n-1}$, where n>1 is a positive integer and the random variables U and V are independent of each other. Define transforms $X=\frac{U}{\sqrt{V/(n-1)}}$ and Y=V.

- Find the joint pdf of (U, V)
- Find the joint distribution of (X,Y)
- Find the marginal distribution of X.
- Argue that X has Student's t distribution with n-1 degrees of freedom.

Example 3. A manufacturer receives a lot of 100 parts from a vendor. The lot will be unacceptable if more than five of the parts are defective. The manufacturer is going to select randomly K parts from the lot for inspection and the lot will be accepted if no defective parts are found in the sample.

- 1. How large does K have to be to ensure that the probability that the manufacturer accepts an unacceptable lot is less than 0.10?
- 2. Suppose the manufacturer decides to accept the lot if there is at most one defective in the sample. How large does K have to be to ensure that the probability that the manufacturer accepts an unacceptable lot is less than 0.10?

Example 4. Let X and Y are $\mathcal{N}(0,1)$ random variables. Define $Z = \min(X,Y)$. Prove that $Z^2 \sim \chi_1^2$.

Example 5. Suppose X and Y are independent N(0,1) random variables. Find $P(X^2 + Y^2 < 1)$.

Example 6. Show that Beta distribution belong to exponential family of distributions

Example 7. Let $X_1, X_2, ..., X_n$ is a random sample drawn from a populations $\mathcal{N}(0,1)$. Let \bar{X} and S^2 be the sample mean and sample variance. Show that \bar{X} and S^2 are independent.

Example 8. Let $X \sim Gamma(\alpha, \lambda)$. Find MGF, first and second moment of X.

Example 9. Let X_1, X_2, \ldots, X_n are independent with $X_i \sim \chi_{n_i}^2$ for all $i = 1, 2, \ldots, n$. Let $p = \sum_{i=1}^n n_i$. Show that $\sum_{i=1}^n X_i \sim \chi_p^2$

Example 10. Let X_1, \ldots, X_n be iid with pdf $f_X(x)$. Let \bar{X} be the sample mean and $X = n\bar{X}$. Show that $f_{\bar{X}}(x) = nf_X(nx)$.

Example 11. Let \bar{X}_n and S_n^2 are sample mean and sample variance of random sample X_1, X_2, \ldots, X_n . Let X_{n+1} the sample is obtained. Establish the following recursion relations.

$$\bullet \ \bar{X}_{n+1} = \frac{X_{n+1} + n\bar{X}_n}{n+1}$$

•
$$nS_{n+1}^2 = (n-1)S_n^2 + \left(\frac{n}{n+1}\right)(X_{n+1} - \bar{X}_n)^2$$