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Abstract

A general representation scheme for the track layout at a railway
station is proposed. The representation is a graph-based one with a list
of conflicting track segments. Any feasible path on the network corre-
sponds to a unique train movement on the actual track configuration.
The representation is useful in simulation models for operations plan-
ning and capacity estimation at railway terminals. We also show that
the representation can be derived from the original track configuration
in polynomial time.

1 Introduction

Railways form an important mode of transportation system of many coun-
tries including India. The cost of infrastructure and the time it takes for
infrastructural changes makes infrastructure planning and capacity estima-
tion an important problem to study for rail planners. Also, delay of a train
at a station propagates all along its remaining route and sometimes a small
delay at a station tends to cause a very large delay when the train arrives
at its destination. It has been shown in Malde (2001) and elsewhere that
even simple versions of the Railway Scheduling problem with prohibited time
intervals are NP complete.

In this paper we consider the problem of operations management at rail-
way stations. This problem is important for the following reasons. Stations
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are places where several operations (like reversals, overtaking, maintenance)
take place. Hence, stations need to be able to accommodate a large number
of trains. Operations like reversals and shunting necessitate occupancy of
track and platform resources for significant amounts of time, which makes
it necessary to model such operations in detail for the study of the perfor-
mance of railway stations. In addition, there are many routing options in
stations. The choice of a particular route for a train may affect the schedules
of other trains.

As a first step in solving this problem, we need a scheme for proper
representation of the layout of complicated railway stations in a tractable
manner. The requirements of such a representation are: (a) all train move-
ments on the actual track configuration should be representable using the
scheme, (b) a movement generated from the scheme should correspond to a
unique train movement on the actual track configuration, and (c) simulta-
neous conflicting movements should be prohibited. We propose a network
based model, along with a set of conflicting arcs, for the purpose, so that the
trains can be scheduled by finding paths on a time-space graph generated
from this network. In the next section we outline some models in literature
that deal with routing in stations. In section 3 we present an initial repre-
sentation that fails for some cases. In section 4 we specify the basic building
blocks of our model. Section 5 talks about conflicts between track segments.
Our procedure is described in detail in sections 6 and 7.

2 Models in literature

Literature is not readily available for the problem of routing trains in sta-
tions, although models for scheduling trains on lines are abundant. The
problem of routing trains is posed as a node-packing problem in Zwaneveld
et. al.(1997,2001) and some methods to reduce the problem size are outlined.
However, the model does not deal with the representation of station layouts
although it speaks of checking conflicts for every (route, train) pair. In
Bourachot (1986), we come across a quadratic integer programming model
of the routing problem, where the variables correspond to (route, train)
pairs. This model also does not deal explicitly with the representation of
station layout. A model for the evaluation of the infrastructure at terminals
is given in Powell and Wong (2000). The model defines the state of a station
as a bit vector and tries to find the maximum cycles in the state transition
graph. All operations are assumed to be of unit time duration, and the pos-
sibility of multiple routes is not considered in the model. Another integer
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programming model can be found in Carey (1994). The model presented in
Malde (2001) gives a model of station representation which is the same as
the initial representation outlined in section 3. This model, which represents
the track layout in the form of a graph, is good enough for representing sim-
ple train movements. However, when one starts considering movements like
reversals, this model has limitations.

We propose a generalised representation scheme which can handle com-
plicated movements like reversals also. This representation scheme uses a
graph along with a conflict list. Then, to get the schedule of a train, we find
a path on a time-space network constructed using the proposed representa-
tion. A simulation model based on finding paths on sequentially constructed
time-space graphs, which is used for operations scheduling, timetabling and
capacity estimation in railway terminals is found in Vishnu (2003). The
model was used to investigate the possibility of desired headways at a termi-
nus. The significance of this issue in practice on Indian Railways is described
in Rangaraj and Vishnu (2002).

3 An initial representation

An initial model for the track configuration is the following. For every
track segment i on the actual track layout, add two nodes and a directed
arc between them. Let the segment i be denoted by the (directed) arc
(ui, vi). For all track segments j reachable (in the actual track configuration)
immediately after leaving segment i, add (directed) arcs (vi, uj). All arcs
of the form (ui, vi) are associated with a real number ti which denotes the
travel time of a train on the track segment i. Arcs of the form (vi, uj) are not
associated with a travel time, or they have zero travel time (by definition).
Every feasible movement on the actual track network is represented by paths
on the representation. Now consider the following example. The track layout
is shown on the left while the representation is shown on the right side.

Now, consider a train entering segment 2 and then going to segment 5.
One can see that it takes the route 2→ 3→ 4→ 5. The time taken by the
train on the actual track configuration is t2 + t3 + 2t4 + t5. This is because
the train traverses segment 4 twice: once while entering it from segment 3,
and then while leaving it to enter segment 5. In the representation, although
the train takes the same path to get to segment 5 from segment 2, the total
time taken is only t2 + t3 + t4 + t5. Hence, we can see that the initial model
fails here.

In the network in Figure 1, movement of trains from 2 to 3, for example,
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Figure 1: The initial representation for an example track network

involves a crossover, which would be at low speed, and the traversal time on
link 2 would be high, as compared to the traversal time on link 2 during the
movement 2 → 1. In general, since we determine the route of a train only
after a shortest path problem is solved, we cannot determine the traversal
times on some of the arcs in this initial model. This is another place where
the initial model fails. Keeping this in mind, we now give a representation
scheme, such that all feasible movements and only feasible movements are
modelled by the representation.

4 Primitives

We define a tracknet to be a set of tracks that form a track configuration in
some actual railway station. This means that any possible arrangement of
tracks that is physically possible is a tracknet. We use a set of primitives
to conveniently represent large networks in a modular fashion. Each prim-
itive is a small track network of at most two lines and a crossover between
them. For each primitive the corresponding representation can be derived
and validated and used when representation of a large track network is fi-
nally desired. This makes the modelling convenient and error-free. The
simplest primitive is shown in figure 2(b). A general primitive that is useful
to define is the one that is shown in figure 2(a).

We now present a representation scheme for these primitive tracknets
and show that they can be used as building blocks to get track layout rep-
resentation for cases with more complicated layouts. For example, consider
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Figure 2: The most common primitive tracknets

the tracknet primitive in figure 2 (a). This is quite a general primitive since
it allows traffic in both directions in all segments. This primitive tracknet
can be modelled using the following network.

1 2

2

3

4

4 5

Figure 3: Representation of the primitive in figure 2 (a)

Now, it can be seen that if we seek a path from section 2 to section 5, we
get the total traversal time as t2 + t3 + 2t4 + t5, which allows us to capture
variable traversal times depending on the path actually used. It is verified
by an exhaustive enumeration, that all feasible movements on the tracknet
corresponds to paths on the above graph and all paths on the above graph
corresponds to some feasible movement on the actual tracknet. For all paths
on the actual track configuration, we show a unique corresponding path on
the representation. Let us consider all paths that start at an endpoint
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of the tracknet and end at another. The paths and their corresponding
representations are:

i 1→ 2 corresponds to a→ b

ii 1→ 2→ 3→ 4 corresponds to a→ b→ c→ d→ e

iii 1→ 2→ 3→ 4→ 5 corresponds to a→ b→ c→ d→ e→ f → g

iv 2→ 3→ 4 is already a part of (ii)

v 2→ 3→ 4→ 5 is already a part of (iii)

vi 4→ 5 is a part of (iii) and corresponds to f → g

vii All other paths that were not specified are mirror images of the above
ones

Note that the path 1 → 2 → 3 → 4 and other similar paths contain
reversals. To model reversals successfully in a graph based framework, we
need to use a representation of our kind. It should be clear that the initial
model fails in the case of reversals.

Similarly, we can argue conversely that for an arc on the representation
of the primitive, we have a unique block corresponding to it. Now consider
a path on the representation. We can argue (by presenting an enumeration
as above) that it corresponds to a unique feasible train movement on the
tracknet. Hence, we have a system that represents all primitive tracknets
in a satisfactory manner. Other simpler primitives can be modelled in a
similar manner.

We now can find a feasible train schedule (on a primitive) as follows.
Construct a timespace graph corresponding to the representation of the
primitive. Each node of the timespace graph corresponds to a node of the
representation at a particular time. If we find a path on this timespace graph
(given the train entry and exit points and the entry time), we get a feasible
train schedule if there wer only one train. After we find a timespace path for
a train, if we try to find a feasible path for another train after we delete the
arcs on the timespace graph corresponding to the path of the previous train,
there still remain possibilities of infeasible schedules. They are outlined in
the next section.
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Figure 4: The diamond crossover

5 Conflicts between arcs

Consider the following layout.
The crossing between 3 and 6 cannot be modelled as a graph. Such

a crossing is called a diamond crossover (in Indian Railways terminology).
The above diamond consists of two primitives, as follows.

1 2

3

4 5

6
AND

Figure 5: Diamond crossover primitives

The separate representations for the above two primitives can easily be
drawn, but when we try to combine the two to find a representation for
the “diamond”, the model permits simaultaneous trains on segments 3 and
6, which is not physically possible. Suppose we find a path for a train
as 1 → 3 → 5. We then reserve the three segments. But for another
train coming after this train, it is quite okay to go along segment 6 while
the first train is moving along 3. This situation cannot be modelled as a
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network/graph. For this purpose we introduce the concept of conflict arcs.
So, along with our station representation we provide a list of arcs that are in
conflicts with each other, so that trains cannot be scheduled simultaneously
on them. Hence, a diamond can be represented as follows.

a b

c

d

e

fg

h Conflict: [d,h]

Figure 6: Representation of the diamond crossover

Similar is the case of a scissor crossover, shown in Figure 7:

Figure 7: The scissor crossover

Consider the case of two-way tracks, which are used in both directions.
When a train starts using it, it remains reserved for that train and no other
train can get onto the track. But, if we are not careful in this case, there
is a possibility of a train in the opposite direction getting on to this track
leading to a head-on collision. This can be demonstrated as follows. Suppose
a two-way track is as shown in figure 8.

To schedule a train on this track, consider a time-space graph of the
two-way track. Since the track is two-way, there will be arcs in both
directions(2 → 1, 1 → 2 etc.) and the corresponding timespace graph is
as shown in figure 9. The time instances ti on the time-space graph are such
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1 2 3

Figure 8: A two-way track

that ti+1 − ti corresponds to the minimum possible traversal time of any
block on the track network.

1

2

3

t1 t2 t3 t4

Figure 9: Time-space graph of the layout in figure 8

Suppose a train takes the thick path as shown. Still, there is a possibility
of a train taking the thick dotted path. This is physically impossible since
the track is the one and the same. If in the timespace graph, we remove the
arcs (2, t1)→ (1, t2) and (3, t2)→ (2, t3), such a situation will not arise. This
can be easily implemented by introducing another conflict: if (i, j) and (j, i)
are arcs in the representation, add a conflict between the two. The addition
of such a conflict guarantees a feasible schedule in case of a two-way track.

Similarly, in cases where the same track segment is represented by more
than one arc (in case of crossovers), these arcs must be put in conflict with
each other so that there will not arise a possibility of two trains on the same
block at any time. Now, we are ready with a framework for the station
reprensentation. We now outline the rest of the process where we describe
how a tracknet is split into primitives and how the representations of the
individual primitives are combined to get a representation for the entire
station.
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6 Breaking a tracknet into primitives

We now know how to represent primitive tracknets in an effective manner.
In this section we describe how to decompose a tracknet into primitives.
Consider the layout shown in figure 10. If one cuts the layout at the places
shown, we get a set of primitives that can be easily represented. The three
primitives so generated are denoted by {Ai}, {Bi}, and {Ci}, with a conflict
between C1 and B3.

A1 A2

A3

A4 A5

B1 B2

B3

B4 B5

C1 C2

C3

C4 C5

Figure 10: An example of a larger network decomposed using primitives

To get the representation of the entire station, we need to combine the
representations of the individual primitive tracknets. Hence, for every prim-
itive, we need to keep track of the place where the different lines were cut
to seperate out this tracknet (i.e., the primitive tracknet to which it is to
be connected) and the segments (of other primitive tracknets) that are in
conflict with some segments of the primitive tracknet under consideration.
For this, we propose the following data structure (which we call primitive
for a primitive tracknet.

(a) line1 from length l1 to l2

(b) line2 from length l′1 to l′2

(c) crossover from L1 (line1) to L2 (line2) cuts lines m1,m2, . . .; crossovers
c1, c2, . . ..
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The data structure contains the two lines (along with the starting and
ending lengths) from which the primitive is cut. If some primitive P1 doesnot
need two lines, then P1.line2 will be set as NULL. The crossover contains two
lists, one containing the list of lines that are in conflict with the crossover,
and one containing the list of other crossovers that are in conflict with this
crossover.

For the purpose of splitting the tracknet into primitives, we assume the
following information to be given. For each crossover c, we have the following
information.

(a) L1, the first line of the crossover

(b) L2, the second line of the crossover

(c) l1. the coordinate where the crossover c meets line L1

(d) l2, the coordinate where the crossover c meets line L2

(e) the list of all crossovers conflicting with c

(f) the list of all lines conflicting with c

The inputs that we require for the procedure below are the above infor-
mation along with a list for each line: the list contains the position of wach
crossover on the line in increasing order of distance from the start of the
line.

We also define two lists for each line: list1i and list2i. The purpose of
these two lists will be made clear in the breaking up procedure. We can now
describe the procedure for breaking up a tracknet into primitives as follows.

1. Set l = 1.

2. Scan for line l, the list list1l. The list list1l contains the list of all
intervals (xl, yl) such that crossovers from lines l′ < l to line l (which
lie in these intervals have been separated out. Suppose the list contains
elements (x1

l , y
1
l ), . . . , (x

k
l , y

k
l ). This means that all points on line l that

lie in these intervals have been scanned. From this, we know that the
intervals (0, x1

l ), . . . , (y
i
l , x

i+1
l ), . . . , (xkl , Bl) are not yet scanned (Bl is

the length of the line l). Add these intervals to list2l.

3. Repeat the following till all intervals in list2l are exhausted
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• Scan the interval. When a crossover c is encountered, create a
new instance of a primitive P . Cut line l at a point which is at a
distance greater than that of the crossover c, but less than that
of the next crossover. Set P .line1 = l and P .crossover = c.

• Find the other end of the crossover c, located at line l′, and cut
that line on both sides of the end of the crossover c (if any one
side of the crossover has no other crossovers, take the entire part
of the line as part of the crossover. Set P .line2 = l′. If l′ is cut
at points xl′ and yl′ , add (xl′ , yl′) to list1l′ .

4. If no crossover is encountered, create a new primitive P with P .line1
= l, P .line2 = NULL, P .crossover = NULL.

5. If the line l is entirely scanned, l = l + 1.

6. If l = n+ 1, where n is the total number of lines, stop. Else go to step
2.

7 Combining representations to get the station
representation

From the above procedure for breaking up tracknets into primitives and the
data structure for a primitive, we know the following.

i The (network) representation of the primitive along with some conflict
arcs;

ii Which tracknet primitive(s) to join this primitive to. We can also
find the node (of the representation of the primitive) which is to be
connected to a node of the primitive under consideration.

The connection can be done as follows. Let P1 and P2 be two tracknet
representations (not necessarily of primitives) to be combined. The combi-
nation can be done as follows.

1. Suppose node x of P1 is to be connected to node y of P2. We define
Np(x) = {i|(i, x) ∈ p or (x, i) ∈ p}. So we have two sets NP1(x)
and NP2(y). We now add a new node z, and make connections such
that, NP1(x) ⊆ neighbours(z), NP2(y) ⊆ neighbours(z), and NP1(x)∪
NP2(y) = neighbours(z). Then delete nodes x and y.

2. If there are any arcs in P1 and P2 that conflict each other, add the
corresponding arcs to conflict list
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8 Computational Complexity

Now we consider the time complexity of the above procedure. We first
consider the complexity of the breaking up process and then we estimate
the complexity of the combining process.

8.1 The breaking up process

Suppose we have n lines and c crossovers. Suppose all the crossovers are
contained in k ≤ n lines and the rest (n− k) lines do not have any endpoint
of any crossover on them (some crossovers could cut them though). Consid-
ering the k lines that contain the c crossovers, one can prove that c ≥ k− 1.
Also, one can prove that there will be at least two lines (among these k) that
are not being cut by any crossover. Hence in the worst case each crossover
cuts n− 2 lines and c− 1 crossovers. For the n− k lines that do not contain
any crossovers, we require Q1(n− k) steps, where Q1 is a constant. For the
remaining k lines, there are c crossovers. If we consider the procedure as a
whole, we need to scan a total of

∑k
u=1 pu intervals, where pu is the number

of intervals in line u among the k lines that contain crossovers. Also, we
need to seperate out c crossovers, which will take Q2c steps (Q2 is a con-
stant). Now, the total number of intervals in the “list2” of all lines taken
together will be O(c). For the scanning process, we need to search in an
ordered list which contains at most c elements, and hence, for scaning the
intervals we need O(c) log c steps. Hence, the total number of steps required
is O(n+ c log c) (since k is O(n)).

We now consider the number of primitives formed by the breaking up
operation. The scenario is the same: n lines, c crossovers having endpoints
on k ≤ n lines and n − k lines having no endpoints of any crossover. For
every crossover, a primitive is formed, and also, there will be n− k tracknet
primitives for the “crossover-free” lines. Hence the number of primitives
formed equals c+n−k. We require this number to evaluate the performance
of the “recombination procedure” which is specified in the next section.

8.2 The combining process

Now, suppose we join two tracknets P1 and P2 using the above procedure.
Suppose the node x1 of P1 was to be combined with node x2 of P2, it means
that to get into tracknet P2 from P1, we need to follow the path x1 → x2.
Once we reach x2, we know that any path in P2 gives a feasible train path.
Similar is the case of P1. Hence, we can conclude that if we find a path in
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the combination of P1 and P2, we get a feasible train path. Hence, when all
primitives are combined appropriately, we get a feasible representation for
the entire station.

We now look at the complexity of the combination process. From the
discussion in the previous section, the maximum number of conflicts for a
certain crossover is given by (c − 1) + (n − 2). Given a primitive Po, the
maximum number of conflicts it has with another primitive P1 is 3. So let
So represent a primitive. Define S1, S2, . . . , Sc+n−k−1 to be the sequence of
tracknet representations formed by combining at the ith step one primitive
with Si−1. Let us look at the number of operations needed to go from Si−1

to Si. For the connection purpose, the nodes x and y will have two neigbours
at most. Hence step 1 will take at most four steps. For step 2, the number
of conflicts between the primitive chosen at step 2 with Si−1 is at most
3i. Hence the total number of operations involved are 4(c + n − k − 1) +∑n+c−k−1
i=1 3i, which is O{(n + c)2}. Hence, from the previous section, the

entire process of generating the tracknet representation is O{(n+ c)2}.

9 Conclusions

We have presented a network-based representation scheme for general track
layouts. The representation scheme is such that it can represent all train
movements in an unambiguous way and paths on the network give a unique
train movement. We have also shown that the representation can be derived
in polynomial time from the track layout information. Details of simulation
experiments using the station representation proposed in this paper are pre-
sented in Vishnu (2003). One of the interesting questions answered using this
representation was to evaluate alternate layouts to see whether a repetitive
stream of traffic could be handled at a commuter terminus (Mumbai CST
station). The analysis established a trade-off between an achievable headway
between trains and the platform occupancy time (for discharge/boarding of
passengers and crew change, among other things). Further studies on reli-
able schedules were also conducted, which considered different arrival pat-
terns of trains. In summary, the model is flexible enough to consider details
of routing, conflicts and sequence-dependant resource usage, and therefore
permits a nearly-exact evaluation of infrastructure possibilities at railway
terminals.
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