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The purpose of this lecture notes is two fold. Use the occasion of going through a proof
of SLLN to demonstrate some very common tools and techniques that one encounters in
this subject. We take some results from real analysis as ‘given’-we indicate their need and
usage rather going into their theory. However, we aim for some completeness as far as the
probabilistic tools are concerned. So, we go at (what may seem to many) an excrutiatingly
slow pace.

We give some motivation for SLLN in Section 1 for those who intend to use stochastic
models and also set the stage for the detailed proof in the next section. There will be
need based references to Section 3. The first part of Section 3 has details of some basic
probabilistic results like, first Borel-Cantelli lemma, etc., which are quite useful in a course
like this. The second part summarizes some frequently used results from real analysis after
giving some motivating (counter) examples. In Section 4 we first present a version of second
Borel-Cantelli lemma and then use it to state a converse of SLLN: if arthematic average of
pairwise independent and identically distributed random variables converge to a limit that is
finite, then the limit has to be the mean of these random variables. We also describe a well
known example that brings out the subtle difference between the weak law and the strong
law. We close by indicating how one can obtain some assymptotic properties of sums of .:.d.
random variables. This leads us to random walks which can also be viewed as an important
class of discrete time Markov chains.
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1 Introduction

Below we reproduce from Billingsley, Probability and Measure, 2"¢ edition, '86, a proof of the
Strong Law of Large Numbers, SLLN. This version of SLLN is given by Nasrollah Etemadi
in 1981.

We deliberately give lots of additional details. Contrast this with the space Billingsley
devotes to the same-hardly one and half a page. There are substantial reasons for this
leisurely pace: for most registrants this is the first contact with serious probability theory.
We also want to take advantage of this opportunity to demonstrate a couple of ideas that
recur later where they will be used routinely without comment: probabilistic arguments like
sample path proofs, etc., use of some basic results and techniques from probability theory,
impress upon the need for and the way interchange of some operations are handled, etc.

The Strong Law shares many ingredients that enables it to qualify as a fundamental
result not only in mathematics, but also in science: It is simple to state but non-trivial to
prove. It not only explains many natural phenomenon, but in some sense is routinely used
in many applications. The application areas pervade physics, biology, economics, statistics
and different engineering disciples like communication and computer networks, operations
research, etc. It is almost always that the first results that one comes across in a model
that involves random phenomenon has one thing or another thing to do with SLLN. Imagine
asking a person with some basic knowledge of science or engg. to find the probability that a
given coin shows head on a toss. The straight forward answer is to patiently toss it a large
number of times and find the fraction that showed head. While the justification comes from
SLLN, it also indicates the conditions that are needed in arriving at such conclusions.

Now a quick background. Jakob Bernoulli gave the weak law, (see Remark in Section
3), for i.i.d. Bernoulli random variables in 1713. Emile Borel gave the strong law (still for
Bernoulli random variables) in 1909. One can view each sequence of heads and tails as a
sequence of 1’s and 0’s and thus as a number in the interval (0, 1] in base 2 representation.
Then, the set of all coin tosses with a given pattern of heads and tails in the first n tosses
correspond to a certain interval in (0, 1] of length zin For example, the set of sequences of
tosses that start with a head in their first toss correspond to the interval (%, 1]. This helps
one to reformulate SLLN as the study of properties of such sets of real numbers. The opening
section of Billingsley’s book has an easily readable development of these ideas culminating
in a calculus based proof of weak law of binomial random variables corresponding to the
experiment of tossing a fair coin. Kolmogorov showed the popular formulation for a sequence
of i.1.d. random variables with finite mean in 1930s. This result was arrived at after carefully
obtaining estimates of probabilities associated with sums of random variables (which are
interesting by themselves) and thus this proof of SLLN is quite involved. Etemadi’s proof,
by contrast, is elementary if not simple; the tools from probability doesn’t go beyond the
first Borel-Cantelli lemma. An important feature is its technical acheivement: It relaxes
the independence requirement to pairwise independence; see the discussion that follows the
proof. The key reason probably it being a sample path argument.

The statement is simple: Suppose {X;};>1 is a sequence of independent and identical
(i.i.d.) random variables such that E[X;] =: u < oco. Then,

X1 Xi(w)

==—— — p with probability one (or almost surely).
n

By this we mean that the event where this convergence is guaranteed, i.e., the set of w for
which the convergence is taking place, is an event of probability one.
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One interprets this as: The LHS is ‘frequency’ or ‘time average’- it is the limit of the
sum of values of X;’s and divided by n, for each fixed w coming from a sure event. The RHS
is the expectation (averaging over w’s) for any fixed random variable. The SLLN basically
says that these two different ‘averages’ are same. Evolution of a dynamic (physical) system
in random environment corresponds to a sequence of {X;(w)} for a fixed w. This sequence
of real numbers is called a sample path or a realization or trajectory. One observes the
process over time and computes time average. The SLLN guarantees, that under reasonable
conditions, this single time average will be the same as the probabilistic averaging over
(typically uncountable) realizations. This is exactly what goes on in steady state simulations;
to evaluate stationary expectation of certain random variables that could not be evaluated
analytically, one simulates the phenomenon and collects appropriate time average statistics
for a very large n. Done carefully, this is usually a good approximation. Dependence among
random variables in dynamical systems could be an issue, where similar laws of Markov chains
that follow from SLLN may help. This equality of two averages is in the spirit of ergodic
theorems, and in fact, Kolmogorov’s SLLN is indeed a special case of ergodic theorem.

Also, the SLLN is, in a sense, the starting point of statistical theory—estimation of pa-
rameters, etc. Specializing {X;}i>1 as {I{a}}i>1, we have that the long run fraction of times
a event A occurs in an infinite sequence of independent trails is the probability of occurance
of that event. Note that in the widely prevalent axiomatic set up of probability theory, prob-
abilities of events are assigned or assumed as basic building blocks, not derived from more
basic entities. In this setting, the SLLN is conceptually important as it gives a satisfying
interpretation that the value of the probability of an event apriori defined is nothing but
‘relative frequency’ of this event, which is more intuitive. Indeed, the fact that SLLN, which
renders this interpretation, can be proved from axiomatic setting is often viewed not only as
an achievement of the axiomatic set up, but also as one that justifies it.

Recall the definition of convergence of a sequence of real numbers, {z, },>1: We require
that,

{Ve>0,AN > |z, —z|<e Vn > N}

Here, N typically depends on ¢, apart from depending on the sequence itself. We can
write this symbolically and hence concisely that convergence happens if,

AU N {lzn — 2| <€}

>0 N n>N

is non-empty. Note here that the first intersection is an uncountable intersection. In
the course of proof, we need to evaluate probabilities of these type of events but we do not
even know if this uncountable intersection leads us to an event; in view of o—additivity
of probability, only countable set operations of events lead to an event. However, we can
replace it by a sequence of s going to zero, say 1/n, to have the same set, which is now an
event. A standard way to prove almost sure convergence is to show that the set (in fact, the
event) where the convergence fails is of zero probability. In this context, we use this fact:
the event where {X;};>1 fail to converge to X (w) is equivalent to the fact that there exists
atleast one € > 0, on which |X;(w) — X (w)| > € i. o. (with i.o. standing for infinitely often).
So, to show almost sure convergence, one shows that the event

U{|Xi(w) — X(w)| > ei. 0.}

has zero probability, where the union is usually over positive rational es.
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2 Proof

Enough to consider {X;'};>; where we define,
X;" == max(X;,0)
X, = max(—X;,0),

the positive and negative parts of X; such that X; = X;” — X; . This is so because, if we
have SLLN for both the {X;[},>1 and {X, },,>1, then,

X XX Y X

n n

— - = p

where u™ = E[X{| and u~ = E[X||. However, before we argue this way, we need to verify
that {X,;"};>1 and {X; };>1 have inherited the properties assumed of {X;};>1 (i.e., each is
an i.i.d. sequence with finite mean). This is straight forward.

So, we can and will assume that the random variables {X;};>1 we consider below are
non-negative.

Consider Y; := X;Ijo<z,<sy Where, It ) indicator function of event A. These are truncated
versions of { X, }n>1 (i.e., Y7 is same as X; for values below 1 and set to zero for values above
1, and so on). Look at the associated partial sums,

=>Y.
1=1

For a > 1, (temporarily) fixed, let u, be the integer part of ", i.e., u, := |a"].
Claim (to be proved below): For any ¢ > 0,

5 py S = E)

n>1 Un,

| >e} < 0. (1)

This claim helps us this way: If (1) is true, consider events corresponding to all positive

rational €’s and use first Borel-Cantelli lemma (see Notes section for some details) to say
Sun — ElS5,]

— 0 almost surely. (2)
Unp
Thus, SLLN for a truncated random variables along a sub sequence is on hand. This is
because, for a given ¢, let
S* — FE[S

_SaoEs
so that Y P(A,) < co. The first Borel—Cantelh lemma then ensures us that P(A4, i. 0.) = 0.
Let N, be the complement of this event so that P(N,) = 1. On N,, i.e., for every w € Ne

A,’s occur finitely many times which means that for integers up, beyond an integer u), (this u),
—E[S

depends on w among other things) we have | | < e. Now, consider the intersection
of such events corresponding to positive ratlonal es which is also a sure event. On this sure
event (2) is thus true.

Now for the proof of the above claim: The idea of proving this claim is to upper bound
the LHS of (1) by using Chebyshev’s inequality—see Notes. Thus, (1) is less than

Z var(S; ) ‘

24,2
€?u2

(3)
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To simplify this bound further, we consider,
var(S;) = var(Y;) (asYs are independent)
E(Y?) (asvar(2) = E[Z*] - (E(2))*)

E[X?Iix,<i]

E[X7Iix,<n) (we can use X)

-z M= -1 -[1=

< nE[XIQI{Xlsn}] (using the fact that Xff{xlgn} > Xff{xlg})-

Using this estimate in (3) we have that an upper bound for LHS of (1) is given by

1 1
6—2E[X122 u—f{xlsun}]-

The order of summation and expectation can be interchanged, as the terms are positive
quantities; see Notes again.

While we assumed finite mean for X;, the above bound has X? inside expectation, apart
from a summation; so, we need to show that bound is indeed finite. It turns out that a
careful argument exploits these indicator functions and presence of decreasing w,’s in the
denominator. This is the next step, which is also an example of sample path argument. It
looks like this is the crucial step in the proof. Sample path arguments, typically take this
form: Fix w in X;(w); then X;(w) is a real number! Before that, some careful estimates are
needed.

For a real number z, which will be identified as X;(w) in the sample path argument
below, let N be the smallest n such that u,, > =z. Then, by definition of u,, we have that
o > z. Also, we have y < 2|y| ify > 1 so that,

o < 21| =2u,

which means that,
r<al < 2y,

1
= —<2a N ifu,>z.
Un

Thus for each u, > = we can find N such that z < oV < 2u,,. Using this we have,

1
Z—§2Zof"§—N§ where K :=
un>z Un n>N @

K K 20
z l—a

Thus, > iI{XISun} < KX% for X; > 0. So, the sum at equation (1) is almost

K

and the claim is all about this only!
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Recall, E[S:n] = EMZE[Y"]. Now, limit of %f:ﬂm, being along the subsequence {u,},

"B

Notes), w has the same limit as E[Y;], if the later exists. Now, we have, E[Y;] =
EXilx,<k] = E[X1Ix,<k] (why 7). By the very definition of truncation, we have that these
integrands (which are positive) monotonically increase to X;. So, by Monotone Convergence
Theorem, MCT, (see Notes), we can interchange operations, E and lim, to have the limit as
E[X,], i.e., u. We thus have,

has the same limit as , if the later exists. But by Cesaro summation lemma, (see

*
Un

— FE[X;] almost surely.
n
Roughly we can say that we have SLLN ‘along a given subsequence for truncated random
variables’. That leaves us with two tasks: drop truncation and subsequences restriction:
We take up the first one now. For this, we need to figure out how each X; defers from its
truncated avatar Y;.

i P(Xi #Y))

> P(X1>1i) (why?)
fooo P(Xl > t) dt
E[X;] < oo (since X is positive-see notes).

Al

Another application of Borel Cantelli lemma now gives

Sun

Unp,

— FE[X;] with probability 1.

We leave the couple of details needed here; you have to supply them—its a question of a
sequence of events not happening infinitely many times is an event of probability one - - -.
For the (almost) last step to clinch the proof, if u, < k < 1, then,

= Sun S S_]: S Un+41
Un+1 Un
un L Sun o« Sk o< Suanr | Ungn
Unt+l Un — k= upy Un

Using a standard € — § argument, prove that ”Z—:l — «. This gives us,

1 S
~BlX)] < f <« E[X;] with probability 1.

Now look at the event that is obtained by intersecting such probability one events in a
countable fashion (considering rational o > 1, for example), to claim that
Sk : .
- E[X;] with probability one.
Remark 1 Pairwise independence is enough for this proof to go through. This is because
we have used the fact that var(S}) = 3 var(Y;) and for this to hold, it is enough that X;’s
are pairwise independent.

Remark 2 One of the above steps involves the fact that if X, — X a.s. and P(Y, #
X, i.0.) =0, then Y, — X a.s. You should show this.
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Remark 3 The weak law claims that for any € > 0, P(]%2 — pu| > €) — 0. The
interpretation is that for any given e (however small) the probability of time average Sn—”
deviating from p by € goes to zero, as n increases. The sequence {%}nzl is said to ‘converge
in probability’ to u. As names indicate, the Strong law implies, but is not implied by, the
weak law.

Let Ay(e) := {52 — u| > €} and By (€) := UpsmAn(€). Recall that we can write SLLN
as P(U. Ny B(€)) = 0 and hence as, P(Ny,Br(€)) =0V e > 0.

For a fixed € > 0, note that B,,(¢) is a decreasing sequence of events with limit N, B, (€),
call it A(e). So, we then have that SLLN holds for a sequence of random variables, iff
P(A(e)) = 0V € > 0. By continuity of probability measure, (see Notes) this is true, iff,
P(By,(€)) — 0 for all € > 0. This is an useful characterization of almost sure convergence of
{%}nzl'

Since, A,(e) C By(€), we then have that P(A,(e)) — 0, i.e., weak law follows from the
Strong law. A careful examination of the events By,(¢) and A,(¢) will indicate why weak
may not imply Strong Law; see Section 4 for an illuminating example.

Remark 4 As of now, in above we can’t drop “same law” assumption. But there are
versions that do not demand ‘same law’ assumption. For example, one is due to Cantelli that
states that Strong law is true for zero mean independent random variables with bounded
fourth moments. The proof is not that difficult; one uses Markov’s inequality (which gener-
alizes Chebyshev’s inequality).

3 Notes (please read!)

We collect here some details of arguments that are useful for us. In Part 1, we give some
results from probability that we have used and they will also turn out to be useful later.
In Part 2, we list some results from analysis. We try to motivate them occasionally by
indicating what can go wrong, if imposed conditions are not met.

3.1 Part 1
1 Continuity of probability measure: Consider a sequence of events, A;, As,---, where A; C
Ay C Az, ---. The ‘last’ set is UA, and hence is an event. The continuity of probability

(from above) lemma says that P(UA,) = lim P(A,). It is easy to see why this is true: Set
B; = A, and for n > 2, define B, = A, \ A,—1; B;’s are ‘rings’. Observe two things: B;’s
are disjoint and that U} B; = UTA; forn =1,---,00. So, P(UA,) = P(UB,) = > P(B,) =
lim " P(B;) = im[P(A4;) + >3 P(A;) — P(A4;_1)] = lim P(A,). The last but one step uses
the easily provable fact that P(A\ B) = P(A) — P(B) if B C A, while the last one follows
from the telescoping of the summation.

Similar result is true for a decreasing sequences of events also: If A;, As,---, where
Ay D Ay D Az, --- then, P(NA,) = lim P(4,). To prove this, work with complements of
these events and use the fact that we are working with a probability (finite) measure. (Such
a continuity from below may not hold for measures that are not finite; consider the (counter)
example given below while discussing MCT.)

2 First Borel-Cantelli lemma: If for a sequence of events, Ay, As, - - -, we have that 3° P(4;) < oo,
then, P(A; infinitely often) = 0.
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First observe that
{w : w € A, for infinitely many i} = {w: w € Ny Up>n An}-
So,

P(A; infinitely often) = P(Ny Upsn Am) < P(Upnsndn) < D P(Ay).

m>n

Since this is true for any n, take limit as » — oo and the result follows from the fact that
3 Chebyshev’s inequality: Convince yourself that for a non-negative random variable Z and
a positive real number a, the following are true:

E[Z%] = B[Z*Iiz50] + E[Z*1z<q)] 2 E[Z°11750)) 2 Ela*I{z50] = a®P(Z > a).
Taking |Z — E[Z]| as Z in above we have Chebyshev’s inequality:
var(Z)

For e > 0, P(|Z - E[Z]] > ¢) < —

€

4 We give a sample path proof of the fact that for a non-negative random variable Z, F[Z]| =
Is° P(Z > z)dz. For a real number z define an indicator function (the notation is slightly
different now),

I(z,w) :=1 if Z(w) > z and zero elsewhere.

For a fixed w, draw a picture with Z(w) on z-axis and I(z,w) on y-axis; we have a
rectangle of unit height. What is its length? Now, we can write Z(w) = [I(z,w)dz and
hence, E[Z] = E[[I(z,w)dz]. Since the integrands are positive, we can interchange the
order of them-see below (at worst, both side can be co). Thus,

E[Z] = /OOO E[I(z,w)]dz = /OOO P(Z > z)dz.

3.2 Part 2

1 As above, we will be occasionally required to ‘change the order of integration’ in iterated
integrals. The question is will the answer be same. Consider a function f(-,-) defined on
Z32, the set of positive integers in plane, as f(n,n) = 1, f(n,n+1) = =1 and f(-,-) =0
elsewhere. Integrate first w.r.t. first co-ordinate and then w.r.t. second co-ordinate, (i.e.,
along ‘horizontal lines’ first and then along ‘vertical lines’). Perform the integrations in the
other order; we have different answers. Incidentally, in the discrete setting here, integration
is summation. This simple example shows that we do require conditions to change the order
of integrations.

Observe that in above f* and f~, the positive and negative parts of f, are such that
their double integrals are infinite. One such condition is as above: it doesn’t matter if the
integrand is non-negative. For functions that are not so, the condition roughly states that
the area in plane of the modulus function should be finite: [ [ |f(z,y)|da < oo. In practice,
find iterated integral of |f| in a certain order, say w.r.t. z first and then w.r.t. y; an upper
bound that can be easily calculated is also enough. If this turns out to be finite, then all the
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three integrals are of same value and are finite, by above. So, the order while integrating f
doesn’t matter. This result goes by the name, Fubini-Tonelli theorem.

2 Quite a few times we will be looking at the limit of integrals of functions. It may be
advantageous to compute the limiting function first and then find its integral. Again the
question is if both these two ways give the same answer. Note that integrating a function
is analogous to finding the expectation of a random variable. Consider a sequence of right
angled triangles on the interval (0,1). Let the n'* one have a height of 2n at point z = 0
and the length of base be 1. Let f,(z) ‘describe’ the n'* triangle so that [ f,(z)dz =1, Vn
so that lim [ f,(z)dz = 1. On the other hand, convince yourself that lim f,(z) = 0 so that
[lim f,(z)dz = 0. So, these interchange of operations may not preserve the final value and
we need conditions that do preserve it. We list here the ones we frequently use:

1) Suppose, for non-negative functions { f,(:)}, we have that f,(z) 1 f(z) for each point
x. Then, we can interchange the order of these integration and taking limit operations. This
result is known as Monotone Convergence Theorem. We need increasing functions: consider
Jn(%) = Ijz>ny. Each associated integral has a infinite value while the limiting function is
zero!

2) Suppose for a sequence of functions { f,,(-)} we have that f,(-) — f(-), almost every-
where (i.e., fps converge pointwise to f almost everywhere) along with |f,(z)| < g(z) for
an integrable function g(x), i.e., [ g(z)dx < oco. Then, we can interchange these operations.
This is Dominated Convergence Theorem. As a consequence, for a almost everywhere con-
vergent f,(-)’s that are uniformly bounded on a finite interval and zero elsewhere, the order
of integration and taking limit doesn’t matter. This particular result is known as Bounded
Convergence Theorem.

Convince yourself that the triangles that we considered above, doesn’t fit into these two
settings.

3 Cesaro summation lemma: Suppose a, — a. Then, % — a. So, if a,,’s converge, so do
their ‘time averages’. As in the proof of SLLN;, this is how it is typically used. The intuition
here is that, since a,s converge to a, for all large enough n, a, ~ a. So, beyond a large
integer N, >N*" ~ na and hence the numerator in time average is na plus sum of initial
a;s. Dividing by n we will have the result; the detailed proof shows that in the limit, these
approximations are correct.

A couple of remarks: 1) There is a corresponding continuous time version of this result—
summation is replaced by integral. 2) A general version has an increasing sequence of integers,
say by’s, in place of n’s with their differences suitably ‘weighing’ a,’s. 3) The converse is not
true: just consider the sequence with 0 and 1 in alternating places.

4 Further material

1 A Second Borel-Cantelli lemma: The first lemma can be stated as P(4, i.0.) > 0 =
> P(A;) = oo. Let us see if the converse is true. We use a popular probability triple: Take
2 as (0,1). The probability function, P, assigns probability of b — a to interval (a, b) for all
reals a and b. In fact, such intervals and many, many, many more sets are now in the o-field
(such sets are called Lebesgue sets, we will not go into the technicalities now). Consider
events A, 1= Iy 1y,n =1,2,---. We have 3 P(4,) = oo, but P(4, i.0.) = 0. So, some
conditions are definitely needed for the converse to hold.

A version of second lemma: Let Aq, A, --- be a sequence of pairwise independent events
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such that Y- P(A;) diverges. Then, P(A; i. o.) = 1. To prove this, introduce a random
variable N, := It4y + - -+ + I{4,) that counts the number of occurrences of events among
Ay, -+, A,. This is useful as {4, i.0. } = {w : sup,, N,(w) = 0o}. So, we are through if we
show that P(sup,, IV, < 00) = 0. Let, p; = P(4;), i =1,2,---, so that,

n n

E[N,] =: sz, and Var(N, ZVar Iiay) =Y okl —pe) <D pe =my, .

1 1

Also, for a real number r < m,,, P(N, <71) < P(|N, — my,| > m, — 1) < VaZ(N“). For a
given r, we then have that lim, P(N,, < r) — 0, using the above estimate of Var(lV,) and
the fact that m, — oo (and hence eventually, m,, > r).

From P(sup, N, < r) < P(N, < r), we have that P(sup, N,, < r) =0 for any . Now
take a union over r = 1,2, - - -, to have the desired result: P(sup, N, < 0o) = 0.

So, with the extra condition of pairwise independence, we have that the probability is
not only positive, but also achieves the maximum possible value of 1. There are further
extensions to this result. The pair of Borel-Cantelli lemmas are the first of a series of results
that go by the name ‘zero-one laws’.

2 A converse to SLLN: Suppose for an pairwise independent sequence of identically dis-
tributed random variables, { X, },>1, we have that S;L—” — p almost surely. Then, = E[X;].

In words, if time average of such a sequence ‘stabilizes’, then we can identify that limit
as the mean of these random variables. In this setting, a priori we do not know if these
random variables have finite mean.

The proof is easy: We have 2= = % — 0 a.s. We next claim that 3 P(|%=| >
1) < oc; if not, we can apply the above Borel-Cantelli second lemma to say that P(|52| >
1i.0.) =1 contradicting that 2= — 0 a.s. Then,

EXi] <14) P(|Xi| >n) =1+ > P(|X.| > n) < oo.

Now that X; is integrable, we are in the setting of SLLN; so, apply it to {X,,},>1 to say

that their time average goes to the mean of X; and thus identify the (necessarily unique)
limit as pu.
3 Weak law doesn’t imply Strong Law: We recall the definitions. If X,, — X a.s., then there
is an event of probability one, say A, on which this convergence takes place. In words, for
any w € A and any given € > 0, we can find an integer N, such that | X, (w) — X (w)| < € for
all integers n greater than N. Usually, N depends on the pair (w, €).

A sequence {X, },>1 is said to converge to X in probability, if for every € > 0, P(|X,, —
X| > €) — 0. So, as n increases, the probability of ‘undesirable events’ where X,,’s fail to
converge reduces and the limit of them is zero. Only these probabilities decrease-there is no
guarantee that for a given sample path w, X,(w) = X (w).

The celebrated example below brings this out clearly. Sample points w play a cat-and-
mouse game with us: for a fixed w, |X,(w) — X(w)| < € may be true for a certain n and
may be also for a finite number of subsequent integers. Then, we will have an integer n’'
propping up where | X,/(w) — X (w)| > e. We may even have a finite string of integers where
the inequality is of greater type, only to find another finite set of integers starting from some
n” such that |X,»(w) — X(w)| < e. The sign of the inequality does flip-flops without end,
with the result that on this sample path there is no convergence. This happens for almost
all sample paths and hence there is no convergence with probability one. Meanwhile, for a
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given w, whenever the inequality is of greater than sign (as when | X, (w) — X(w)| > €) it
contributes to these (undesirable) probabilities. Since these probabilities also decrease we
have convergence in probability.

In short, the sequence of events of {w : | X, (w) — X (w)| > €},>1 keep changing with n
and in the process they sweep the entire {2 leading to non-convergence; however, they also
become ‘progressively smaller’ giving rise to convergence in probability. Recall the role of
events By,(€) and A,(e) in Remark 2 after the proof.

The probability space ) is the interval (0, 1) with probability of an interval being its
length. We define a sequence of indicator functions {X,, },>1 that capture intervals of length
% in such a way that when these intervals are put side-to-side, they cover the interval (0, 1)
infinite number of times (since 3_ + diverges). These infinite number of covers can be obtained
by wrapping (0, 1) around infinitely often: those intervals that ‘overshoot’ point 1 are ‘split’
at point 1 and ‘continued’ from point 0, as in Xy, - - -.

X =Iio, 0y Xo =Ty, 1y X3 =Ly, 51 Xa = Ls o, &)y X =L, p+ip

Xll = I{(a’ 1) U (o, b)}a Where a = % + Zéo % and b = 11_2 + Zél

However, the situation is not so bleak: In countable spaces, both these types of con-
vergences are same. Also, whenever a sequence converges in probability, we can find a
subsequence that converges to the same limit in the almost sure fashion.

4 A word about sums of random variables: Assymptotic properties of partial sums are im-
portant. A basic result, when {X,},>1 is an i.i.d. sequence with E[X;] =: u € R, is
this:

(@) p>0 < S, — xa.s.,
b)p<d & S, — — a.s.,

(¢ p=0 < liminfS, = —oco and limsup S, = o a.s.

Also, p = 0 is equivalent to: for every € > 0, P(|S,| < €i.0.) = 1. Of course, for any given
sequence {X,},>1 only one of these situations prevail.

A important particular case is when P(X; = 1) = £ = P(X; = —1); we then have the
well known random walk on intergers - -+, —1,0,1,---. A gambling interpretation is that you
bet and win a rupee if a fair coin shows H on each toss but loose a rupee if a T shows up; 5,
is your cummulative gain/loss by n'* round. Then (c) holds and one can interpret this: You
gain infinitely large amounts infinitely many times, loose infinitely large amounts infinitely
many times but you also play with no money on hand infinitely many times!

Polya obtained in early 20s this type of results for random walks in d-dimensions. The
above more general result and other charecterizations (which we didn’t list) seem to be
largely due to Chung and Fuchs.

We will later understand this particular result viewing {S,},>0 as a Markov chain.



