Discrete Time Markov Chains

The setting:

e Notation: S is a countable state space ; P is a |S| x | S| matrix such that 1) p;; > 0
2) > ,esPij = 1V i €8, ie., a stochastic one step transition matrix; X is a (prob)
distribution on S i.e., \; > 0and ), ¢ A;j =1

e Process { X, }n>0 is a .S valued DTMC with initial distribution A and one step tran-
sition probability matrix Pif 1) Xo~ A 2) P(Xpp1 = §|Xn =4, X0 1 =4 1... Xo = 1p)
= P(X,+1 = j|Xn = 1) = pi; for states j,4,i,_1...7 and n > 0; call this Markov prop-
erty.

e (I°** Characterization) {X,},>0 is a DTMC with X, ~ A and tpm P iff it has a
certain conditional independence.

e (II™ Characterization and fdds of DTMC) {X,,},>¢ is an S valued DTMC with
initial distribution A iff P(X,, = 4, Xs,m1 = in—1 ... Xo = %) = Ay, PigirPiris - - - Pip_1i, fOT
n > 0 and states iy, . . .4, where P is a |S| x | S| stochastic matrix and A is a distribution
on S.

e One can spot DTMC when they are driven by noise: Let Z,,; be conditionally
independent of Z,, ... Z;, X, ... X, given X,,, i.e.,

P(Zn+1 = k|Xn = i;Xn—l = in—l;---XO = io,Zn = anI = kl) = P(Zn+1 =
k| X, = 1), n > 1, with the condition prob on RHS independent of n.

Let f: S x F — S where F is domain of Z,. Then, X, 11 = f(Xp, Zn11),n > 0is a
DTMC with X as initial state and p;; = P(f(¢,2) = j|Xo = 1).

Remark : Recall the implicit use of o fields in the proof done is class.

Exercise : Show that P( X1k, = Ji, Xntk_y = Ji-1--- Xntks = J1|Xn = 1,... Xo = 1%p)
= P(Xnik, = Ji, - - Xntk, = J1|Xn = 1) for states 4, ji,j2... 5 and positive integers
n,lky... k> 0.

e Simulating a DTMC: Map the state space, if required, to {0,1,2,...} and let
{Un }n>0 be the i.i.d. with Uy uniform on (0,1). Set Xo=>", 1{er[ Kot and

) i=0 i ?:0 O‘i]}
Xpp1 = Zjl{UnHe[E“ for n > 0.
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By above theorem {X,,},>¢ is a DTMC with X, ~ A and tpm P.
e Aggregation of states: Let { X, },>0 be a DTMC on S with P as tpm. Suppose {A}
partition S and define a process {Xn}nzo on S = 1,2,...by X, =k, iff X, € A, n>0.
Then, {Xn}nzo is a DTMC for any initial dist. A of {X,},>¢ iff ZjeAl pij is in-
dependent of ¢ € Ay, Vk,l, in which case, Pij = ZjeAl pi; for any ¢ € Ay is tpm of

{Xn}nzo-

First step analysis:

e The following are first of set of results that follow from first step analysis. First
step analysis itself follows by considering a one step delayed DTMC. {Y, },>0: Y, =
Xnt1,n > 0.

e ACS; Hy(w) = inf{X, € A}; b = P(H* < 0| Xy = i) = Pi(H4 < o) and
k=3, e nP(Ha =n) + coP(H* = o) with the convention that co.0 =0

e When A is a closed class, to be defined later, this is absorbtion probability.
o {h}ics is the minimal nonnegative solution to the linear system of equations

hf =1,1€ A, and hf = Zpij +Zpijh§1a i ¢ A
jeA J¢A



Minimal in componentwise sence: for any other solution {z;};cs we have z; > 0, Vi €
Aand z; > h, i € S.

e This result will be used later in conjunction with results regarding probability of
never leaving a set to obtain a criteria for recurrence and transience.

o {k}ics is the minimal non negative solution to the system of linear equation:
ki=0,i€A and k' =143, pijks, i ¢ A

Stopping times, SMP, etc.,

e Recall the examples done in class where P(z,41 = jlz, =i) =1#y, = P(xp1 =
jlxn, = 1) where 7 is the last time epoch when the process is in a subset A of states.

e A r.v 7 taking values NU {oo} is called a stopping time w.r.t a process {X, }n>0,
if V integers m € N, the event {7 = m} € ,, where &, = o(zo,z1...,Zn).

e When {X,, },>¢ is a countable state DTMC, we have that Vm 1, —,y = ¥ (20, Z1 .. ., T)
for some binary valued function 1, of m + 1 variables.

e Condition {7 = n} € F, is equivalent to {r <n} € F,, Yn > 0.

e Constants & 7! = 7 + my where my is a positive integer are stopping times.

o 7, = infy>1{X, =i} with , = o0 if X, #4¢, Vn > 1 is called return time to state
7; it is also a stopping time; so is the hitting time to set A.

e Successive return times, 7} = 7,15, T5,... with T, ; =T, .90 = ... = oo if only r of
these are finite, are also stopping times.

e If 7 = oo, then append a state (cemetry state) A ¢ s and set X, = A. Then,
{Xr4m}tn>0 is process after/beyond 7. Also Xy, ..., X;(,)(w) is process before 7, equiva-
lently represented as { X, }n>0; also called process stopped/killed at 7 with value frozen
that at X, .

e In {7 =n},{Xo =10, X1 =141,...,X, =i} for some states ig, i1, ... 4, and hence
for B € 0{Xy, X1,...,X,}, we have that

BA{r=n}er, Vinteger n>0

Deposing BN {7 < oo} into such disjoint events and interpreting Markov property
on each, one has the generalization of Markov property:

e Strong Markov Property (SMP):

Let {X,, }n>0 be Markov (), P) on countable state space S and let 7 be a stopping time
w.r.t. {X,}n>0. Then, conditional on 7 < co & X; = i,, the process after 7, {X 1 }n>0
is Markov (d;, P) & and is independent of process before 7, {X a,}.

e Look at examples like: a) At P(HY = n) in a RW on Z* with state zero as
absorbtion state, b) fdds of a process where a DTMC is observed only when it takes
values in J C S.

Recurrence and transcience

e While invoking SMP for stopping time H;, Xy, = % is automatic; whether H; <
oo a.s. leads to recurrence/transience idea as below:

Set, the number of visits to state i N; := > ° Lix, =i}, N; = 3 lix,=y and fj; ==
P;(1; < 00) where, 7; is a return time to state 1.

e The distribution of N; if X, = j is
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e The above is derived by looking at fdds of excursions for r = 2,3, ..., conditional
on 7-17‘_1 < 00, SZ-(T) is independent of {XT,(“‘I) Am} and then,

P(Si(r) =n|rf !t < oo) = Pi(1; = n)

e Under Xy =14, N; + 1 = N; taking values in 1,2,... and hence
P,(N; >r)=fl,r>0.

In fact,
N is geometric given X = i and N; restricted to {1,2,...}.

e Call state i recurrent if P;(7; < 0o) = 1, i.e., 7; is a proper r.v. if Xy = i; otherwise
it is a transient state.

e Let ¢ € S be a given state.

1. The following are equivalent:

« ) i is a recurrent state
B)Ni=cca.s; Xg=1
7 ) BN = 2,507 = 0

2. The following are also equivalent:

o ) iis a transient state
B ) N;<ooas; Xg=1i
Y ) EilNi] =Y, P < o0

e There is a dichotomy of the nature of a state which will later be extended to a
trichotomy.

e Also P(N; = o0) is either 0 or 1, not a fraction; compare this with standard
Borel-Cantelli zero-one lemma, here we have events that are pairwise dependent.

e Regenerative theorem of DTMC:

let {X, }n>0 be Markov (7, P) with state 0 recurrent. For successive return time
{78} nso with 7§ = 0, the pieces of trajectories/sample paths

{XTk7 XTk-I—la .. )X’Tk+1—1}k:20

are 2.¢.d. In particular, S%) are i.i.d. (These pieces are called regeneration cycles with
random time {Ték)} as regeneration epochs. More about these later.)

e One has a delayed regenerative process when starting from j # ¢, if f;(r; < 00) = 1;
this is what happens in an irreducible recurrent class.



