Discrete Time Markov Chains (Contd.)

Communication classes, etc.,

• Call state j is accessable from state i (i leads to state j) denoted as $i \to j$, if there is a finite length path from state i to state j:

 $p_{ii_1}p_{i_1i_2}\dots p_{i_nj}>0$ for some states i_1,i_2,\dots,i_n . Here is a criterion for this:

- The following are true for distinct states i and j
- (1) $p_{i,i} \dots p_{i_{n-1}j} > 0$ for some states $i_1, \dots i_{n-1}$
- (2) $p_{ij}^{|n|} > 0$ for some n > 0
- (3) $P_i(X_n = j, \text{for some } n > 0) > 0$
 - For $i \neq j$ (1) and hence others show that $i \to j$ iff $P_i(\tau_j < \infty) = f_{ij} > 0$.
 - Call states distinct i and j communicate if $i \to j \& j \to i$; denote this by $i \longleftrightarrow j$
- This relation of pairs of states is symmetric and transitive; Define $i \longleftrightarrow i$ even if $f_{ii} = 0$ so that communicating relation is also reflexive.
- This relation induces a partition of S into subsets A_1, A_2, \ldots called communicating classes that
- (α) Every state belongs to exactly the class, say, A_k ,
- (β) Every comm. class A_k has at least one state,
- (γ) Any pair and hence all states in each comm. class communicate,
- (δ) States from distinct comm. classes do not communicate.
 - $E_j[N_i] = \infty$ if i is recurrent and is accessible from j
 - $E_i[N_i] < \infty$ if i is transient.
- Suppose a state of comm. class is transient (recurrent), then so is every other state of this class 1^{st} class property theorem.
- So, a comm. class is transient (or) recurrent; later we show that there is a trichotomy.
- Set of states C is closed if $\forall i \in C$, and $j \notin C$, $p_{ij} = 0$. This implies $p_{ij}^{|n|} = 0, n \ge 1$. S is closed
 - If set C is not closed, it is open.
 - If S is a single class, it is called an irreducible chain.
- A recurrent class is a closed class; equivalently, open communication classes are transient.
 - In contrast, not all closed classes are recurrent; give examples.
 - Finite closed classes are recurrent.
- *Remark*: We will improve this result later to say that such classes are in fact positive recurrent.
- Suppose $\{X_n\}_{n\geq 0}$ is irreducible and recurrent. Then, $P(\tau_j < \infty) = 1 \,\forall j \in S$ In fact, $P_i(\tau_j < \infty) = f_{ij} = 1 \,\forall \text{ pair } (i,j)$.
 - Transient classes are either infinite (or) open (or) both.
 - A finite transient class has to be open.
 - Infinite transient class can be closed; for example, Random walk on Z with $P \neq 1/2$.
 - Recall discussion about possible nature of tpm with these possibilities in mind.
- As finite closed classes are recurrent and open classes are transient, some unresolved cases are in countable systems.
- A classic example is Polya's result: 1 D and 2 D SRWs are recurrent; SRWs on higher dimensions are transient. We did all these results.

Invariant measures and invariant distributions:

• $\lambda = \{\lambda_i : \lambda_i \geq 0, i \in s\}$ is an invariant measure if $\lambda = \lambda P$. It is an invariant distribution if $\sum_{i \in s} \lambda_i = 1$, also.

- Let λ be as invariant distribution of $\{X_n\}_{n\geq 0}$. There if $\{X_n\}_{n\geq 0}$ is Markov (λ, P) then $\{X_n\}_{n>0}$ is a stationary process.
- Invariant measures may exist (or) may not exist. They are not unique also, if they exist. We try to understand this.
- Let $X_0 \sim \lambda$ for some distribution λ and let σ be a stopping time. Define, $\lambda_j(\sigma) := P_{\lambda}(X_{\sigma} = j), \ \mu_j(0) := E_{\lambda} \left[\sum_{0}^{\sigma-1} I_{\{X_n = j\}} \right], \ \text{and} \ \mu_j(1) := E_{\lambda} \left[\sum_{1}^{\sigma} I_{\{X_n = j\}} \right]. \ \text{Then,}$

1)
$$\underline{\lambda} + \mu(1) = \mu(0) + \underline{\lambda}(\sigma)$$
 2) $\mu(1) = \mu(0)P$.

• We can generate stationary/invariant measures: pick a recurrent state i, set

$$v_j^{(i)} := E_i \left[\sum_{j=0}^{\tau_i - 1} I_{\{X_n = j\}} \right] = \sum_{j=0}^{\infty} P_i(X_n = j, \tau_i > n).$$

Then $\{v_i^{(i)}\}_{j\in s}$ is an invariant measure.

- Now that invariant measures exist we have this technically important result: If v is a measure such that $vP \leq v$ with $v_i = 1$, then, $v_j \geq v_j^{(i)}$, $\forall j \in S$.
- For an irreducible and recurrent chain, there exists a stationary measure \underline{v} such that $v_i \in (0, \infty)$, $j \in S$ and \underline{v} is unique upto scalars multipliers.
 - Stationary measure $\underline{v}^{(i)}$ is such that $|\underline{v}^{(i)}| = \sum_{j \in S} v^{(i)} = E_i(\tau_i)$
- Call a recurrent state i, positive recurrent if $E_i(\tau_i) < \infty$; otherwise call it a null recurrent state.
- Immediately, we can now improve earlier dichotomy as: In an irreducible chain, the following trichotomy exists. All states are either (1) transient (or) (2) positive recurrent (or) (3) null recurrent. This is an exclusive *or* statement.
- An irreducible chain is positive recurrent iff there is a solution to $\pi = \pi P$ with $\sum \pi_i = 1$ and $\pi_i \geq 0$. If so, $\pi_i = \frac{1}{E_i[\tau_i]} > 0$, $i \in S$.
- (Example): 1-D RW is recurrent if $p = \frac{1}{2}$. We also saw that it admits no invariant distribution. So by above it has to be a null recurrent chain.
 - A finite state chain that is irreducible is positive recurrent.
- Ergodic Theorem for DTMCs: Let $\{X_n\}_{n\geq 0}$ be an irreducible positive recurrent chain with stationary distribution π and let $f: S \to \mathbb{R}$ be such that $\sum |f(i)|\pi_i < \infty$. Then for any initial distribution μ ,

$$\lim_{N} \frac{1}{N} \sum_{k=0}^{N} f(x_k) = \sum_{i \in S} f(i) \pi_i \ P_{\mu} \ a.s.$$

Absorbtion Probabilities, etc:

- Let T and C be disjoint subsets of S ($T \cup C = S$ (or) $T \cup C \neq S$) and for every $j \in T$ define: $x_j(n) = P(x_n \in C, x_{n-1} \in T, \dots, x_1 \in T | x_0 = j)$ and $x_j : \sum x_j(n)$
- If $T \cup C = S$ then, x_j is the probability that the chain ever visits C and if $T \cup C \neq S$) then x_j is the probability that chain visits C before any state not in either C or T, given $X_0 = j \in T$; with $(T \cup C)$ as taboo states, x_j is then the taboo probability.
- Let $y_i(n) = P(x_n \in T, x_{n-1} \in T, \dots, x_1 \in T | x_0 = j)$ and $y_j = \lim y_j(n)$ is the probability that chain never leaves T, given $x_0 = j \in T$.
 - 1) $\{y_i\}$ as above, are maximal solution to $y_j = \sum_{i \in T} p_{ji} y_i$ that is bounded by 1.
 - 2) Either $y_j = 0 \quad \forall j \in T \text{ (or) } \sup_{i \in T} y_i = 1$
- 3) In the first case, $\lim y_j(n) = 0$ $\forall j \in T$, $\inf \{y_j = 0\}_{j \in T}$ is the unique bounded solution of $u_i = \sum_{j \in T} p_{ij} u_i$, $i \in T$

- Probabilities x_j is the unique bounded solution to $x_j = \sum_{i \in C} p_{ji} + \sum_{i \in T} p_{ji} x_j \ \forall \ j \in C$ T.
- If there is no unique solution in above, then, x_j is the minimal non-negative solution
- to $x_j = \sum_{i \in C} p_{ji} + \sum_{i \in T} p_{ji} x_i \, \forall \, j \in T$.

 From the above characterization of taboo probabilities, we have: The set of probabilities abilities $\{x_i\}$ is the unique bounded to $x_j = \sum_{i \in C} p_{ji} + \sum_{i \in T} p_{ji} x_i \ \forall \ j \in T$ if either 1) T is a finite set of transient states, 2) T is a proper subset of a recurrent communication class.
- Using the above, we have this important criterion for transience: For an irreducible DTMC on $\{0, 1, 2, \dots\}$ all states are transient iff the system of linear equations, $y_i =$ $\sum_{i=1}^{n} p_{ji} y_i$, $j = 1, 2, \dots$, has a non-zero bounded solution.