Evolutionary Vaccination Games with premature vaccines to combat ongoing deadly pandemic

Vartika Singh

Joint work with

Khushboo Agarwal, Shubham and Veeraruna Kavitha

Industrial Engineering and Operations Research (IEOR), IIT Bombay, Mumbai, India

1 Motivation

- 2 Problem description
- 3 System Dynamics
- 4 Evolutionary behaviour

5 Conclusions

イロト イボト イヨト イヨト

- today, living through a pandemic, COVID-19
- disease characteristics are unknown
- pre-mature vaccines are being introduced
- lack of information, e.g., possible end of disease
- vaccination responses of others matter
- decision about vaccination needs to be made

- dynamic behavioural vaccination responses of population
- choice between two contrasting fears fear of vaccine, fear of infection
- voluntary vaccination leads to evolutionary game theoretic framework

Objectives

- to study the dynamics and understand the equilibrium states
 - based on disease parameters
 - based on population vaccination responses
- to identify the vaccination responses that are stable against mutations
 - evolutionary stable (ES) equilibrium states

In [1], [2] seasonal variations are considered

- vaccination season: vaccinate and pay a fixed cost, or try free riding
- disease season: infected pay infection cost
- replicator dynamics based models, learn from previous seasons
- In [3], vaccinate before the outbreak or on any week of the pandemic or never
 - \bullet one among the 53 weeks is chosen, 53 being never vaccinate
 - early vaccination or free-rider, 'wait and see' equilibrium
 - in majority of literature, some information about disease is assumed
 - e.g., time duration and time of occurrence of disease is known
 - we do not assume any such information

•
$$N(t) = S(t) + V(t) + I(t)$$

• $\theta(t) := \frac{I(t)}{N(t)}, \ \psi(t) := \frac{V(t)}{N(t)}, \ \text{and} \ \phi(t) := \frac{S(t)}{N(t)}$

• $b > d + d_e$

イロト イヨト イヨト

э

- vaccination response depends on $(\theta(t),\psi(t))$
- probability of vaccination is $q(\theta, \psi) = \min\{1, \tilde{q}(\theta, \psi)\}$
- vaccination policy: $\pi(\beta)$

Follow-the-crowd (FC) $\tilde{q} := \beta \psi(t)$

Vartika Singh et. al. (IEOR, IIT Bombay)

Image: A image: A

- vaccination response depends on $(\theta(t),\psi(t))$
- probability of vaccination is $q(\theta, \psi) = \min\{1, \tilde{q}(\theta, \psi)\}$
- vaccination policy: $\pi(\beta)$

Follow-the-crowd (FC)Free riders (FR)
$$\tilde{q} := \beta \psi(t)$$
 $\tilde{q} := \beta \psi(t)(1 - \psi(t))$

▶ ∢ ≣

- vaccination response depends on $(\theta(t),\psi(t))$
- probability of vaccination is $q(\theta, \psi) = \min\{1, \tilde{q}(\theta, \psi)\}$
- vaccination policy: $\pi(\beta)$

Follow-the-crowd (FC)	Free riders (FR)	Vigilant follow-the-crowd (VFC1)
$\tilde{q} := \beta \psi(t)$	$\tilde{q} := \beta \psi(t) (1 - \psi(t))$	$ ilde{q}:=eta heta(t)\psi(t)$

▶ ∢ ≣

Dynamics

• at $(k+1)^{th}$ transition epoch

$$I_{k+1} = I_k + \underbrace{\mathbb{I}_{k+1}}_{\text{new infection}} - \underbrace{\mathbb{R}_{k+1}}_{\text{new recovery}} - \underbrace{\mathbb{D}_{I,k+1}}_{\text{new death}},$$

æ

・ロト ・四ト ・ヨト ・ヨト

Dynamics

• at $(k+1)^{th}$ transition epoch

$$I_{k+1} = I_k + \underbrace{\mathbb{I}_{k+1}}_{\text{new infection}} - \underbrace{\mathbb{R}_{k+1}}_{\text{new recovery}} - \underbrace{\mathbb{D}_{I,k+1}}_{\text{new death}},$$

• stochastic approximation iterates for $\theta_k = I_k/N_k$

$$\theta_{k+1} = \theta_k + \epsilon_k \frac{1}{\eta_{k+1}} \left[\mathbb{I}_{k+1} - \mathbb{R}_{k+1} - \mathbb{D}_{I,k+1} - \Delta N_k \theta_k \right], \quad \epsilon_k := \frac{1}{k+1}$$

э

イロト イポト イヨト イヨト

Dynamics

• at $(k+1)^{th}$ transition epoch

• stochastic approximation iterates for $\theta_k = I_k/N_k$

$$\theta_{k+1} = \theta_k + \epsilon_k \frac{1}{\eta_{k+1}} \left[\mathbb{I}_{k+1} - \mathbb{R}_{k+1} - \mathbb{D}_{I,k+1} - \Delta N_k \theta_k \right], \quad \epsilon_k := \frac{1}{k+1}$$

• similarly, one can write stochastic approximation iterates for ψ_k , ϕ_k and $\eta_k = N_k/k$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

Stochastic approximation induced ODE[5]

$$\dot{\theta} = \frac{1}{\eta \varrho} \left[\theta \phi \lambda - r\theta - b\theta - (d_e - d_e \theta) \theta \right], \ \phi = 1 - \theta - \psi$$

$$\dot{\psi} = \frac{1}{\eta \varrho} \left[q(\theta, \psi) \phi \nu - (b - d_e \theta) \psi \right], \text{ and,}$$

$$\dot{\eta} = \frac{b - d - d_e \theta}{\varrho} - \eta, \ \varrho = (b + d + d_e \theta + \lambda \theta \phi + \nu \phi + r\theta).$$
(1)

Theorem

Under some assumptions:

• the sequence $(\theta_k, \psi_k, \eta_k)$ converges to attractors of the ODE

(1) dynamics of the process can be approximated using the ODE solutions

With no excess deaths $d_e = 0$: $(\rho := \lambda/(r + b + d_e), \mu := b/\nu)$

- self-eradicating disease $(\rho < 1)^1$ gets eradicated without vaccination, $(\theta, \psi) = (0, 0)$
- endemic disease $(\rho > 1)$:
 - vaccination hesitancy \rightarrow non-vaccinated disease fraction, NVDF = $\left(1 \frac{1}{a}, 0\right)$
 - vaccination urgency at equilibrium \rightarrow coexisting equilibrium

$$(\theta_E, \psi_E) := \left(1 - \frac{1}{\rho} - \frac{1}{\mu\rho}, \frac{1}{\mu\rho}\right)$$

- vaccination urgency from beginning $\rightarrow (0, \psi_f)$ disease is eradicated!
- not possible to eradicate the disease with vigilant agents

 $^{1}\lambda - r - d_e < b$

Vartika Singh et. al. (IEOR, IIT Bombay)

Numerical simulations: ODE attractors versus actual system

•
$$d_e = 0$$

Vartika Singh et. al. (IEOR, IIT Bombay)

12/21

- conjectured attractors for follow the crowd and free-riders
- self eradicating disease leads to (0,0)
- for endemic disease, let $\rho_e := \lambda d_e/r + b$, $\mu_e := b d_e/\hat{\beta}\nu d_e$
 - vaccination hesitancy \rightarrow NVDF $\left(1 \frac{1}{\rho_e}, 0\right)$
 - vaccination urgency at equilibrium \rightarrow coexisting equilibrium $(\theta_E^{d_e}, \psi_E^{d_e})$

$$(\theta_E^{d_e}, \psi_E^{d_e}) \quad \approx \quad \left(1 - \frac{1}{\rho_e} - \frac{o^{d_e}}{\mu \rho_e}, \ \frac{o^{d_e}}{\mu \rho_e} \frac{\lambda - d_e}{\lambda}\right) \text{ with } o^{d_e} := \frac{1}{1 + \frac{d_e(r + d_e - \lambda - \nu)}{\mu \lambda \nu}}$$

Evolutionary behaviour

- for any $\pi(\hat{\beta})$, system reaches an equilibrium
- what if mutants invade a system in equilibrium?
 - is original vaccination response still better?
 - does the equilibrium drift away?
 - which equilibrium states are evolutionary stable?
 - which policies lead to evolutionary stable (ES) states?

- for any $\pi(\hat{\beta})$, system reaches an equilibrium
- what if mutants invade a system in equilibrium?
 - is original vaccination response still better?
 - does the equilibrium drift away?
 - which equilibrium states are evolutionary stable?
 - which policies lead to evolutionary stable (ES) states?

ESS-AS : Evolutionary Stable Strategies Against Static mutations

A policy $\pi(\beta)$ is said to be ESS-AS if

- if $\{q_{\pi(\beta)}\} = \arg\min_{q \in [0,1]} u(q, \pi(\beta)),$
- **(b)** there exists an $\bar{\epsilon}$ such that $\{q_{\pi(\beta)}\} = \arg\min_{q \in [0,1]} u(q, \pi_{\epsilon}(\beta, q'))$, for any $\epsilon \leq \bar{\epsilon}$

Anticipated user utility at equilibrium

cost of infection $c_{I_2} d_e \hat{\theta}$ $p_I(\hat{\theta}$ c_{I_1} P(infection) infection cost cost of death

イロト イボト イヨト イヨト

Anticipated user utility at equilibrium

utility of policy q against population profile $\pi(\hat{\beta})$:

 $u(q; \pi(\hat{\beta})) := q \times \text{cost of vaccination} + (1 - q) \times \text{cost of infection}$ $= q \times \Delta + \text{cost of infection, where}$ $\Delta = \text{cost of vaccination} - \text{cost of infection}$

Vartika Singh et. al. (IEOR, IIT Bombay)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のQの

Non-vaccinating ESS

- if the disease is self eradicating \rightarrow (0,0), or
- if anticipated cost of vaccination ($\Delta > 0$) is more at NVDF $\rightarrow (1 1/\rho, 0)/(1 1/\rho_e, 0)$
- in some cases, there is no ESS at all
- ESS is either possible in all vaccination responses, or in none!!!

Non-vaccinating ESS

- if the disease is self eradicating \rightarrow (0,0), or
- if anticipated cost of vaccination ($\Delta > 0$) is more at NVDF $\rightarrow (1 1/\rho, 0)/(1 1/\rho_e, 0)$
- in some cases, there is no ESS at all
- ESS is either possible in all vaccination responses, or in none!!!

Vaccinating ESS

- probability of vaccination is 1 at equilibrium
- vaccination response leads to co-existing equilibrium $(\theta_E, \psi_E) / (\theta_E^{d_e}, \psi_E^{d_e})$
- anticipated cost of infection at corresponding equilibrium is high $(\Delta < 0)$

- with excess deaths,
 - higher vaccinated fraction
 - lower infected fraction
 - pattern is similar
- for small birth-rate
 - higher infection rate per birth
 - higher vaccinated fraction
 - lower infected fraction as ESS
- for large birth-rate, self eradicating disease

- infected \downarrow and vaccinated \uparrow initially
- might expect high vaccinated with more vaccine availability
- the converse is true !!
- perception towards infection cost changes with abundance of vaccine
- non-vaccinating ESS leads to NVDF

- motivated by COVID-19 pandemic, prematurely introduced vaccines
- derived infected/vaccinated proportions for various behavioural patterns
- many vaccination responses eradicate the disease
- disease is never eradicated under ES policies, unless self eradicating
- different dynamics for different response, but ES state is same
- ESS either exists in all behaviours or in none
- abundance of vaccine leads to lower vaccinated proportion
- ironically, disease can be better curbed with excess deaths

- [1] Iwamura, Yoshiro, and Jun Tanimoto. "Realistic decision-making processes in a vaccination game." Physica A: Statistical Mechanics and its Applications 494 (2018).
- [2] Li, Qiu, MingChu Li, Lin Lv, Cheng Guo, and Kun Lu. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory." Chaos, Solitons & Fractals 104 (2017).
- [3] Bhattacharyya, Samit, and Chris T. Bauch. "Wait and see" vaccinating behaviour during a pandemic: a game theoretic analysis." Vaccine 29, no. 33 (2011).
- [4] Webb, James N. Game theory: decisions, interaction and Evolution. Springer Science & Business Media, 2007.
- [5] Kushner, Harold, and G. George Yin. Stochastic approximation and recursive algorithms and applications. Vol. 35. Springer Science & Business Media, 2003.

・ロト ・回ト ・ヨト ・ヨト

Thank you

Vartika Singh et. al. (IEOR, IIT Bombay)

э

・ロト ・四ト ・ヨト ・ヨト