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(I) Overview
@ Mixed-integer nonlinear programs: modeling, applications and algorithms
@ MINOTAUR: architecture, plugins, engines, interfaces
@ MINOTAUR compilation and capabilities (demo only)

(I1) Hands-on
o Using different algorithms and options
@ Generating problem instance: objective, variables, constraints
@ Modifying existing components

@ Creating a new simple brancher
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Modeling mixed-integer nonlinear programs (MINLPs)

MINLPs are a general form of optimization problems. Mathematically,
min £(x, y)

s.t. c(x,y) <0, P)
x € X,y € ) integer,

where the functions f : R" — R and ¢ : R" — R" are typically nonlinear.

A

@ LP, NLP, and MILP are special cases.

@ If feasible region is convex on relaxing integrality, then (P) is a convex MINLP.
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Applications and research areas

Applications

@ conventional: cutting stock, portfolio optimization, facility layout, process design,
unit commitment, water and gas networks etc.

@ others: cybersecurity, brachytherapy, energy management, statistics, cloud,
supercomputers, environment, weapons target assignment etc.

Research

@ conventional: algorithms, relaxations, cuts, branchers, heuristics, presolving,
structure exploitation, duality etc.

@ others: representability, parallelism, overlaps with new areas: DFO, PDEs, ML,
bilevel etc.
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Algorithms for convex MINLPs

Basic idea
@ generate lower bounds on the optimal value using tractable relaxations of (P)
@ generate upper bounds using feasible solutions of (P)

@ keep improving both until a stopping criterion is met

Algorithms for convex MINLPs

@ Outer approximation, Nonlinear branch-and-bound, LP/NLP based
branch-and-bound, Extended cutting plane etc.
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Algorithms for convex MINLPs contd.

Outer approximation

Branch-and-bound
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MINOTAUR (Mahajan et al, 2011)

Algo-
rithms Core com-
ponents
Third-
party
solvers
Binary/
Minotaur Library/
Source
Interfaces
Compu- Handlers
tational
graph

Developed at Argonne National Laboratory, IIT Bombay and University of
Wisconsin-Madison.
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MINOTAUR: building blocks

Core components
@ Problem Description Classes
o Function
o NonlinearFunction
o LinearFunction
o Variable, Constraint,
Objective
@ Branch-and-bound Classes
o NodeRelaxer, NodeProcessor
o Brancher, TreeManager
o Presolver, CutManager, etc.

@ Structure Handlers
e Linear, SOS2, CxUnivar,
CxQuad, Multilinear etc.
o QG, Perspective, Separability
etc.
o Utility Classes
o Timer, Options, Logger,
Containers, Operations, etc.

Engines
Linear
@ OSI-LP (coin-or.org)

o CLP
e CPLEX
o GUROBI

Nonlinear

@ Filter-SQP
e IPOPT

e BQPD

o gpOASES

Interfaces
o AMPL
o C++
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MINOTAUR compilation

On any linux system:
see complete intructions

o GitHub page

On BITS lab machine: A precompiled version is made available.
@ Open a Terminal, and type:
@ wget http://10.119.2.11/~meenarli/orsi2018/minotaurSetup.sh
@ source minotaurSetup.sh

@ Test run: bnb /home/student/minotaur/examples/multilinear/ex00.nl
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http://www.ieor.iitb.ac.in/orsi2018/images/wco.pdf
https://github.com/minotaur-solver/minotaur.git
http://10.119.2.11/~meenarli/orsi2018/minotaurSetup.sh

Hands-on




Using MINOTAUR Options

Algorithms: bnb and qg

bnb ~/minotaur/examples/orsi2018/instances/tls2.nl -presolve 0

Option Command Value
NLP engine -nlp_engine Filter-SQP (default), IPOPT
Presolve -presolve 1,0
Time limit —-bnb_time_limit Time in seconds
Node limit —-bnb_node_limit Any positive integer
display problem -display_problem 0,1
display presolved problem | -display_presolved problem 0,1
solve -solve 0,1
log level —-log_level 0-6
brancher -brancher rel (default), lex, maxvio, etc.

Other Minotaur options
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https://wiki.mcs.anl.gov/minotaur/index.php/Minotaur_Options

Quick revision of NLP based branch-and-bound algorithm

Branch-and-bound

@ Form a tractable relaxation of (P): e.g. relaxing integrality constraints gives rise to an
NLP relaxation.

@ If the solution of this relaxation is not integer feasible, branch on some variable in the
set, Z, with fractional solution value.

@ Again, relax the subproblems, solve them and create new subproblems by branching,
if needed.

@ Update the upper bound when feasible solutions are obtained and prune inferior
subproblems.

infeasible

integer dominated
feasible by UBD
UBD
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Computational graph

Representation of nonlinear functions as a directed acyclic graph for computational
purposes.
An example: f(x) = x§ +x; "
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Problem instance generation and solving

Consider the problem

Min xal+2xf2+3x;1'5+4x;1'7+5x;1‘2+6x;1'7+7xg1'4+8x;1‘2+9x§1'5

st Xo+x1+x2+x3+x1+ x5+ % +x7+ x5 < 64
1 <x; <64, integer Vi=0,...,8.

Let us try!
@ Type: cd ~/minotaur/examples/orsi2018
@ Open the file SimpleBnb. cpp (type: gedit SimpleBnb.cpp)
@ Go to the main function

o function to create problem
@ solve function

@ Close the file, type: make and to run, type: . /sbnb
@ Add a constraint: Sum of x; and x¢ should not be more than 2.

@ Close the file, type: make and to run, type: . /sbnb
More test instances on MINLPLib: A Library of Mixed-Integer and Continuous Nonlinear
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http://www.minlplib.org/instances.html

Problem instance generation and solving

Consider the problem

Min xal+2xf2+3x;1'5+4x;1'7+5x;1‘2+6x;1'7+7xg1'4+8x;1‘2+9x§1'5

st Xo+x1+x2+x3+x1+ x5+ % +x7+ x5 < 64
1 <x; <64, integer Vi=0,...,8.

Let us try!
@ Type: cd ~/minotaur/examples/orsi2018
@ Open the file SimpleBnb. cpp (type: gedit SimpleBnb.cpp)
@ Go to the main function
o function to create problem
e solve function
@ Close the file, type: make and to run, type: . /sbnb
@ Add a constraint: Sum of x; and x¢ should not be more than 2.
o Mathematically, x, 4+ x5 < 2

@ Close the file, type: make and to run, type: . /sbnb
More test instances on MINLPLib: A Library of Mixed-Integer and Continuous Nonlinear
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http://www.minlplib.org/instances.html

Problem instance generation and solving

Consider the problem
Min x50+ 2072 + 35705 a7 4 52 4 6ag 1 4 T 4 8x 12 4 9
st Xo+x1+x2+x3+x1+ x5+ % +x7+ x5 < 64
1 <x; <64, integer Vi=0,...,8.

Let us try!
@ Type: cd ~/minotaur/examples/orsi2018
@ Open the file SimpleBnb. cpp (type: gedit SimpleBnb.cpp)
@ Go to the main function
o function to create problem
e solve function
@ Close the file, type: make and to run, type: . /sbnb
@ Add a constraint: Sum of x; and x¢ should not be more than 2.
o Mathematically, x, 4+ x5 < 2
o In SimpleBnb.cpp in createProblem function
LinearFunctionPtr If1 = (LinearFunctionPtr) new LinearFunction();
FunctionPtr funl;
1f1->addTerm(vars[2],1.0);
If1->addTerm(vars[6],1.0);
funl = (FunctionPtr) new Function(l1f1);
p->newConstraint(funl, -INFINITY, 2);
@ Close the file, type: make and to run, type: . /sbnb

More test instances on MINLPLib: A Library of Mixed-Integer and Continuous Nonlinear
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http://www.minlplib.org/instances.html

Customize an existing brancher

Different branching rules:
@ Lexicographic: choose candidate with smallest index

@ Maximum violation: choose the most fractional candidate

e x1 = 0.9, score = 0.1(0.8) + 0.9 x (0.2) = 0.26
e x5 = 0.2, score = 0.2(0.8) + 0.8 % (0.2) = 0.32

o x¢ = 0.4, score = 0.4(0.8) + 0.6 = (0.2) = |

Branching rule: Perform minimum violation based selection

Let us try
@ Open the file MinVioBrancher.cpp
@ Locate the function findBestCandidate_ ()
@ Make the required changes as discussed

@ Close the file and open SimpleBnb. cpp

e include the brancher to the file
@ use this brancher

@ Close the file, type: make and to run, type: ./sbnb
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A new brancher MaxVioBinFirst

Branching rule: Select the Maximum Violation Binary Variable First
Same as MaxVio but in addition gives preference to binary variables

Let us try
@ To open the file type: MaxVioBinFirstBrancher.cpp
@ Locate the function findBestCandidate_ ()
@ Observe the implementation of the branching rule
@ Close the file and type: make maxVioBinFirst
@ Torun type: . /bfbnb instances/tls2.nl > tls2.out
@ See the outputin t1s2.out

@ observe:

o branching candidates and best branching candidate at different nodes
@ solve statistics

Play around with instances in the library
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http://www.minlplib.org/instances.html

THANK YOU.

For any discussions/questions, please contact:
@ Prof. Ashutosh Mahajan (amahajan@iitb.ac.in)
@ Prashant Palkar (prashant.palkar@iitb.ac.in)

@ Meenarli Sharma (meenarli@iitb.ac.in)
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