Workshop on Mixed-integer nonlinear optimization and

MINOTAUR: A MixedInteger Nonlinear Optimization Toolkit

Prashant Palkar, Meenarli Sharma,
and Prof. Ashutosh Mahajan

Industrial Engineering and Operations Research
Indian Institute of Technology Bombay

51°" Annual Convention of ORSI and International Conference
December 16-19, 2018



(I) Overview
@ Mixed-integer nonlinear programs: modeling, applications and algorithms
@ MINOTAUR: architecture, plugins, engines, interfaces
@ MINOTAUR compilation and capabilities (demo only)

(I1) Hands-on
o Using different algorithms and options
@ Generating problem instance: objective, variables, constraints
@ Modifying existing components

@ Creating a new simple brancher

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay



Modeling mixed-integer nonlinear programs (MINLPs)

MINLPs are a general form of optimization problems. Mathematically,
min £(x, y)

s.t. c(x,y) <0, P)
x € X,y € ) integer,

where the functions f : R" — R and ¢ : R" — R" are typically nonlinear.

A

@ LP, NLP, and MILP are special cases.

@ If feasible region is convex on relaxing integrality, then (P) is a convex MINLP.

v on Mixedinteger nonlinear optimization IEOR, IIT Bombay



Applications and research areas

Applications

@ conventional: cutting stock, portfolio optimization, facility layout, process design,
unit commitment, water and gas networks etc.

@ others: cybersecurity, brachytherapy, energy management, statistics, cloud,
supercomputers, environment, weapons target assignment etc.

Research

@ conventional: algorithms, relaxations, cuts, branchers, heuristics, presolving,
structure exploitation, duality etc.

@ others: representability, parallelism, overlaps with new areas: DFO, PDEs, ML,
bilevel etc.

hop on Mixedinteger nonlinear optimization IEOR, IIT Bombay



Algorithms for convex MINLPs

Basic idea
@ generate lower bounds on the optimal value using tractable relaxations of (P)
@ generate upper bounds using feasible solutions of (P)

@ keep improving both until a stopping criterion is met

Algorithms for convex MINLPs

@ Outer approximation, Nonlinear branch-and-bound, LP/NLP based
branch-and-bound, Extended cutting plane etc.

) on Mixedinteger nonlinear optimization IEOR, IIT Bombay



Algorithms for convex MINLPs contd.

Outer approximation

Branch-and-bound

) on Mixedinteger nonlinear optimization IEOR, IIT Bombay



MINOTAUR (Mahajan et al, 2011)

Algo-
rithms Core com-
ponents
Third-
party
solvers
Binary/
Minotaur Library/
Source
Interfaces
Compu- Handlers
tational
graph

Developed at Argonne National Laboratory, IIT Bombay and University of
Wisconsin-Madison.

Workshop on Mixedinteger nonlinear optimization IEOR, IIT Bombay



MINOTAUR: building blocks

Core components
@ Problem Description Classes
o Function
o NonlinearFunction
o LinearFunction
o Variable, Constraint,
Objective
@ Branch-and-bound Classes
o NodeRelaxer, NodeProcessor
o Brancher, TreeManager
o Presolver, CutManager, etc.

@ Structure Handlers
e Linear, SOS2, CxUnivar,
CxQuad, Multilinear etc.
o QG, Perspective, Separability
etc.
o Utility Classes
o Timer, Options, Logger,
Containers, Operations, etc.

Engines
Linear
@ OSI-LP (coin-or.org)

o CLP
e CPLEX
o GUROBI

Nonlinear

@ Filter-SQP
e IPOPT

e BQPD

o gpOASES

Interfaces
o AMPL
o C++

op on Mixedinteger nonlinear optimization

IEOR, IIT Bombay



MINOTAUR compilation

On any linux system:
see complete intructions

o GitHub page

On BITS lab machine: A precompiled version is made available.
@ Open a Terminal, and type:
@ wget http://10.119.2.11/~meenarli/orsi2018/minotaurSetup.sh
@ source minotaurSetup.sh

@ Test run: bnb /home/student/minotaur/examples/multilinear/ex00.nl

hop on Mixedinteger nonlinear optimization IEOR, IIT Bombay


http://www.ieor.iitb.ac.in/orsi2018/images/wco.pdf
https://github.com/minotaur-solver/minotaur.git
http://10.119.2.11/~meenarli/orsi2018/minotaurSetup.sh

Hands-on




Using MINOTAUR Options

Algorithms: bnb and qg

bnb ~/minotaur/examples/orsi2018/instances/tls2.nl -presolve 0

Option Command Value
NLP engine -nlp_engine Filter-SQP (default), IPOPT
Presolve -presolve 1,0
Time limit —-bnb_time_limit Time in seconds
Node limit —-bnb_node_limit Any positive integer
display problem -display_problem 0,1
display presolved problem | -display_presolved problem 0,1
solve -solve 0,1
log level —-log_level 0-6
brancher -brancher rel (default), lex, maxvio, etc.

Other Minotaur options

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay


https://wiki.mcs.anl.gov/minotaur/index.php/Minotaur_Options

Quick revision of NLP based branch-and-bound algorithm

Branch-and-bound

@ Form a tractable relaxation of (P): e.g. relaxing integrality constraints gives rise to an
NLP relaxation.

@ If the solution of this relaxation is not integer feasible, branch on some variable in the
set, Z, with fractional solution value.

@ Again, relax the subproblems, solve them and create new subproblems by branching,
if needed.

@ Update the upper bound when feasible solutions are obtained and prune inferior
subproblems.

infeasible

integer dominated
feasible by UBD
UBD

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay



Computational graph

Representation of nonlinear functions as a directed acyclic graph for computational
purposes.
An example: f(x) = x§ +x; "

IEOR, IIT Bombay



Problem instance generation and solving

Consider the problem

Min xal+2xf2+3x;1'5+4x;1'7+5x;1‘2+6x;1'7+7xg1'4+8x;1‘2+9x§1'5

st Xo+x1+x2+x3+x1+ x5+ % +x7+ x5 < 64
1 <x; <64, integer Vi=0,...,8.

Let us try!
@ Type: cd ~/minotaur/examples/orsi2018
@ Open the file SimpleBnb. cpp (type: gedit SimpleBnb.cpp)
@ Go to the main function

o function to create problem
@ solve function

@ Close the file, type: make and to run, type: . /sbnb
@ Add a constraint: Sum of x; and x¢ should not be more than 2.

@ Close the file, type: make and to run, type: . /sbnb
More test instances on MINLPLib: A Library of Mixed-Integer and Continuous Nonlinear

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay


http://www.minlplib.org/instances.html

Problem instance generation and solving

Consider the problem

Min xal+2xf2+3x;1'5+4x;1'7+5x;1‘2+6x;1'7+7xg1'4+8x;1‘2+9x§1'5

st Xo+x1+x2+x3+x1+ x5+ % +x7+ x5 < 64
1 <x; <64, integer Vi=0,...,8.

Let us try!
@ Type: cd ~/minotaur/examples/orsi2018
@ Open the file SimpleBnb. cpp (type: gedit SimpleBnb.cpp)
@ Go to the main function
o function to create problem
e solve function
@ Close the file, type: make and to run, type: . /sbnb
@ Add a constraint: Sum of x; and x¢ should not be more than 2.
o Mathematically, x, 4+ x5 < 2

@ Close the file, type: make and to run, type: . /sbnb
More test instances on MINLPLib: A Library of Mixed-Integer and Continuous Nonlinear

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay


http://www.minlplib.org/instances.html

Problem instance generation and solving

Consider the problem
Min x50+ 2072 + 35705 a7 4 52 4 6ag 1 4 T 4 8x 12 4 9
st Xo+x1+x2+x3+x1+ x5+ % +x7+ x5 < 64
1 <x; <64, integer Vi=0,...,8.

Let us try!
@ Type: cd ~/minotaur/examples/orsi2018
@ Open the file SimpleBnb. cpp (type: gedit SimpleBnb.cpp)
@ Go to the main function
o function to create problem
e solve function
@ Close the file, type: make and to run, type: . /sbnb
@ Add a constraint: Sum of x; and x¢ should not be more than 2.
o Mathematically, x, 4+ x5 < 2
o In SimpleBnb.cpp in createProblem function
LinearFunctionPtr If1 = (LinearFunctionPtr) new LinearFunction();
FunctionPtr funl;
1f1->addTerm(vars[2],1.0);
If1->addTerm(vars[6],1.0);
funl = (FunctionPtr) new Function(l1f1);
p->newConstraint(funl, -INFINITY, 2);
@ Close the file, type: make and to run, type: . /sbnb

More test instances on MINLPLib: A Library of Mixed-Integer and Continuous Nonlinear

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay


http://www.minlplib.org/instances.html

Customize an existing brancher

Different branching rules:
@ Lexicographic: choose candidate with smallest index

@ Maximum violation: choose the most fractional candidate

e x1 = 0.9, score = 0.1(0.8) + 0.9 x (0.2) = 0.26
e x5 = 0.2, score = 0.2(0.8) + 0.8 % (0.2) = 0.32

o x¢ = 0.4, score = 0.4(0.8) + 0.6 = (0.2) = |

Branching rule: Perform minimum violation based selection

Let us try
@ Open the file MinVioBrancher.cpp
@ Locate the function findBestCandidate_ ()
@ Make the required changes as discussed

@ Close the file and open SimpleBnb. cpp

e include the brancher to the file
@ use this brancher

@ Close the file, type: make and to run, type: ./sbnb

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay



A new brancher MaxVioBinFirst

Branching rule: Select the Maximum Violation Binary Variable First
Same as MaxVio but in addition gives preference to binary variables

Let us try
@ To open the file type: MaxVioBinFirstBrancher.cpp
@ Locate the function findBestCandidate_ ()
@ Observe the implementation of the branching rule
@ Close the file and type: make maxVioBinFirst
@ Torun type: . /bfbnb instances/tls2.nl > tls2.out
@ See the outputin t1s2.out

@ observe:

o branching candidates and best branching candidate at different nodes
@ solve statistics

Play around with instances in the library

op on Mixedinteger nonlinear optimization IEOR, IIT Bombay


http://www.minlplib.org/instances.html

THANK YOU.

For any discussions/questions, please contact:
@ Prof. Ashutosh Mahajan (amahajan@iitb.ac.in)
@ Prashant Palkar (prashant.palkar@iitb.ac.in)

@ Meenarli Sharma (meenarli@iitb.ac.in)

Workshop on Mixedinteger nonlinear optimization IEOR, IIT Bombay



