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Why does it work?



1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.



2) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again. 
    (look for the left-most place value).

1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
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What can be appropriate abstract game forms?





0



0 = } 0



0 = } 0



0 = } 0

0 0

∗



0 = } 0

∗ = 0 0}

0 0

∗



0 = } 0

∗ = 0 0}

0 0

∗



0 = } 0

∗ = 0 0}

0 0

∗

∗ ∗

0 0

0 0 0 0

∗ 2



0 = } 0

∗ = 0 0}

0 0

∗

∗ ∗

0 0

0 0 0 0

∗ 2

∗ 2 = 0,∗ 0,∗}



0 = } 0

∗ = 0 0}

0 0

∗

∗ ∗

0 0

0 0 0 0

∗ 2

∗ 2 = 0,∗ 0,∗}

…..

𝑛 stones



0 = } 0

∗ = 0 0}

0 0

∗

∗ ∗

0 0

0 0 0 0

∗ 2

∗ 2 = 0,∗ 0,∗}

….. ∗ 𝑛 = 0,∗,… ,∗ (𝑛 − 1) 0,∗, … . ,∗ (𝑛 − 1)}

𝑛 stones



0 = } 0

∗ = 0 0}

0 0

∗

∗ ∗

0 0

0 0 0 0

∗ 2

∗ 2 = 0,∗ 0,∗}

….. ∗ 𝑛 = 0,∗,… ,∗ (𝑛 − 1) 0,∗, … . ,∗ (𝑛 − 1)}

𝑛 stones
NIMBERS



𝐺 = {𝐺L| 𝐺R }



How can one formalize a situation where there is more than one pile (disjoint components, disjunctive sum)?
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Is «being isomorphic» the only way to «be equal»?



In terms of game practice, when should two components be considered equal?
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Surreal Numbers: How Two Ex-Students 
Turned On to Pure Mathematics and 
Found Total Happiness
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Part II: Partizan Games

I.1: Some famous games
                I.2: Contribution of John Conway (1970’s)
 I.3: Elwyn Berlekamp, John Conway, and Richard Guy: the birth of a theory (1982)
                I.4: How can you apply the theory?

Annex: Why study Combinatorial Game Theory?
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