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Charles Leonard Bouton

Born April 25, 1869
St. Louis

Died February 20, 1922 (aged 52)
Cambridge

Resting place Mount Auburn Cemetery
Nationality United States of America

Occupation(s) mathematician, university
teacher

NIM, A GAME WITH A COMPLETE MATHEMATICAL
THEORY.

By Cmarces L. BouTow.

THE game here discussed has interested the writer on account of its secm-
ingz complexity, and its extremely simple and complete mothematical theory.*
The writer has nol been able to discover much concerning its history, although
certain forms of it seem to be played at a number of American colleges, and
at some of the American fuirs. It has been called Fan-Tan, but as it is not
the Chinese game of that name, the name in the title is proposed for it.

1. Description of the Game, The game is played by two players,
A and B. Upon a table are placed three piles of objects of any kind, let us
say counters. The number in each pile is quite arbitrary, except that it is well
to agree that no two piles shall he equal at the beginning. A play is made as
follows :—The player selects one of the piles, and from it takes ns many coun-
ters as he chooses; one, two, . . ., or the whole pile. The only essential
things about a play are that the counters shall be taken from a single pile, and
that at least one shall be taken. The players play alternately, and the player
who takes up the last counter or counters from the table wins.

It is the writer’s purpose to prove that if one of the players, say A, can
leave one of a certain set of numbers upon the table, and after that plays with-
out mistake, the other player, B, cannot win. Such a set of numbers will be
called u safe combination. In outline the proof consists in showing that if 4
leaves a safe combination on the table, B at his next move cannot leave a safe
combination, and whatever B may draw, 4 at his next move can again leave u
safe combination. The piles are then reduced, A always leaving a safe com-
binatien, and B never doing so, and .4 must eventually tuke the last counter
(or counters),

2. Its Theory. A safe combination is determined as follows: Wiite
the number of the counters in each pile in the binary scale of notation,{ and

* The modification of the game given in §6 was described to the writer by Mr. Paul E.
More in October, 1809. Mr. More at the same time gave a method of play which, although
expressed in a different form, is really the same as that used here, but he conld give no proof
of his rule.

t For example, the number 9, written in this notation, will appear as

122 + 0-2t 4 0-2' 4 129 = 1001.
(38)
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Why does it work?
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1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.

2) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again.
(look for the left-most place value).

If the NIM sum is zero, the position is a P-position.

If it is your turn and the NIM sum is not zero, you should be happy. Make it zero!

POSSIBLE OUTCOMES



1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.

2) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again.
(look for the left-most place value).

If the NIM sum is zero, the position is a P-position.

If the NIM sum is not zero, the position is an N-position.

POSSIBLE OUTCOMES
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What can be appropriate abstract game forms?
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How can one formalize a situation where there is more than one pile (disjoint components, disjunctive sum)?
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Is «being isomorphic» the only way to «be equal»?



Is «being isomorphic» the only way to «be equal»?

In terms of game practice, when should two components be considered equal?
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The component is irrelevant. 0
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The component is irrelevant. Being there or not is the same in
terms of outcome. The positions on the left and on the right
have the same outcome, regardless of what the other
components may be.

{3



The component is irrelevant. Being there or not is the same in
terms of outcome. The positions on the left and on the right
have the same outcome, regardless of what the other
components may be. In terms of outcome, they cannot be
distinguished. In all situations, one can be replaced by the
other without changing the outcome.

{3
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Sprague-Grundy Theory

Omnipresence of nimbers: Given an impartial form . there i1s a
nonnegative integer n such that G = xn (the Grundy-value of G is n,
written as G(G) = n).

Determination of the Grundy-value of G from its options: It G =% 1s
an impartial form, then G(G) = mex{G(G’) : G’ € ¥4}.

Determination of the Grundy-value of a disjunctive sum, knowing the
Grundy-values of the components: 1f G and H are impartial, then

G(G+H)=6G(G)®G(H).

Relation between the Grundy-value of G and its outcome: Given an
impartial form G, the outcome of GG is P if and only if G(G) = 0.
An important consequence of this fact is that G(G) = k if and only if
(G + xk 18 a P-position.
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THE game here discussed has interested the writer on account of its secm-
ingz complexity, and its extremely simple and complete mathematical theory.*
The writer has nol been able to discover much concerning its history, although
certain forms of it seem to be played at a number of American colleges, and
at some of the American fuirs. It has been called Fan-Tan, but as it is not
the Chinese game of that name, the name in the title is proposed for it.

1. Description of the Game, The game is played by two players,
A and B. Upon a table are placed three piles of objects of any kind, let us
say counters. The number in each pile is quite arbitrary, except that it is well
to agree that no two piles shall he equal at the beginning. A play is made as
follows :—The player selects one of the piles, and from it takes ns many coun-
ters as he chooses; one, two, . . ., or the whole pile. The only essential
things about a play are that the counters shall be taken from a single pile, and
that at lenst one shall be taken. The players play alternately, and the player
who tukes up the last counter or counters from the table wins.

It is the writer’s purpose to prove that if one of the players, say A, can
leave one of a certain set of numbers upon the table, and after that plays with-
out mistake, the other player, B, cannot win. Such a set of numbers will be
called a safe combination. In outline the proof consists in showing that if 4
leaves a safe combination on the table, B at his next move cannot leave a safe
combination, and whatever B may draw, 4 at his next move can again leave u
safe combination. The piles are then reduced, A always leaving a safe com-
binatien, and B never doing so, and .4 must eventually take the last counter
(or counters),

2. Its Theory. A safe combination is determined as follows: Wiite
the number of the counters in each pile in the binary scale of notation,} and

* The modification of the game given in §6 was described to the writer by Mr. Paul E.
More in October, 1809. Mr. More at the same time gave a method of play which, although
expressed in a different form, is really the same as that used here, but he counld give no proof
of his rule.

t For example, the number 9, written in this notation, will appear as

1-23 4 0-2* 4 02" 4 1-2° = 1001.
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THE game here discussed has interested the writer on account of its secm-
ingz complexity, and its extremely simple and complete mathematical theory.*
The writer has nol been able to discover much concerning its history, although
certain forms of it seem to be played at a number of American colleges, and
at some of the American fuirs. It has been called Fan-Tan, but as it is not
the Chinese game of that name, the name in the title is proposed for it.

1. Description of the Game, The game is played by two players,
A and B. Upon a table are placed three piles of objects of any kind, let us
say counters. The number in each pile is quite arbitrary, except that it is well
to agree that no two piles shall he equal at the beginning. A plny is made as
follows :—The player selects one of the piles, and from it takes ns many coun-
ters as he chooses; one, two, . . ., or the whole pile. The only essential
things about a play are that the counters shall be taken from a single pile, and
that at lenst one shall be taken. The players play alternately, and the player
who tukes up the last counter or counters from the table wins.

It is the writer’s purpose to prove that if one of the players, say A, can
leave one of a certain set of numbers upon the table, and after that plays with-
out mistake, the other player, B, cannot win. Such a set of numbers will be
called a safe combination. In outline the proof consists in showing that if 4
leaves a safe combination on the table, B at his next move cannot leave a safe
combination, and whatever B may draw, 4 at his next move can again leave u
safe combination. The piles are then reduced, A always leaving a safe com-
binatien, and B never doing so, and .4 must eventually take the last counter
(or counters),

2. Its Theory. A safe combination is determined as follows: Wiite
the number of the counters in each pile in the binary scale of notation,} and

* The modification of the game given in §6 was described to the writer by Mr. Paul E.
More in October, 1809. Mr. More at the same time gave a method of play which, although
expressed in a different form, is really the same as that used here, but he counld give no proof
of his rule.

t For example, the number 9, written in this notation, will appear as

1-22 + 0-2® + 0-2' 4 1'29 = 1001
(35)

o Omuipresence of mimbers: Given an impartial form G, there is a
nonnegative integer n such that &G = xn (the Grundy-value of G is n,
written as G(G) = n).
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Born

Died

John Horton Conway

Conwéy in June 2005

26 December 1937
Liverpool, England

11 April 2020 (aged 82)

New Brunswick, New Jersey, U.S.
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Surreal Numbers: How Two Ex-Students
Turned On to Pure Mathematics and
i i 5 Found Total Happiness
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VOLUME I' GAMES IN GENERAL

for your mathematical plays

Elwyn R Berlekamp
John H. Conway « Richard K Guy
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Annex: Why study Combinatorial Game Theory?



An Intellectual Introduction was written by renowned Professor Elwyn Berlekamp (one
of the founding fathers of CGT). We highlight

Most of the initial theoretical results of combinatorial game theory were achieved by exploiting the power of
recursions. Combinatorial game theory has that in common with many other mathematical topics, including
fractals and chaos. Combinatorial game theory also has obvious and more detailed overlaps with many other
branches of mathematics and computer science, including topics such as algorithms, complexity theory, finite

automata, logic, surreal analysis, number theory, and probability.
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Playing Games with Algorithms:
Algorithmic Combinatorial Game Theory*

Erik D. Demaine! Robert A. Hearn!

Abstract

Combinatorial games lead to several interesting, clean problems in algorithms and complexity
theory, many of which remain open. The purpose of this paper is to provide an overview
of the area to encourage further research. In particular, we begin with general background
in Combinatorial Game Theory, which analyzes ideal play in perfect-information games, and
Constraint, Logic, which provides a framework for showing hardness. Then we survey results
about the complexity of determining ideal play in these games, and the related problems of
solving puzzles, in terms of both polynomial-time algorithms and computational intractability
results. Our review of background and survey of algorithmic results are by no means complete,
but should serve as a useful primer.

1 Introduction

Many classic games are known to be computationally intractable (assuming P # NP): one-player
puzzles are often NP-complete (as in Minesweeper) or PSPACE-complete (as in Rush Hour), and
two-player games are often PSPACE-complete (as in Othello) or EXPTIME-complete (as in Check-
ers, Chess, and Go). Surprisingly, many seemingly simple puzzles and games are also hard. Other
results are positive, proving that some games can be played optimally in polynomial time. In some
cases, particularly with one-player puzzles, the computationally tractable games are still interesting
for humans to play.
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Lexicographic Codes: Error-Correcting
Codes from Game Theory

JOHN H. CONWAY anp N. I. A. SLOANE, FELLOW, IEEE

Abstract—Lexicographic codes, or lexicodes, are defined by various
versions of the greedy algorithm. The theory of these codes is closely
related to the theory of certain impartial games, which leads to a number
of surprising properties. For example, lexicodes over an alphabet of size
B =2“ are closed under addition, while if B =22 the lexicodes are

losed under multiplication by scalars, where addition and multiplication
are in the nim sense explained in the text. Hamming codes and the binary
Golay codes are lexicodes. Remarkably simple constructions are given for
the Steiner systems 5(5,6,12) and S5(5,8,24). Several record-breaking
constant weight codes are also constructed.

I. INTRODUCTION

HIS PAPER is concerned with various classes of

lexicographic codes, that is, codes that are defined by
a greedy algorithm: each successive codeword is selected as
the first word not prohibitively near (in some prescribed
sense) to earlier codewords. For example, the very simplest
class of lexicographic codes is defined as follows. We
specify a base B and a desired minimal Hamming distance
d. The first codeword accepted is the zero word. Then we
consider all base-B vectors in turn, and accept a vector as
a codeword if it is at Hamming distance at least 4 from all
previously accepted codewords. (An example with B = 3
and d = 3 can be seen in Table XI.)

One of our goals is to point out the essential identity
between this kind of lexicographic coding theory and the
theory of certain impartial games (see Section II). Then the
Sprague Grundy theory of games has a number of inter-
esting and surprising consequences for lexicographic codes
(or lexicodes).

1} Unrestricted binary lexicodes are linear (Theorems
1,3).

2) For base B = 2% unrestricted lexicodes are closed

- Two other results worth mentioning here are the follow-
ing.

5) Several well-known codes unexpectedly turn out to
be lexicographic codes, including Hamming codes and the
binary Golay codes of length 23 and 24 (Section ITI-B).

6) The constant weight binary lexicode of length 24,
distance 8 and weight 8 is the Steiner system S(5,8,24)
(Theorem 12). By imposing an additional constraint on a
constant weight lexicode (see Section IV-E), Ryba ob-
tained an almost equally simple construction for the Steiner
system S(5,6,12) (Theorem 13). The corresponding game,
called Mathematical Blackjack (or Mathieu’s Vingt-et-un)
is described at the end of Section IV-E.

7) A number of constant weight codes with minimal
distance 10 and containing a record number of codewords
are given in Table XIIIL

Some of the game-theoretic aspects of this work are
described in [1] and [2]. The relations between the theories
of games and of lexicographic codes, and in particular the
multiplicative theorem, underly some of the results in [1].
IHowever, most of the results are published here for the
first time. This work may be regarded as a coding-theoretic
analog of the laminated latticcs described in [5], [6].

The paper is arranged as follows. The connections with
game theory are discussed in Section LI, unrestricted lexi-
codes are treated in Section I11, and Section IV deals with
constant weight and constrained lexicodes. Tables IV-VIII
and XII give the parameters of a number of lexicodes.

1. Tue CoNNECTIONS WITH GAME THEORY

A. Grundy’s Game
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