A quick journey into Combinatorial Game Theory

Games at Mumbai 2024
Combinatorial Games at Mumbai, January 21-25 2024

Carlos P. Santos, Center for Mathematics and Applications (NovaMath), FCT NOVA, Portugal

Carlos P. Santos' work is funded by national funds through the FCT, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

NOVAMATH 士巩

+ APPlications

Fundac̣ão e a Tecnologia

Part I: Impartial Games

Part I: Impartial Games

Part II: Partizan Games

Part I: Impartial Games

Part II: Partizan Games

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games

Part II: Partizan Games

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)

Part II: Partizan Games

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$

Part II: Partizan Games

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$
I.4: How can you apply the theory?

Part II: Partizan Games

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$
I.4: How can you apply the theory?

Part II: Partizan Games

I.1: Some famous games

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$
I.4: How can you apply the theory?

Part II: Partizan Games

I.1: Some famous games
I.2: Contribution of John Conway (1970’s)

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$
I.4: How can you apply the theory?

Part II: Partizan Games

I.1: Some famous games
I.2: Contribution of John Conway (1970’s)
I.3: Elwyn Berlekamp, John Conway, and Richard Guy: the birth of a theory (1982)

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$
I.4: How can you apply the theory?

Part II: Partizan Games

I.1: Some famous games
I.2: Contribution of John Conway (1970’s)
I.3: Elwyn Berlekamp, John Conway, and Richard Guy: the birth of a theory (1982)
I.4: How can you apply the theory?

Annex: Why study Combinatorial Game Theory?

Part I: Impartial Games

Part I: Impartial Games

I.1: Some famous games

$$
\begin{array}{r}
00 \\
0 \\
0
\end{array}
$$

My turn

My turn

My turn

Your turn

Your turn

My turn

My turn

Your turn

I have no moves. I lose the game.

My turn

CRAM

\square					

\square					

WYTHOFF'S QUEENS

WYTHOFF'S QUEENS

WYTHOFF'S QUEENS

WYTHOFF'S QUEENS

$\square T$					
1					

WYTHOFF'S QUEENS

-												
-												
-												
-												
-												
Nirp	$\stackrel{818}{\sim}$											
	N939											

WYTHOFF'S QUEENS

239	四号												
		R品号											

WYTHOFF'S QUEENS

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)

NIM, A GAME WITH A COMPLETE MATHEMATICAL

 THEORY.By Charles L. Bouton.
The game here discussed has interested the writer on account of its seeming complexity, and its extremely simple and complete mathematical theory.* The writer has not been able to discover much concerning its history, although certain forms of it seem to be played at a number of American colleges, and at some of the American fairs. It has been called Fan-Tan, but as it is not the Chinese game of that name, the name in the title is proposed for it.

1. Description of the Game. The game is played by two players, A and B. Upon a table are placed three piles of objects of any kind, let us say counters. The number in eacb pile is quite arbitrary, except that it is well to agree that no two piles shall be equal at the beginning. A play is made as follows :-The player selects one of the piles, and from it takes as many counters as be chooses; one, two, . . ., or the whole pile. The only essential things about a play are that the counters shall be taken from a single pile, and that at least one shall be taken. The players play alternately, and the player who takes up the last counter or counters from the table wins.

It is the writer's purpose to prove that if one of the players, say A, can leave one of a certain set of numbers upon the table, and after that plays without mistake, the other player, B, cannot win. Such a set of numbers will be called a safe combination. In outline the proof consists in showing that if A leaves a safe combination on the table, B at his next move cannot leave a safe combination, and whatever B may draw, A at his next move can again leave a safe combination. The piles aro then reduced, A always leaving a safe combination, and B never doing so, and A must eventually take the last counter (or counters).
2. Its Theory. A safe combination is determined as follows: Write the number of the counters in each pile in the binary scale of notation, \dagger and

- The modification of the game given in \S_{6} was described to the writer by Mr. Paul E. tore in October, 1809. Mr. More at the same time gave a method of play which, although expressed in a different form, is really the same as that nsed here, but he could give no proo of his rule.
+ For example, the number 9 , written in this notation, will appear as
$1 \cdot 2^{3}+0 \cdot 2^{x}+0 \cdot 2^{1}+1 \cdot 2^{0}=1001$.

$$
\begin{array}{r}
00 \\
0 \\
0
\end{array}
$$

4	2	1
1	0	0
	1	0
		1

NIM

$$
\xrightarrow{0}
$$

| 4 | 2 | 1 | |
| :--- | :--- | :--- | :--- | :--- |
| | 1 | 0 | |
| | | | |

Why does it work?

1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
2) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
3) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again. (look for the left-most place value).
4) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
5) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again. (look for the left-most place value).

If it is your turn and the NIM sum is zero, you should be sad. You are lost.

1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
2) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again. (look for the left-most place value).

If it is your turn and the NIM sum is zero, you should be sad. You are lost.

If it is your turn and the NIM sum is not zero, you should be happy. Make it zero!

1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
2) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again. (look for the left-most place value).

If it is your turn and the NIM sum is zero, you should be sad. You are lost.

If it is your turn and the NIM sum is not zero, you should be happy. Make it zero!

POSSIBLE OUTCOMES

1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
2) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again. (look for the left-most place value).

If the NIM sum is zero, the position is a \boldsymbol{P}-position.
If it is your turn and the NIM sum is not zero, you should be happy. Make it zero!

POSSIBLE OUTCOMES

1) Whenever the NIM sum results in zero, if there are available moves, any move results in a NIM sum different than zero.
2) Whenever the NIM sum is not zero, there is always a move that makes the NIM sum be zero again. (look for the left-most place value).

If the NIM sum is zero, the position is a \boldsymbol{P}-position.
If the NIM sum is not zero, the position is an \mathbf{N}-position.

POSSIBLE OUTCOMES

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$

What can be appropriate abstract game forms?
:

$$
0=\{\mid\}
$$

$$
0=\{\mid\}
$$

$$
0=\{\mid\}
$$

$$
0
$$

$$
0=\{\mid\}
$$

$$
*=\{0 \mid 0\}
$$

$$
0=\{\mid\}
$$

0
$*=\{0 \mid 0\}$

$$
0=\{\mid\}
$$

$$
*=\{0 \mid 0\}
$$

$$
0=\{\mid\}
$$

$$
*=\{0 \mid 0\}
$$

$$
* 2=\{0, * \mid 0, *\}
$$

$$
0=\{\mid\}
$$

$$
*=\{0 \mid 0\}
$$

$$
* 2=\{0, * \mid 0, *\}
$$

$$
0=\{\mid\}
$$

$$
*=\{0 \mid 0\}
$$

$$
* n=\{0, *, \ldots, *(n-1) \mid 0, *, \ldots . *(n-1)\}
$$

$$
0=\{\mid\}
$$

$$
*=\{0 \mid 0\}
$$

$$
* 2=\{0, * \mid 0, *\}
$$

$$
* n=\{0, *, \ldots, *(n-1) \mid 0, *, \ldots . *(n-1)\}
$$

NIMBERS
$G=\left\{G^{\mathrm{L}} \mid G^{\mathrm{R}}\right\}$

How can one formalize a situation where there is more than one pile (disjoint components, disjunctive sum)?

$$
+
$$

*

$$
\{*+* \quad \mid *+* \quad\}
$$

* 2
 0

$$
\{*+* \quad \mid *+* \quad\}
$$

$$
\{*+*, 0+* \quad \mid *+*, 0+* \quad\}
$$

* 2

$+$

*

$\{*+*, 0+*$
$\mid *+*, 0+*$
\}

$$
\{*+*, 0+*, * 2+0 \mid *+*, 0+*, * 2+0\}
$$

$G+H$

$$
G+H=\left\{G^{\mathrm{L}} \mid G^{\mathrm{R}}\right\}+\left\{H^{\mathrm{L}} \mid H^{\mathrm{R}}\right\}
$$

$$
G+H=\left\{G^{\mathrm{L}} \mid G^{\mathrm{R}}\right\}+\left\{H^{\mathrm{L}} \mid H^{\mathrm{R}}\right\}=\left\{G^{\mathrm{L}}+H, G+H^{\mathrm{L}} \mid G^{\mathrm{R}}+H, G+H^{\mathrm{R}}\right\}
$$

$$
G+H=\left\{G^{\mathrm{L}} \mid G^{\mathrm{R}}\right\}+\left\{H^{\mathrm{L}} \mid H^{\mathrm{R}}\right\}=\left\{G^{\mathrm{L}}+H, G+H^{\mathrm{L}} \mid G^{\mathrm{R}}+H, G+H^{\mathrm{R}}\right\}
$$

:

0

:

0

-

:

0

$\cong:$

\square

Is «being isomorphic» the only way to «be equal»?

Is «being isomorphic» the only way to «be equal»?

In terms of game practice, when should two components be considered equal?

${ }^{0}$
If a player makes a move, then, in a worst-case scenario, the opponent can finish the component with their answer.

${ }^{0}$
If a player makes a move, then, in a worst-case scenario, the opponent can finish the component with their answer.

${ }^{0}$
If a player makes a move, then, in a worst-case scenario, the opponent can finish the component with their answer.

The component is irrelevant.

The component is irrelevant. Being there or not is the same in ${ }^{0}$ terms of outcome. The positions on the left and on the right have the same outcome, regardless of what the other components may be.

The component is irrelevant. Being there or not is the same in terms of outcome. The positions on the left and on the right have the same outcome, regardless of what the other components may be. In terms of outcome, they cannot be distinguished. In all situations, one can be replaced by the other without changing the outcome.

$$
?
$$

0
\{1\}
$\{* \mid *\}$

$$
G=H
$$

$$
G=H
$$

iff
$o(G+X)=o(H+X)$, for all X

Sprague-Grundy Theory

Sprague-Grundy Theory

- Omnipresence of nimbers: Given an impartial form G, there is a nonnegative integer n such that $G=* n$ (the Grundy-value of G is n, written as $\mathcal{G}(G)=n)$.

Sprague-Grundy Theory

- Omnipresence of nimbers: Given an impartial form G, there is a nonnegative integer n such that $G=* n$ (the Grundy-value of G is n, written as $\mathcal{G}(G)=n)$.

Sprague-Grundy Theory

- Omnipresence of nimbers: Given an impartial form G, there is a nonnegative integer n such that $G=* n$ (the Grundy-value of G is n, written as $\mathcal{G}(G)=n)$.
- Determination of the Grundy-value of G from its options: If $G=\mathscr{G}$ is an impartial form, then $\mathcal{G}(G)=\operatorname{mex}\left\{\mathcal{G}\left(G^{\prime}\right): G^{\prime} \in \mathscr{G}\right\}$.

Sprague-Grundy Theory

- Omnipresence of nimbers: Given an impartial form G, there is a nonnegative integer n such that $G=* n$ (the Grundy-value of G is n, written as $\mathcal{G}(G)=n)$.
- Determination of the Grundy-value of G from its options: If $G=\mathscr{G}$ is an impartial form, then $\mathcal{G}(G)=\operatorname{mex}\left\{\mathcal{G}\left(G^{\prime}\right): G^{\prime} \in \mathscr{G}\right\}$.
- Determination of the Grundy-value of a disjunctive sum, knowing the Grundy-values of the components: If G and H are impartial, then $\mathcal{G}(G+H)=\mathcal{G}(G) \oplus \mathcal{G}(H)$.

Sprague-Grundy Theory

- Omnipresence of nimbers: Given an impartial form G, there is a nonnegative integer n such that $G=* n$ (the Grundy-value of G is n, written as $\mathcal{G}(G)=n)$.
- Determination of the Grundy-value of G from its options: If $G=\mathscr{G}$ is an impartial form, then $\mathcal{G}(G)=\operatorname{mex}\left\{\mathcal{G}\left(G^{\prime}\right): G^{\prime} \in \mathscr{G}\right\}$.
- Determination of the Grundy-value of a disjunctive sum, knowing the Grundy-values of the components: If G and H are impartial, then $\mathcal{G}(G+H)=\mathcal{G}(G) \oplus \mathcal{G}(H)$.
- Relation between the Grundy-value of G and its outcome: Given an impartial form G, the outcome of G is \mathcal{P} if and only if $\mathcal{G}(G)=0$. An important consequence of this fact is that $\mathcal{G}(G)=k$ if and only if $G+* k$ is a \mathcal{P}-position.
nim, a game with a COMPLETE mathematicala
THEORY
By Charles L. Bouton.
The game here discussed has interested the writer on account of its seeming complexity, and its extremely simple and complete mathematical theory.* The writer has not been able to discover much concerning its history, although certain forms of it seem to be played at a number of American colleges, and at some of the American fairs. It has been called Fan-Tan, but as it is not the Chinese game of that name, the name in the title is proposed for it.

1. Description of the Game. The game is played by two players, A and B. Upon a table are placed three piles of objects of any kind, let us say counters. The number in eacb pile is quite arbitrary, except that it is well to agree that no two piles shall be equal at the beginning. A play is made as follows:-The player selects one of the piles, and from it takes ns many counters as he chooses; one, two, . . ., or the whole pile. The ouly essential things about a play are that the counters shall be taken from a single pile, and that at lenst one shall be taken. The players play alternately, and the player who takes up the last counter or counters from the table wins.

It is the writer's purpose to prove that if one of the players, say A, can leave one of a certain set of numbers upon the table, and after that plays without mistake, the other player, B, cannot win. Such a set of numbers will be called a safe combination. In outline the proof consists in showing that if A leaves a safe combination on the table, B at his next move cannot leave a safe conbination; and whatever B may draw, \boldsymbol{A} at his next move can again leave a safe combination. The piles aro then reduced, A always leaving a safe combination, and B never doing so, and A must eventually take the last counter (or counters).
2. Its Theory. A safe combination is determined as follows: W rite the number of the counters in each pile in the binary scale of notution, \dagger and

- The modification of the game given in $\S 6$ was described to the writer by Mr. Paul \mathbf{E}. More in October, 1899. Mr. More at the same time gave a method of play which, although More in october, 1809 . Mr. More at the same time gave a method of play which, although
expressed in a diferent form, is really the same as that used here, but he could give no proof of his rule.
\dagger For example, the number 9 , written in this notation, will appear as
$1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=1001$.

By Charles L. Bouton.
The game here discussed has interested the writer on account of its seeming complexity, and its extremely simple and complete mathematical theory.* The writer has not been able to discover much concerning its history, although certain forms of it seem to be played at a number of American colleges, and at some of the American fairs. It has been called Fan-Tan, but as it is not the Chinese game of that name, the name in the title is proposed for it.

1. Description of the Game. The game is played by two players, A and B. Upon a table are placed three piles of objects of any kind, let us say counters. The number in eacb pile is quite arbitrary, except that it is well to agree that no two piles shall he equal at the beginning. A play is made as follows:-The player selects one of the piles, and from it takes ns many counters as he chooses; one, two, . . ., or the whole pile. The ouly essential things about a play are that the counters shall be taken from a single pile, and that at lenst one shall be taken. The players play alternately, and the player who takes up the last counter or counters from the table wins.

It is the writer's purpose to prove that if one of the players, say A, can leave one of a certain set of numbers upon the table, and after that plays without mistake, the other player, B, cannot win. Such a set of numbers will be called a safe combination. In outline the proof consists in showing that if A leaves a safe combination on the table, B at his next move cannot leave a safe conbination; and whatever B may draw, \boldsymbol{A} at his next move can again leave a safe combination. The piles aro then reduced, A always leaving a safe combination, and B never doing so, and A must eventually take the last counter (or counters).
2. Its Theory. A safe combination is determined as follows: W rite the number of the counters in each pile in the binary scale of notution, \dagger and

- The modification of the game given in $\S 6$ was described to the writer by Mr. Paul \mathbf{E}. More in October, 1809. Mr. More at the same time gave a method of play which, although expressed in a different form, is really the same as that used here, but he could give no prons of his rule.
\dagger For example, the number 9 , written in this notation, will appear as
$1 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=1001$.
- Omnipresence of nimbers: Given an impartial form G, there is a nonnegative integer n such that $G=* n$ (the Grundy-value of G is n, written as $\mathcal{G}(G)=n$).

Part I: Impartial Games

I.1: Some famous games
I.2: Contribution of Charles Bouton (1902)
I.3: Patrick Grundy and Roland Sprague: the birth of a theory $(1935,1939)$
I.4: How can you apply the theory?

WYTHOFF'S QUEENS

WYTHOFF'S QUEENS

WYTHOFF'S QUEENS

0														

WYTHOFF'S QUEENS

WYTHOFF'S QUEENS

1														
0														

WYTHOFF'S QUEENS

1														
0	1													

WYTHOFF'S QUEENS

\%							

WYTHOFF'S QUEENS

1	2													
0	1													

WYTHOFF'S QUEENS

arid														
1	2													
0^{\downarrow}	1													

WYTHOFF'S QUEENS

2														
1	2													
0	1													

WYTHOFF'S QUEENS

2														
1	2													
0	1	2												

WYTHOFF'S QUEENS

2	ΩZ													
$\mathbf{1}$	2													
0	1	2												

WYTHOFF'S QUEENS

2	0													
1	2													
0	1	2												

WYTHOFF'S QUEENS

2	0													
1	2	0												
0	1	2												

3	4	5	6	2										
2	0	1	5	3										
1	2	0	4	5										
0	1	2	3	4										

WYTHOFF'S QUEENS

3	819	5	6	$2{ }^{2}$									
2	0	919	5	3									
1	2	0	4	5									
0	1	2	3	4									

3	33_{4}	5	6	82										
2	0													
19	5	3												
1	2	0	4	5										
0	1	2	3	4										

\oplus

833	4	5	66	2									
2	0	踢	5	3									
1	2	0	4	5									
0	1	2	3	4									

\oplus

3	4	5	6	2									
2	0	319	5	3									
1	129	0	4	5									
283	1	2	3	4									

10 1
 \oplus
 11

3	4	5	6	2									
2	0	8920	5	3									
1	2	0	4	5									
03	1	2	3	4									

\oplus

3	4	5	6	2									
22	0	1	5	3									
1	2	0	4	5									
83	哖	2	3	4									

10 1
 \oplus
 11

3	4	5	6	2									
2	0	1	5	3									
19	2	0	4	5									
	13	2	3	4									

\oplus

3	4	5	6	2									
2	0	1	5	3									
1	2	0	4	5									
0	$1{ }^{1}$	2	3	4									

3	4	5	6	2										
2	0	1	5	3										
1	2	0	4	5										
168	1	2	3	4										

$\square \ggg 0$

CRAM

Part II: Partizan Games

Part II: Partizan Games

I.1: Some famous games

BLUE-RED-HACKENBUSH

BLUE-RED-HACKENBUSH

BLUE-RED-HACKENBUSH

My turn

BLUE-RED-HACKENBUSH

My turn

BLUE-RED-HACKENBUSH

BLUE-RED-HACKENBUSH

BLUE-RED-HACKENBUSH

My turn

BLUE-RED-HACKENBUSH

My turn

BLUE-RED-HACKENBUSH

My turn

BLUE-RED-HACKENBUSH

BLUE-RED-HACKENBUSH

BLUE-RED-HACKENBUSH

BLUE-RED-HACKENBUSH

And so on

DOMINEERING

DOMINEERING

My turn

	-						

DOMINEERING

My turn

| | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

								$\boxed{l l}$						

DOMINEERING

My turn

DOMINEERING

My turn

-							
-							
-							
\square -							

								$\boxed{l l}$						

| | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DOMINEERING

My turn

DOMINEERING

My turn

					\square		
					\square		

And so on...

-														
											\square			
-														
										-				

Part II: Partizan Games

I.1: Some famous games
I.2: Contribution of John Conway (1970’s)

\qquad
$\{\mid\}=0$
1

$\{0 \mid\}=1$
1

$$
\{\mid 0\}=-1
$$

$$
-1+1=0
$$

\{0|1\}

$\{0 \mid\}=1$

\{0|1\}

$\{0 \mid 1\}=\frac{1}{2}$

Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness

Part II: Partizan Games

I.1: Some famous games
I.2: Contribution of John Conway (1970’s)
I.3: Elwyn Berlekamp, John Conway, and Richard Guy: the birth of a theory (1982)

ElwynR.Berlekamp John H. Conway • Richard K. Guy

Part II: Partizan Games

I.1: Some famous games
I.2: Contribution of John Conway (1970's)
I.3: Elwyn Berlekamp, John Conway, and Richard Guy: the birth of a theory (1982)
I.4: How can you apply the theory?

Annex: Why study Combinatorial Game Theory?

An Intellectual Introduction was written by renowned Professor Elwyn Berlekamp (one of the founding fathers of CGT). We highlight

Most of the initial theoretical results of combinatorial game theory were achieved by exploiting the power of recursions. Combinatorial game theory has that in common with many other mathematical topics, including fractals and chaos. Combinatorial game theory also has obvious and more detailed overlaps with many other branches of mathematics and computer science, including topics such as algorithms, complexity theory, finite automata, logic, surreal analysis, number theory, and probability.

Playing Games with Algorithms: Algorithmic Combinatorial Game Theory*

Erik D. Demaine ${ }^{\dagger}$
 Robert A. Hearn ${ }^{\ddagger}$

Abstract

Combinatorial games lead to several interesting, clean problems in algorithms and complexity theory, many of which remain open. The purpose of this paper is to provide an overview of the area to encourage further research. In particular, we begin with general background in Combinatorial Game Theory, which analyzes ideal play in perfect-information games, and Constraint Logic, which provides a framework for showing hardness. Then we survey result about the complexity of determining ideal play in these games, and the related problems of solving puzzles, in terms of both polynomial-time algorithms and computational intractability results. Our review of background and survey of algorithmic results are by no means complete, but should serve as a useful primer.

1 Introduction

Many classic games are known to be computationally intractable (assuming $\mathrm{P} \neq \mathrm{NP}$): one-player puzzles are often NP-complete (as in Minesweeper) or PSPACE-complete (as in Rush Hour), and two-player games are often PSPACE-complete (as in Othello) or EXPTIME-complete (as in Checkers, Chess, and Go). Surprisingly, many seemingly simple puzzles and games are also hard. Other results are positive, proving that some games can be played optimally in polynomial time. In some cases, particularly with one-player puzzles, the computationally tractable games are still interesting for humans to play

Combinatorial Game Rulesets

Nev: Hover over the name cell of a rulsest to see a brief description 1 doat have dessriptions for all of them y vet

Rulesets

Ruleset	Image and Variants	Partialiry	Lengrh	Initial Position Outcome Classes	Computational Complexiry	Other Propertics
$\frac{\text { Ariman }}{-2 \text { anc- }}$		Stricly purtisisen	Loopy	?	Ln Exptime	
	罳	Sticicly partiosin	Shorn	? (I don't know what is considered an Initial Position.)	PSPACE-completes even with enly ons amazon apicce	
- Willats -		Impatial	Sthort	Open! Conjecture: N ("furry") iff there are in evea number of open circles.	PSPACE-comulste	
	Unestricted Atropos	Imparial	Short	Open! Conjecture: N ("furzy") iff there are an even number of open ciecles.	Open; in PSPACE	
$\frac{\text { Chess }}{-\omega t u m}$		Stricly partisan	Loopy	Open	EXPTME. complete	
		Impartial	Short	Pirst Ploves	In PSPACE	

Lexicographic Codes: Error-Correcting Codes from Game Theory

JOHN H. CONWAY and N. J. A. SLOANE, fellow, ieee

[^0]Games!

1 w5073 Home
Confirmed Participants
Schedule and Abstracts (PDF)
Workshop Videos
Final Report (PDF)
Testimonials

Combinatorial Game Theory
Videos from BIRS Workshop
Olivier Teytaud, Université Paris-Sud Mindazy Jan 10, 2011 09:10- 10.00
Monte Carlo Tree Search
Watch video | Download video: 201101100910-Teytaud.mp4 (166M

[^0]: Abstract-Lexicographic codes, or lexicodes, are defined by various versions of the greedy algorithm. The theory of these codes is closely related to the theory of certain impartial games, which leads to a number of surprising properties. For example, lexicodes over an alphabet of size $B=2^{a}$ are closed under addition, while if $B=2^{2^{a}}$ the lexicodes are closed under multiplication by scalars, where addition and multiplication are in the nim sense explained in the text. Hamming codes and the binary Golay codes are lexicodes. Remarkably simple constructions are given for constant weight codes are also constructed
 I. Introduction

 HIS PAPER is concerned with various classes of greedy algorithm: each successive codeword is selected a the first word not prohibitively near (in some prescribed sense) to earlier codewords. For example, the very simplest class of lexicographic codes is defined as follows. We pecify a base B and a desired minimal Hamming distance pecify a base B and a desired minimal Hamming distance . The first codeword accepted is the zero word. Then we consider all base- B vectors in turn, and accept a vector as a codeword if it is at Hamming distance at least d from all previously accepted codewords. (An example with $B=3$ and $d=3$ can be seen in Table XI.)
 One of our goals is to point out the essential identity between this kind of lexicographic coding theory and the theory of certain impartial games (see Section II). Then the Sprague Grundy theory of games has a number of interesting and surprising consequences for lexicographic codes (or lexicodes).

 1) Unrestricted binary lexicodes are linear (Theorems $1,3)$.

 Two other results worth mentioning here are the follow-
 5) Several well-known codes unexpectedly turn out to be lexicographic codes, including Hamming codes and the binary Golay codes of length 23 and 24 (Section III-B)
 6) The constant weight binary lexicode of length 24 , distance 8 and weight 8 is the Steiner system $S(5,8,24)$ (Theorem 12). By imposing an additional constraint on a constant weight lexicode (see Section IV-E), Ryba obtained an almost equally simple construction for the Steiner system $S(5,6,12)$ (Theorem 13). The corresponding game, called Mathematical Blackjack (or Mathieu's Vingt-et-un) is described at the end of Section IV-E.
 7) A number of constant weight codes with minimal distance 10 and containing a record number of codewords are given in Table XIII

 Some of the game-theoretic aspects of this work are described in [1] and [2]. The relations between the theories of games and of lexicographic codes, and in particular the multiplicative theorem, underly some of the results in [1]. However, most of the results are published here for the first time. This work may be regarded as a coding-theoretic analog of the laminated lattices described in [5], [6].
 The paper is arranged as follows. The connections with game theory are discussed in Section II, unrestricted lexicodes are treated in Section III, and Section IV deals with constant weight and constrained lexicodes. Tables IV-VIII and XII give the parameters of a number of lexicodes.
 II. The Connections with Game Theory
 2) For base $B=2^{a}$, unrestricted lexicodes are closed
 A. Grundy's Game

