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1. Axioms, Nim and Wythoff Nim

Combinatorial games are games without chance and with no hidden in-
formation. The motivation of the field is traditional recreational rulesets
such as Chess, Go, Checkers, Tic Tac Toe and more. Games such
as Poker, Whist and Black Jack are disqualified because they involve
hidden cards, and for example Yahtzee, Pachisi and Monopoly are dis-
qualified because play depends on the outcome of a dice. We follow some
more axioms, as listed:

(i) There is a game board (a set of positions) and some ruleset that
determines how given pieces are played;

(ii) there are two players, and one of them is the starting player;
(iii) the players take turns moving;
(iv) every game terminates;
(v) these are win/loss games and a player who cannot move loses.

Item (5) is usually called normal-play. This convention is based on the
goodness of movability. It is never bad to have more move options. The
axioms give us a means to predict who is winning a given game in perfect
play. Namely, we can use a method attributed to Ernst Zermelo [Z1913]
(who is also the father of set theory and the axiom of choice etc.) often
called backward induction. This method will be reviewed in Lecture 3. The
mathematics of combinatorial games is very rich, and this study is dubbed
Combinatorial Game Theory (CGT).

The first combinatorial game that appears in the literature is Nim [B1902].
A finite number of beans are split into heaps. For example, a starting position
could be four heaps of sizes 2, 3, 4 and 5 beans respectively. Let us denote
this position by (2, 3, 4, 5). The current player choses one of the heaps and
removes at lest one bean, and at most the whole heap. This is a normal-play
game, so the player with the last move wins.

Bouton discovered a method to find a winning move if there is one. The
tool is called nim addition, and it is performed as follows. Write the heap
sizes row-wise in binary, and add without carry, that is each column adds
to 0 if and only if it contains an even number of 1s. Let us compute the
nim-sum of our sample game:
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1 0 1
1 0 0
0 1 1

⊕ 0 1 0
0 0 0

The nim-sum is 0. The meaning of this in terms of Nim play is that the
player who does not start wins in optimal/perfect play. Every move is losing.
Let us say, for example, that the first player removed three beans from the
third heap. Then the new position is (2, 3, 1, 5). And, by using nim-addition
on that position, we obtain

1 0 1
0 0 1
0 1 1

⊕ 0 1 0
1 0 1

Since the nim-sum is non-zero, there is a Nim move to a position such
that the nim-sum becomes zero. That is the idea of Bouton’s theory. Here,
there is only one winning move, namely take all beans from the heap of size
five.

Bouton’s proof demonstrates that, given any starting position, and given
best play by both players, exactly one of the players is able to play to a
0-position in every move (until the game ends). Later, in Theorem 65, we
prove this in general.

It is easy to prove this in case of two heaps, and it was discovered in class,
namely, if the starting position is (m,n), with say m < n, then the winning
first move is to (m,m). The next position will be of the form (m, k), for some
0 ⩽ k < m, which is of the ‘same form’ as the first position. Namely, the
heaps are of different sizes. Exactly one of the players can, by every move,
give the two heaps the same size. Note that this implies that the nim-sum
is 0, so indeed it is a special case of the above more general idea.

Let N = {1, 2, . . .} denote the positive integers, and let N0 = N ∪ {0}
denote the non-negative integers.

Later, we will use the common ∗-notation for Nim heaps. That is, ∗ is
a Nim heap of size one, ∗2 is a Nim heap of size two, and in general, for
n ∈ N = {1, 2, . . .}, ∗n is a Nim heap of size n.

The second ruleset that appears in the literature is Wythoff’s variation of
Nim, which is called Wythoff Nim [W1907] or sometimes Corner the
Lady or Corner the Queen [B1966]. It is played on two heaps and the
rules are as in Nim, or instead, a player may remove the same number of
beans from both heaps, at least one from each heap, and and most twice
the number of beans of the smaller heap. This game can equivalently be
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represented by a single Queen of Chess, which, by each move, must reduce
its distance to the lower left square, denoted by (0, 0).

Suppose that the Queen is placed on position (5, 4). The equivalent
Wythoff Nim position is two heaps, one of size 5 and the other of size
4. The set of options is {(5, y), (x, 4), (5− t, 4− t) | 0 ⩽ y ⩽ 4, 0 ⩽ x ⩽ 3, 1 ⩽
t ⩽ 4}. See Figure 1.

Figure 1. The figures illustrate typical move options of
Corner the Queen. The lower left corner represents the
terminal position (0, 0).

An elegant method of finding the so-called P-positions (Previous player
wins) is to recursively paint the N -positions (N ext or CurreN t player
wins), and fill in the smallest un-colored cells with Ps. Clearly (0, 0) is
a P-position. Thus, each position of the form (x, 0), (0, x) and (x, x) for
positive integers x will be N -colored. The method is displayed in Figure 2.

0

9

0 9 0 9 0 9

Figure 2. A geometric view of the losing positions of
Wythoff Nim. The N -positions are recursively painted
in red, given ‘smallest new’ P-positions. The terminal posi-
tion is to the lower left.

This method of painting reveals symmetric P-positons of the form (An, Bn)
and (Bn, An), with the first 8 entries as in Table 1. We note that the
classical so-called Fibonacci numbers, defined by where F0 = 0, F1 = 1,
and Fn+2 = Fn+1 + Fn, if n ⩾ 0, appear in some of the entries, namely
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(1, 2), (3, 5), (8, 13), . . ..1 The Golden Section is the irrational number ϕ =
1+

√
5

2 ≈ 1.618. It is well known that Fn
Fn−1

→ ϕ, as n → ∞. Moreover, we
note a possible pattern: for all n, Bn−An = n. The is a very elegant closed
formula expression of the P-positions.

Theorem 1 ([W1907]). The P-positions of Wythoff Nim are described
by, for all n ∈ N0,

(An, Bn) =
(
⌊nϕ⌋, ⌊nϕ2⌋

)
,

where ⌊x⌋ denotes the largest integer smaller than or equal to x.

We prove this classical result in Section 13.8, where we also include other
appealing theorem statements. The main tool will be the so-called Wythoff
Properties; see Theorem 66.

Table 1. The first 8 P-positions of Wythoff Nim (mod-
ulo symmetry).

n An Bn

0 0 0
1 1 2
2 3 5
3 4 7
4 6 10
5 8 13
6 9 15
7 11 18

Both these rulesets Nim and Wythoff Nim are impartial, all options
are common for the two players. This is a bit special/limited, as for most
recreational/professional games (such as Chess, Go, Checkers, etc) the
available moves usually differ for the two players, which is called partizan.
From a mathematical point of view, the impartial setting has very satisfac-
tory results, via Sprague and Grundy’s discoveries in the 1930s, but there
is an even richer and more colorful theory in the general partizan setting,
discovered by Berlekamp, Conway and Guy in the 1970-80s. Therefore, in
the first part of this course, we focus on the latter, and students will be
encouraged to build and study their own partizan rulesets as we move along.

Apart from the Sprague-Grundy theory, Impartial rulesets (such as Wythoff
Nim can have very beautiful and mind-blowing solutions on its own, and we
will peek into some of it in Section 13, but on the other hand it completely
misses many central CGT topics such as “number of move advantage”, “game
comparison”, “heat”, “infinitesimal” and much more. Therefore we postpone
the impartial line of play until Section 13.

1"The Fibonacci numbers were first described in Indian mathematics, as early as 200
BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from
syllables of two lengths." Wikipedia.
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2. Example rulesets and their properties

The two players of a combinatorial game are usually called Left (female
and positive) and Right (male and negative). A sum of the combinatorial
games G,H,K and M , is defined as the composite game where, at each
stage of play, the current player picks one of the components G,H,K or
M and makes a move in that component (see Section 3 for a more formal
treatment). We write this sum of games as G+H +K +M . For example,
if player Left starts and plays in the H component, then the next position
is G +HL +K +M . Next, player Right picks one of the components and
plays his move, for example to G + HL + KR + M , and so on. The game
continues until there is no move in either component. As usual, in normal
play, the player who cannot move loses.

The rulesets are at the core of combinatorial game theory. A ruleset
does not need to come with a starting position (and given a ruleset one can
usually envision an infinite number of possible starting positions). When we
use the word “game position”, or just “position”, we usually mean a ruleset
together with a starting position. The word “game” can be used freely and
the surrounding context explains its local meaning. A ruleset is impartial,
if for every position in the ruleset, the move options do not depend on who
starts. A ruleset is partizan if there exists a position in the ruleset for which
the Left and Right options differ. Partizan rulesets include the impartial
ones as a subset, but it is quite unusual that a partizan position has the
same Left and Right options.

Let us describe some popular rulesets. Here are four partizan rulesets and
one impartial:

• Clobber: an n by m game board; Left plays black pieces and Right
plays white pieces. A neighbor stone of opposing color can be clob-
bered and removed from the game board, while your stone takes its
position. Starting position: a checker board pattern.

• Toads&Frogs: a 1 by n game board; Left plays Toads and Right
plays Frogs. Toads move to the left and Frogs move to the right.
A piece can slide to a neighboring empty cell, or jump one of the
opponent’s pieces. Starting position: t Toads to the right, and f
Frogs to the Left.

• Domineering: an n by m game board; Left places horizontal domino
tiles, and Right places vertical Domino tiles.

• Toppling Dominoes: Left plays Red dominoes and Right plays
blue dominoes. Both players can topple a green domino. Domino
pieces are placed in a sequence. Players can topple any direction.

• Non-attacking Queens: an n by m game board; Players place
a Queen of Chess in a square, such that they do not attack any
previously placed Queen.

To practice the concept of a disjunctive sum of games, in the class we play
a tournament game such as: G+H +K +M , where G = Toads&Frogs
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on a 9 by 1 strip, t = f = 3, H = Domineering on a 5 by 3 board, K =
Toppling Dominoes red blue green red blue blue, and where M = Non-
attacking Queens on an 8 by 8 board (or a Nim position). Who wins if
Left starts? Who wins if Right starts?

Variation Partizan Non-attacking Queens: this game is played with
Black Queens for Left and White Queens for Right? Left places Black Queens
that are not attacked by any White Queen. Vice versa rules for Right.
Different colored Queens do not attack each other.

This course let students build their own normal-play rulesets, and then
study the theory through properties of their rulesets.2 Let us include some
guidelines that extend the initial axioms from Lecture 1. The ruleset should:

(i) not aim at achieving any ‘condition’, such as four-in-a-row or similar;
(ii) not have been studied before;
(iii) have a name;
(iv) be scalable;
(v) respect the disjunctive sum operator;
(vi) have a one-line description of what each player can do; a five year

old should get the rules without further thought (and hopefully enjoy
playing it);

(vii) be partizan;
(viii) have “board feel”, that is, a potential for various play strategies.

Item (1) requires some explanation. Popular rulesets such as “four-in-a-row”
could be envisioned as a normal-play game, by defining such a component
dead when this condition has been achieved. But this is one layer more
complicated then our typical rulesets that simply end when a player cannot
play according to the rules.

Games where ending conditions are given by satisfying given conditions are
usually called maker-maker, maker-breaker etc. Other examples are graph
theory games with rules such as: one of the players attempts to form a
triangle, and the other player is trying to finish the game with a triangle free
graph. This is a bit hard to envision as a normal-play game, because the
player who makes the last move by forming a triangle might be the losing
player.

To test if a candidate ruleset satisfies guideline (1), one may ask the ques-
tion: apart from the axioms, is it required to say anything else about the
ending/winning of a game? In a typical combinatorial game such as the above
tournament game examples, this is not necessary. Given a game board, it
suffices to say how to play the pieces, and the winner is given by the normal-
play axiom.

Regarding item (2); it is not hard to find new rulesets. CGT is a very
young subject; most conceivable normal-play rulesets (satisfying the axioms

2These lectures are not accompanied with standard exercises, since students are instead
designing their own rulesets to study their values and so on. At the end of every lecture
though we have quizzes, some of which are mentioned in these lecture notes.
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and the guidelines) have yet to be defined/studied. Your ruleset can be brand
new, or a variation of an existing ruleset. CG-Suite has already implemented
the potential to study variations of for example Clobber, Toads&Frogs,
and more, by varying game paratemeters. If you like coding, you may look
into further generalizations by rearranging the existing code. We have seen
new implementations already, such as Slamming Toads&Frogs, Quadro
Count and more. Since your ruleset is original, as item (3) suggests, you
should find a name for it.

Recreational rulesets that motivate our theory often come with a fixed
game board size/shape, and perhaps a fixed number of pieces (chess, tic-
tac-toe, checkers, fox and geese and many more). From a mathematical
point of view this is not convenient; usually we ask questions both about
‘small games’ and ‘larger games’. Item (4) says that your rules should be
scalable.

Think about item (5), with respect to item (1). If rules say that players
should achieve some condition, what happens when we play two such games
in a disjunctive sum. Should the composite game be terminated when the
(four-in-a-row) has been achieved? If so it is not normal play. Even if one
could impose a normal play rule when played on a single component, it is
not convenient, when we start adding games. Probably the best way to
impose an achievement rule to a normal play disjunctive sum situation is to
stipulate that a component dies when the given condition is achieved. But
this requires an understanding what it means to be ‘a component’. And it
removes the original idea of the achievement game, that whoever reaches the
goal first is the winner. Hence we avoid such rulesets for the purpose of this
course. Any other extra rule that makes disjunctive sum operator require a
special treatment is not favorable.

The ruleset should be partizan, because it gives us means to explore the
rich theory that has been developed in the field since the 1970s. Finally, it
is usually good if a ruleset has “board feel”, that is, players should be able to
learn reasonable play strategies as they improve their play styles, and part
of that usually incorporates easily understandable terminal positions.

3. Normal play structures, Zermelo’s theorem and the CGT
outcome classes

Let us prove Zermelo’s theorem in our setting of normal-play with no draw
games. This is the first fundamental result of Combinatorial Game Theory
(CGT), Theorem 2.

This theorem will be proved in the setting of our recursively defined games.
When we prove results about games by induction, we may assume that a

desired property is satisfied by all options of a game G, and then we prove
that this implies that the property holds for the game G itself. Observe that
if G does not have any option, then the desired property vacuously holds.
Hence the base case does not require any further mention (!). (Sometimes



8 URBAN LARSSON IEOR, IITB

this induction method is referred to as “Conway Induction”, due to one of
the founders of the field.). Let us practice this idea in the proof of the First
Fundamental Theorem of CGT.

Theorem 2 (The First Fundamental Theorem of CGT). Consider any
normal-play combinatorial game G. Exactly one of the players can force
a win.

Proof. Suppose, by induction, that the statement holds for all options of
a game G. Without loss of generality, suppose player Left starts. If, by
induction, Right can force a win from every Left option of G, then Left
cannot force a win from G. And hence Right can force a win from G. Note
that this holds true also in the case of no Left options of G. Otherwise Left
choses an option form which she, by induction, can force a win. □

Observe that this result implies four well defined outcome classes in combi-
natorial games. From now on, we will drop the word “force” in the statement
of Zermelo’s theorem, and instead think of the players as perfect; they both
have access to unlimited computational power withing fractions of a second
they are able to find a winning move if there is one, independently of any
complexity issues. Let us denote them by L (Left wins independently of who
starts), N ,P and R (Right wins independently of who starts). Thus, we
get that every game G belongs to exactly one of these four outcome classes,
and we write G ∈ P if the current player loses G; G ∈ N if this player
wins; G ∈ L if player Left wins, and G ∈ R, if player Right wins.

In this lecture we will define the notions of partial order of games, game
equivalence and disjunctive sum (addition) of games. Then, in Lecture 5, we
prove that the normal-play games, under the disjunctive sum operator, have
a group structure. Specifically, in Theorem 8, we prove that every game has
an inverse, and we will see that this is a main tool for constructive game
comparison (Theorem 9). In this spirit, we begin here by defining the notion
of game comparison in a non-constructive but exhaustive way.

The definition of game comparison (Definition 5) takes into the account
game addition (Definition 3), and an inherited partial order of outcomes
(see the below “Outcome Diamond”). Moreover it uses a recursively defined
bracket notation of a game. We use it in parallel with a standard game tree
representation, where Left options are left slanting edges and Right options
are right slanting edges. The game G = {GL | GR}, where GL and GR

represents the set of left and right options of the game G, respectively. If
GL ̸= ∅, a typical Left option is GL ∈ GL, and similarly, a typical Right
option is GR ∈ GR. By the recursive definition, we would write, for example
GL =

{
GLL | GLR}, and so on.

For example, a Nim heap of size 2 is the game ∗2 = {0, ∗ | 0, ∗}, where
∗ = {0 | 0}. The integer games belong to the partizan theory, and they are
defined recursively as 0 = { | }, 1 = {0 | } and n = {n − 1 | }, for n > 0.
Similarly, for all n ∈ N, −n = { | −n + 1}. Let us draw the game trees of
the games ∗, ∗2, 1, 2, {1 | −1} and {−1 | 1}.
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The standard convention is the total order “Left” > “Right”, that is, Left
is the “maximizer” and Right is the “minimizer”. This induces the Outcome
Diamond

L

R

PN

with L > P,N ,R and R < P,N ,L but N � P. Here ‘�’ denotes
‘̸>’ and ‘ ̸<’ and ‘ ̸=’. That is, the outcomes N and P are confused, fuzzy or
incomparable. All these three words (and more) appear in the literature.

4. A disjunctive sum of games

So far, we have used the notion of a sum of games in an intuitive way. Now
we will present the standard formal way. The disjunctive sum of games is
defined in a recursive manner. It is a tradition in CGT to omit the brackets
for set union, and instead simply write A,B for two sets of (Left) options.

Definition 3 (Disjunctive Sum). Consider games G and H. Then G+H ={
G+HL, GL +H | G+HR, GR +H

}
, where X +G = {X +G : X ∈ X},

if X is a set of games.

The outcomes do not suffice to understand how to play well a disjunctive
sum of games. Table 2 illustrates that.

Suppose that we know the outcomes of the individual games G and H.
Now we wish to compute the outcome of the sum of G and H. If one
of the outcomes is a P-position, then we know the outcome of the sum;
if both outcomes are either L or R, then we know the outcome of the
sum. Otherwise we cannot yet know the outcome of the sum. The notion
of outcomes requires a refinement, where alternating play in the separate
components is not mandatory.

If both outcomes are L then Left can obviously follow her winning strate-
gies in both components, individually and independently of who starts, and
analogously for Right. If one of the components is a P-position, then the
other component will determine the outcome of the sum, namely, if the first
player plays in the P-position, then the other player can respond there in a
manner that they will get the last move in that component. Hence the first
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Table 2. Given the outcomes of G and H, when can we
know the outcome of G+H?

G \H L P N R
L L L ? ?
P L P N R
N ? N ? ?
R ? R ? R

player can be forced to ‘open’ the other component. A P-position cannot
affect the outcome in a disjunctive sum.

The following example explains some question marks in Table 2.

Example 4. Suppose G,H ∈ N . This holds if, for example G = H = ∗,
a single heap of Nim. Then G + H ∈ P. We could also have G = ∗ and
H = ∗2. Then G +H ∈ N . Hence the question-mark is motivated in this
case.

If G ∈ L and H ∈ N , we could have H = {0 | −100} and G = 1, with
G +H ∈ N . But we could also have H = ∗ and G = 1, which would give
G+H ∈ L .

Suppose that G ∈ L and H ∈ R. We could have G = 1+ ∗ and H = −1
which gives G + H ∈ N . On the other hand G = 1 and H = −1 gives
G+H ∈ P. Similarly G = 10 and H = −1 gives G+H ∈ L , while G = 1
and H = −10 gives G+H ∈ R. Hence, all outcomes are possible. The other
question marks are similar.

Let us define the partial order of games. Sometimes we view the perfect
play “outcome” as a function, and we write o(G) = P if G ∈ P, and so on.

Definition 5 (Partial Order). Consider games G and H. Then G ⩾ H if,
for all games X, o(G+X) ⩾ o(H +X). And G = H if G ⩾ H and H ⩾ G.3

This is the desired refinement of the partial order of the outcomes. Namely,
it assures Left that the game G is no worse for her than the game H, if
played in any arbitrary disjunctive sum. However, it might appear that
almost all games would remain incomparable with such a strong notion of a
partial order. And moreover, the definition is non-constructive, so there is no
algorithm that could determine the relation between two games, unless one
can find another equivalent way of expressing the partial order. And indeed,
that this is possible will be our second fundamental theorem of combinatorial
games. The first major tool is that the games constitute a group structure,

3A partial order is a relation that satisfies 1. Reflexivity (aRa); 2. Antisymmetry (if
aRb and bRa then a=b); 3. Transitivity (if aRb and bRc then aRc). It is easy to prove
that our definition satisfies these axioms. Then it easily follows that ‘=’ is an equivalence
relation, which satisfies Reflexivity, Symmetry (aRb implies bRa) and Transitivity. One
has to check first that the axioms 1-3 hold for the partial order of outcomes. But this is
also easy to check.
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and we will prove that in the next lecture. The negative of a game will be
the game where the players have swapped roles. Let us give the recursive
definition here, and prove its consistency in the next lecture.

Definition 6 (Negative). Consider a game G. Then the Negative of G is
−G =

{
−GR | −GL}.

Similar to Definition 3, if X = {X1, . . . , Xn} is a set of games, then
−X = {−X1, . . . ,−Xn}.

5. The second fundamental theorem

In this lecture we first establish that normal-play games form a group
structure (Theorem 8), and then we prove the Second Fundamental Theorem
of CGT (Theorem 9) and its corollary (Corollary 10).

Let us begin with an example of a Negative of a game (Definition 6). In
terms of game trees, let

G =

Then

−G =

In terms of game forms, these games are G = {∗ | −1} and −G = {1 | ∗},
where, as before, ∗ = {0 | 0}, 1 = {0 | } and −1 = { | 0}. As an exercise, we
may add these two games, and expand this sum as one single game form:4

G+ (−G) = {∗ −G, 1 +G | ∗+G,−1−G}
= {{−G, ∗ − 1 | −G, ∗+ ∗} , {G, 1 + ∗ | 1− 1} | ·}
= {{−G, {−1 | ∗,−1} | −G, {∗ | ∗}} , {G, {∗, 1 | 1} | {−1 | 1}} | ·} ,

where we have omitted to expand the Right options since they are symmetric.
This game form can, with some patience, and as an exercise, be drawn as a
large game tree. But it should be equivalent to 0, as, starting with G+(−G),
the previous player can mimic the current player at each stage, until the
current player cannot move. This is covered by Theorem 8, which will be

4This example is admittedly a bit complicated. But its purpose is also to illustrate
how easy it is to build complex game trees that are equal to the empty game 0. Take any
game G and add its inverse, and there you go, a zero-game! If you instead started with a
single complex game tree of ‘G−G’, it would usually be much harder to see that it equals
0. This is an exercise to do once, and then in a sense ‘never again’.
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our first application of Definition 5. It will establish that the set of all games
together with the disjunctive sum operator constitutes a (partially ordered)
group structure.

An abelian group, (G,+), satisfies five properties.
• Neutral Element: There exists an element, 0 ∈ G, such that for all
G ∈ G, 0 +G = G;

• Closure: for all G,H ∈ G, G+H ∈ G;
• Negative: for all G ∈ G, there exist an element ‘−G’ such that
G+ (−G) = 0;

• Commutativity: for all G,H ∈ G, G+H = H +G;
• Associativity: for all G,H,K ∈ G, (G+H) +K = G+ (H +K).

Suppose now that (G,+) is our set of games together with the disjunctive
sum operator. All properties, except “Negative” are easy exercises.

The following decomposition of the outcomes will be useful.

Definition 7 (Partial Outcomes). Let L = (L,L), P = (R,L), N = (L,R)
and R = (R,R). The first (second) coordinate declares who wins if Left
(Right) starts. For a given game G, denote o(G) = (oL(G), oR(G)), where
the partial outcomes oL(G), oR(G) ∈ {L,R} denotes who wins in perfect play
depending on who starts, Left and Right, respectively.

Sometimes we call the partial outcomes oL(G) and oR(G) the result (who
wins in perfect play), when Left and Right starts, respectively.5

Theorem 8 (Negative Game). For any game G, G+ (−G) = 0.

Proof. We have to demonstrate that, for any game G, for all games X,
o(G − G + X) = o(X). The proof is by induction on G − G + X. If Left
cannot play in X, then oL(X) = R. Similarly, if Left cannot play in X, then
oL(G − G + X) = R, because, if Left can play in G − G, then Right can
mimic, and so on, which ultimately leads to Right getting the last move in
the ‘G−G’ component. This ‘base case’ is analogous for the function oR.

Suppose that the statement holds for all options of G. For example, if GR

is a Right option of G, then GR −GR = 0. If Left has an option in X, then
there are two cases to consider, namely oL(X) = L or oL(X) = R.

Suppose first that oL(X) = L, and consider the game G−G+X. Suppose
that Left’s winning move in X is to XL. We claim that oR(G−G+XL) = L.
Namely, if Right plays to G−G+XLR, then Left wins by induction (Right
does not have a winning move in XL). And if Right plays in the ‘G−G’ part,
then Left can mimic. This would result in GR − GR = 0 or GL − GL = 0,
by induction.

5The word “result” is of course much more general than “perfect play”, and should
apply to any situation where for example two non-optimal human players apply their best
understanding of the game, or say whenever any intermediate beliefs of a learning agent,
leads to a ‘result’ of a game. Or, who won that particular recreational game at that
specific date and time?.
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Suppose next that oL(X) = R, that is, Left does not have a winning option
in X played alone. In the game G−G+X, if Left plays her losing move in
the X-component, then Right can respond locally to G−G+XLR and win
by induction. If Left starts by playing in the ‘G−G’ component, then Right
can mimic, and the argument is the same as in the previous paragraph.

The proofs for Right playing first are analogous (symmetric). □

The second fundamental theorem of combinatorial games is as follows. We
utilize that games form a group structure. In particular, that every game
has an inverse (Theorem 8), and the inverse is the defined Negative of the
game.

Theorem 9 (The Second Fundamental Theorem). Consider games G and
H. Then G ⩾ H if and only if Left wins the game G − H playing second,
that is if and only if oR(G−H) = L.

Before the proof, we give two examples of how to use this result.
Let G = {∗ | −1} and let H = ∗2. We use Theorem 9 to show that G ̸⩾ H.

That is, it suffices to show that Left does not win the game G−H playing
second. If Right plays to −1 + ∗2, then Left can only respond to −1 or
−1 + ∗, and loses either way. How about the reverse inequality? Is H ⩾ G?
That is, can Left win if Right starts in the game H − G = ∗2 + {1 | ∗}?
If Right plays to ∗2 + ∗, then Left can respond to ∗ + ∗; if Right plays to
∗+{1 | ∗} or to {1 | ∗}, then Left can respond to 1 or 1+* and wins in either
case. Altogether this proves that H > G.

Let G = {0 | 1} and H = ∗. It is easy to check that oR(G − H) = L.
Hence G ⩾ H. In addition, since oL(G−H) = L, then in fact G > H.

Proof of Theorem 9. By Theorem 8, we may study the game G − H. We
must prove that G−H ⩾ 0 is the same as Left wins G−H playing second.
By definition, G−H ⩾ 0 means that, for all X, then o(G−H+X) ⩾ o(X).

Suppose first that, for all X, o(G − H + X) ⩾ o(X). This holds in
particular for X = { | }. But then,

L = oR({ | }) ⩽ oR(G−H + { | }) = oR(G−H),

and hence oR(G−H) = L (there are only two results, and L ⩾ R).
For the other direction, suppose that Left wins G−H playing second. We

must prove that, if oR(G−H) = L, then, for all X,

o(G−H +X) ⩾ o(X).(1)

We analyze the partial outcomes, oL and oR.
If oL(X) = R then o(G−H +X) ⩾ o(X). Therefore, let us assume that

oL(X) = L. In particular, this means that Left has a winning move in X
played alone, to say XL. She can play this move in the game G−H +X, to
G −H +XL. If Right responds in the ‘G −H’ part, then, by assumption,
Left has a ’local winning’ response inside that part, to say (G−H)RL. And if
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he plays to G−H+XLR, then Left wins by induction (since oL(X
LR) = L).

Hence, oL(G−H +X) = L.
Similarly, assume that oR(X) = L, and we must prove that oR(G −H +

X) = L, under the assumption that oR(G − H) = L. If Right starts in
the ‘G − H’ part, then Left has a winning response, by assumption, and
otherwise, if Right starts in the ‘X’ part, then, by oR(X) = L, Left can
respond locally and win, since by induction oR(X

RL) = L. □

It is convenient to be explicit about all relations in the inherited partial
order.

Corollary 10 (Bijection Partial Order and Outcomes). Consider games G
and H. Then

• G = H if and only if G−H ∈ P;
• G > H if and only if G−H ∈ L ;
• G < H if and only if G−H ∈ R;
• G � H if and only if G−H ∈ N .

Proof. For the first item, apply Theorem 9 for G ⩾ H and H ⩾ G. The
other items are similar, namely apply Theorem 9 for G ⩾ H and H ̸⩾ G,
G ̸⩾ H and H ⩾ G, and G ̸⩾ H and H ̸⩾ G respectively. □

In Corollary 10, it is instructive to revisit the outcome diamond, and
instead of outcomes put games born by day 1 as representatives of the out-
come classes. A game’s birthday is defined recursively. We will do this before
Theorem 14.

1

−1

0∗

6. Game reductions and canonical form

Here we discuss the two reduction theorems on combinatorial games; they
concern domination and reversibility. We will show that together they imply,
for any game G, the existence of a unique reduced form, usually referred to
as the canonical form, the game value, or just the value of G.6 We state the
results in terms of Left options, and the symmetric statement in terms of
Right options has an analogous statement and proof. These two results are
nice applications of the Second Fundamental Theorem and its corollary.

Let us start with some examples. If G = {1, 2, 3 | ∗}, then Left could
ignore the Left options 1 and 2, and hence it should hold that G = {3 | ∗}.

6Another term one might hear with an equivalent meaning is “simplest form”.
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This guess can be verified by using Corollary 10 as follows. The previous
player wins {1, 2, 3 | ∗}+ {∗ | −3}, by mimic strategy, unless Left starts and
plays in the first component to 1−G or 2−G. Then Right responds to 1−3
or 2− 3 and wins.

This is all good, but note that we found a simpler form of G by guess
work. Domination is better in that it achieves the same result but without
guessing a simpler equivalent form.

Recall that in normal play combinatorial games, a player who can mimick
the other player has a winning strategy. When we use the phrase “mimick”,
then we mean that the next player mirrors the previous players move, such
that the composite game becomes equal to 0 ∈ P. We will continue to see
many examples of this.

Theorem 11 (Domination). Consider any game G. If there are Left options
A,B ∈ GL, such that A ⩽ B, then G =

{
GL \ {A} | GR}.

Proof. Let H =
{
GL \ {A} | GR}. Then −H =

{
−GR | −GL \ {−A}

}
. By

Corollary 10, it suffices to prove that G+(−H) ∈ P. Observe that the Left
options of −H are the Negatives of the Right options of G. Hence any play
in those options can be mimicked, and then GR −GR = 0 ∈ P settles those
cases. In fact, Right as a starting player has fewer options than Left, and
all his moves can be mimicked by Left. Similarly, if Left starts by playing to
GL + (−H), where GL ̸= A, then Right can respond in the −H component
to GL −GL = 0 ∈ P.

The remaining case is if Left as the starting player plays to A−H. Then
Right cannot mimick, since A is not a Left option in H. But Right can
respond to A−B ⩽ 0, and win (playing second in A−B). □

By this result, we see immediately that G = {1, 2, 3 | ∗} = {3 | ∗}, because
3 ⩾ 2 ⩾ 1.

The next result concerns the reduction reversibility. We have seen already
that the game G = {∗ | ∗} = 0, and one can argue directly that it is true
because the game is a P-position. The game’s simplest reduced form is 0,
but it cannot reduce via domination, because there is only one option. We
obviously need another tool. Luckily, one can argue by using ‘reversibility’,
that this holds true: If Left plays to ∗, then Right has on option that is
no worse than the original game {∗ | ∗}, that is, it reverses Left’s move.
Therefore Left’s move is meaningless and should be reduced to whatever
remains after Right’s ‘automatic’ response. We prove that this idea holds in
general, and give some more examples after the result.

Let us remind the reader, that a Left option in a Negative game, say −G,
is of the form −GR, and a Right option is of the form −GL. Moreover,
sometimes the notation GL means a generic Left option, while other times,
depending on the given context, GL is a specific option, with a prescribed
property. Indeed, we are using this latter meaning in the following statement.
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Theorem 12 (Reversibility). Consider any game G. If there is a Left option
GL with a Right option GLR ⩽ G, then G =

{
GL \ {GL}, GLRL | GR}.

Proof. For a fixed Left option GL as in the statement, let

H =
{
GL \ {GL}, GLRL} | GR} .(2)

Observe that, by definition, G and H have the same set of Right options.
We prove that o(G −H) = P. Similar to the proof of Theorem 11, moves
that can be mimicked cannot disprove the result. Hence it suffices to analyze
two cases:

• Left starts by playing to GL −H;
• Right starts by playing to G−GLRL, for any GLRL ∈ GLRL.

Suppose that Left starts by playing to GL−H. Then, by assumption, Right
can respond to GLR −H, such that GLR ⩽ G. That is,

oL(G
LR −G) = R.(3)

Since the Negative games −H and −G have the same set of Left options,
by (3), Right wins if Left plays in the −H component to, say GLR −HR =
GLR−GR. Thus assume she plays to some GLRL−H. But then, by definition
of H, Right can respond to GLRL −GLRL = 0.

For the second item, recall that G − GLR ⩾ 0. This means that oR(G −
GLR) = L, and so, for all Right options G−GLRL, Left wins; that is oL(G−
GLRL) = L. □

The proof gives us an insight that, if there are several Right options of the
form GLR, such that GLR ⩽ G, then any replacement set of the form GLRL

suffices to define an equivalent game H = G as in (2).
Let us give two examples of ‘similar looking’ games, one of which reduces

by reversibility but the other does not reduce. The games are G := {0, ∗ | 0}
and H := {0, ∗ | ∗}. For both games, the only Left option with a Right
option is GL = HL = ∗, and HLR = 0 ⩽ H but GLR = 0 ̸⩽ G, by
Theorem 9, namely Left wins HLR, but not GLR, playing second. Observe
that HLRL = ∅. Hence H = {0 | ∗}.

Note that we can prove directly, by using Theorem 9, that the game
G ̸= {0 | 0}; hence, the Left option ∗ cannot be reversible. Namely, Right
does not win G − ∗ = G + ∗, playing second. If Left starts by playing to
∗+ ∗, Right loses.

In combinatorial game theory, the rank of a game tree has another tradi-
tional terminology, namely birthday.

Definition 13 (Formal Birthday). A game is born by day 0 if it has no
options. A game is born by day n > 0 if every option is born by day n− 1.
A game is born at day n if it is born by day n but not by day n− 1.

The formal birthday concerns the literal form of a game. We often skip
the word “formal”. Sometimes there is a risk of misunderstanding, because
we often consider the equavialence class of a game, via its simplest form
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representation. If we want to be explicit, in this case, we may write canonical
form birthday. We have a very elegant result, that such a respresentation
is unique. Consider a game G. Independently of the order of applying the
reduction theorems (Domination and Reversibility), the end result, when no
more reduction is possible, is a unique simplest form, often known as its
game value, or the canonical form of G.

Theorem 14 (Canonical Form/Game Value). Suppose that domination and
reversibility have been applied to a game G until no more reduction is possible,
or any further reduction results in the same literal form game. If two literal
form games G′ and G′′ are the end results of such reductions, then they are
identical.

Proof. Suppose, by induction, that this holds true for all games of birthday
smaller than n. Let us prove that, then it holds for a game G of birthday n.
By the induction hypothesis, we may assume that every option of G is in its
unique reduced form.

Claim: We can pair the options of G′ and G′′, such that for each option G′L

there is a G′′L such that G′L = G′′L (and similarly for Right).

Proof of Claim: We are using the assumption that G′′ − G′ ∈ P together
with the facts that there are no reversible or dominated options.

Suppose that Right starts and plays to G′′ − G′L. Since G′ and G′′ do
not have any dominated or reversible options, we get that to win (playing
second) Left must play to an option of the form G′′L − G′L. Namely, a
Left option of the form G′′ − G′LR � 0; we must have “�” (which is the
same as “ ̸⩾”) since the option is not reversible;7 i.e. Left cannot win playing
second. Thus Left could win playing second if and only if G′′L is such that
G′′L ⩾ G′L.

Suppose next that Left starts and plays to G′′L − G′. Since G′′ and G′

are equal, Right must have a winning move. Again, this must be of the
first form. Thus, for some Left option G′L1 , we obtain the inequalities
G′L1 ⩾ G′′L ⩾ G′L. Since G′ does not have any dominated options, all
these three games must be equal.

But then, since these options are in reduced forms, by induction, since
they are equal they must be identical. Hence, G′ and G′′ must also be
identical. □

For example, the game 0 is born by day 0, while ∗, -1 and 1 are born
at day 1. Together with 0, they form the same partial order as the above
Outcome Diamond. When concerning the canonical form birthday, there are
22 games born by day 2 (See Figure 3). There are 1474 games born by day
3. The number of games born by day 4 is huge, recently estimated between

7If G� 0, then Right wins playing first in G.
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−2

−1 −1∗

−1
2 {∗ | −1} {0 | −1}

↓ ↓ ∗ {0, ∗ | −1}

0 ∗ ∗2 ±1

↑ ↑ ∗ {1 | 0, ∗}

1
2 {1 | ∗} {1 | 0}

1 1∗

2

Figure 3. There are 22 games born by day 2. The picture
shows the partial order of these 22 games, where an edge
represents ‘upper node > lower node’. The structure is a
lattice: every disjoint pair of nodes has a least upper bound
(a join) and a greatest lower bound (a meet).

1028 and 10185, by Koki Suetsugu. The number of games born by day 5 is
unknown.

Game temperature. There are cold games, there are tepid games and there
are hot games. Hackenbush is an example of a ruleset for which all games
are cold. The game is played with red or blue pieces stacked upon each other
in various directions. Right can remove Red pieces and Left can remove bLue
pieces. Any piece that ceases to have a connection to the ground falls off
and is no longer part of the game. Let us list a few examples together with
their game values (they will studied later in this section).
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= 1 = −1
= 1/2 = −1/4 = 3/4 = −1/2

Figure 4. Some Hackenbush positions and their values.

Clobber is an example of a ruleset with only tepid positions (in fact all
positions are so-called all-small). Toppling Dominoes is a ruleset with
a variety of positions, in particular, we can build arbitrarily hot positions;
imagine a stretch of pieces throughout the room, with same colored pieces to
the left and right of the middle respectively. Such positions can be made ar-
bitrarily hot, that is, the first player can gain a huge number of ‘free moves’.
On the other hand, even without using any theory about numbers, one can
show that Hackenbush does not have any N -positions (an interesting ex-
ercise).

The right most picture in Figure 4 reduces to −1/2. This can be proved in
a similar fashion to what we usually do, that is by using domination and/or
reversibility, or it can be done directly by justifying this guess, by showing
that G−1/2 ∈ P. But here we will discover an easier way that only applies
to games that are numbers.

7. Zugzwang games are numbers

Let us start by defining the cold games; we will later see that they are
all numbers, defined as the integers (Definition 17) and the dyadics (Defini-
tion 18). The most important property of these games is known in Chess
and other games as zugzwangs. As mathematicians, we require the usual
hereditary property.8

Definition 15 (Zugzwang). The game G is a zugzwang, if, for all options
GL and GR, GL < GR, and all options are zugzwangs.

The proof of the following result is (again!) an elegant application of the
principle of induction.

Theorem 16 (Zugzwang). Consider a zugzwang game G. Then, for all
options, GL < G < GR.

Proof. We study the game G−GL and by symmetry the argument for G−GR

is analogous. Note that oL(G−GL) = L, because Left can play to GL−GL =
0; this is true for all games, not just zugzwangs.

Hence it suffices to prove that, if G is a zugzwang, then oR(G−GL) = L. If
G is a zugzwang and Right plays to GR−GL, then Left wins, by Definition 15.

Therefore, assume instead that Right plays to some G−GLL. Then, since
GL is a zugzwang whenever G is, induction gives oR(G

L −GLL) = L. □

8In graph theory, a property of a graph is hereditary if it applies to all its subgraphs.
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We will soon reach a famous result, by Conway, which usually is referred
to as the “Simplicity Theorem for Numbers” or just “Number Simplicity”
(Theorem 21). With this mind, the notion of “simplicity” requires and ex-
planation: consider two canonical form games G and H. Then, we say that
G is simpler than H, if it has smaller birthday than H.9

After that we will prove that the canonical form zugzwangs have a one-
to-one correspondence with the integers and dyadic rationals; let us define
them here.

Definition 17 (Integer Game). For all n ∈ N, let the integer game n =
{n− 1 | }.

We have already defined the negative of a game, so the definition gives
also the negative integer games of the form −n = { | 1− n}, n ∈ N.

Definition 18 (Dyadic Rational Game). For all k ∈ N0, let the game 1/2k ={
0 | 1/2k−1

}
. The game m/2k is m copies of 1/2k in a disjunctive sum.

That is, if k ⩾ 1, then 1/2 = {0 | 1}, 1/4 = {0 | 1/2}, and so on. Similar
to the negative integers we also get the negative dyadics beginning with the
forms −1/2k =

{
−1/2k−1 | 0

}
.

Definition 19 (Number Game). The number games are the integers and
the dyadics.

Let us denote the number games by D; we think of them as dyadic rational
games, where the integer games are trivial dyadics.

We can prove a couple of nice properties of the dyadic rational games.

Theorem 20 (Dyadic Properties). For all k ∈ N,
(a) 1/2k > 0;
(b) 1/2k > 1/2ℓ, if ℓ > k;
(c) 1/2k + 1/2k = 1/2k−1;
(d) for all m, m

2k
=

{
m−1
2k

| m+1
2k

}
, and this game is in canonical form.

Proof. For (a) we prove that Left wins playing first or second. Playing first,
she wins in her first move. Playing second, she wins by induction, since
Right plays to 1/2k−1. The base case is the game 1 when k = 0.

For (b), we prove that Left wins 1/2k − 1/2ℓ, if ℓ > k. Left wins playing
first to 1/2k−1/2ℓ−1, by induction, or by mimic. If Right starts, he loses, by
(a), by playing to 1/2k, and he loses by induction, by playing to 1/2k−1−1/2ℓ.

For (c), we prove that 1/2k+1/2k−1/2k−1 ∈ P. If Right starts, he plays
either to 1/2k + 1/2k > 0, by (a), or he plays to 1/2k + 1/2k−1 − 1/2k−1 =
1/2k > 0, by (a). If Left starts, she plays either to 1/2k − 1/2k−1 < 0, or
1/2k − 1/2k−2 < 0, both by (b).

9One could think of relaxing the requirement of “canonical”, in the notion of simplicity,
but that will not be interesting here.
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For (d), we prove that {
m− 1

2k
| m+ 1

2k

}
− m

2k

is a P-position. If Left starts by playing to m−1
2k

− m
2k

, then Right can respond
to m−1

2k
− m−1

2k
= 0. If Left starts by playing to

{
m−1
2k

| m+1
2k

}
− m−1

2k
− 1

2k−1 ,
then Right can play to m+1

2k
−m−1

2k
− 1

2k−1 = 2
2k

− 1
2k−1 = 0. Similarly, if Right

starts by playing to m+1
2k

− m
2k

, then Left can play to m
2k
− m

2k
= 0. And if Right

plays in the second sum-component, then Left responds to m−1
2k

− m−1
2k

= 0.
Next we prove that this is the canonical form. There is no domination since
there is only one option. The Left option is reversible, since its Right option
m−2
2k

+ 1
2k−1 = m

2k
, but when we replace it with its set of Left options, we find

by induction that gives again the same option. Hence, no further reduction
is possible. □

Let us study the nonnegative integers and dyadic rationals recursively via
their birthdays as in Figure 5 (the negative ones are analogously defined).
We will establish that this construction follows the birthdays of the corre-
sponding number games. We start with D0 = {0}, D+

1 = {0, 1} and D+
2 =

{0, 1/2, 1, 2}. Note that the new dyadics are centered between the old ones.
We continue in this fashion, by seeing that D+

3 = {0, 1/4/, 1/2, 3/4, 1, 3/2, 2, 3},
and

D+
4 = D+

3 ∪ {1/8, 3/8, 5/8, 7/8, 5/4, 7/4, 5/2, 4}
= {0, 1/8, 1/4/, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 5/4, 3/2, 7/4, 2, 5/2, 3, 4}.

In general D+
n = D+

n−1 ∪
{
n, di+di+1

2 : di, di+1 ∈ D+
n−1

}
. For all n, let D−

n =

{−x : x ∈ D+
n }. If we let n → ∞, then this construction gives all numbers.

Let for all n, let Dn = D+
n ∪ D−

n and let D =
⋃

nDn. Then, obviously,
D = D.

Observe, that, by construction, if x, y ∈ Dn, with x < y, then there is a
unique z, such that x < z < y, and z ∈ Di for some smallest i < n. This
is the simplest dyadic between x and y. If we fill in the edges in the binary
tree, then the simplest number between two nodes is their closest ancestor.
For example {11/16 | 9/8} = 1 and {1/16 | 7/8} = 1/2. As usual, such
statements can be verified via the usual P-position argument, by verifying
that {11/16 | 9/8} − 1 = 0 and {1/16 | 7/8} − 1/2 = 0, etc. But we have a
very general and elegant classical result, with deep consequences to follow.

Theorem 21 (Number Simplicity). Consider a zugzwang game G. Then G
equals the simplest dyadic x such that, for all options GL and GR, GL < x <
GR. And x is the canonical form of G.

Proof. If x is the simplest dyadic such that

GL < x < GR.(4)

Then we must establish that G− x ∈ P.



22 URBAN LARSSON IEOR, IITB

0

1

2

3

4

1/2

3/2 3/4 1/4

5/2 7/4 5/4 7/8 5/8 3/8 1/8

5 1/163/165/167/169/1611/1613/1615/169/811/813/815/89/411/47/2

Figure 5. The births of the numbers in D follow a binary
tree structure. Each node has exactly two children. For ex-
ample node 0 has the children −1 and 1, and 3/4 has children
7/8 and 5/8; at the top, we find the birthday zero number,
followed by the birthday one numbers, and so on. We display
the nonegative number games born by day 5, and the nega-
tive ones are symmetrically obtained.

By induction, we may assume that all options of G are simplest form
number games. Then, we may use domination to single out one Left and
one Right option such that G =

{
GL | GR

}
. Since G is a zugzwang, by

Theorem 16, we have GL < G < GR.

1) We begin by proving that oL(G− x) = R. By assumption GL − x < 0, so
Right wins if Left starts in G.

Hence, suppose instead that Left starts by playing to G − xR. Since xR

is simpler than x, then, by (4), either,
(a) xR ̸> GL, or
(b) xR ̸< GR.

Observe that all games are numbers, so no two games are fuzzy. Therefore
we get instead:

(a) xR ⩽ GL, or
(b) xR ⩾ GR.

Suppose that (a) were true. Then, since x is a number, we get x < xR ⩽
GL < x, where the last inequality is by the assunption on x, which is im-
possible. Hence (b) holds, and so Right can respond to GR−xR ⩽ 0, and win.

2) Symmetrically, we can prove that oR(G − x) = L. If Right plays to
GR − x > 0, he loses. Suppose therefore that Right plays to G− xL. Since
xL is simpler than x, by (4) (and by no two numbers fuzzy), either

(a) xL ⩽ GL < x, or
(b) xL ⩾ GR > x.
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In case of (a), Left can respond to GL − xL ⩾ 0, and win. The case (b)
contradicts that x is a number.

For the last part, by Theorem 20 (d), we may write x = m
2k

=
{
m−1
2k

| m+1
2k

}
,

so xL = m−1
2k

= n
2j

=
{
n−1
2j

| n+1
2j

}
, for n odd. Hence xLR = n+1

2j
⩾ m

2k
, with

equality only if j = k−1 and m−1 = n/2, in which case xLRL = m−1
2k

. And
otherwise reversibility is not possible. And there is no domination. □

Similar to Theorem 68, where we prove that all impartial games equal nim-
bers, we here will establish that all zugzwang games equal numbers (dyadic
rational or integer games).

Theorem 22 (Zugzwangs and Numbers). Every zugzwang equals a number,
and every number equals a zugzwang.

Proof. The second part is direct from Theorem 20 (d) if the number is a
dyadic rational, and if the number is an integer, the statement is vacuously
true.

To prove that every zugzwang equals a number, we use induction. Every
option of the zugzwang is a zugzwang and hence by induction a number.
Numbers have a total order, so, by using domination, we may write G ={
GL | GR

}
, for a single Left and Right option, respectively. Now, we use the

simplicity theorem, to deduce the simplest form number of G. □

This is a very satisfactory result, and a building block for many applica-
tions in this theory. Perhaps one could call it the third fundamental the-
orem of (normal play) combinatorial games. However, note that there are
literal form games that equal numbers, but are not zugzwangs. For example
{∗ | ∗} = 0, but is no zuzwang.

8. Number translation and avoidance

Number avoidance means that, in a disjunctive sum of games, every player
avoids playing in a number component, unless there is nothing else to do.
There is a slick symbol for “Left wins playing first”, that is “Right does not
win playing second”: 0� G has the same meaning as 0 ̸⩾ G. The following
are general lemmas.

Lemma 23. Let G =
{
GL | GR}, and let H =

{
GL, A | GR}, with A� G.

Then G = H.

Proof. A mimic strategy suffices to prove that G − H ∈ P, unless Right
plays to G−A. But then the result follows by G−A
 0; Left wins playing
first. □

Lemma 24. For any game G, and any Left option GL, GL � G.

Proof. The game GL−G� 0, since Right wins playing first to GL−GL. □

We are aiming to prove a “translation property” for numbers. This is also
a strong version of “number avoidance”: you do not play in a number unless
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there is nothing else to do. First we prove a somewhat weaker result, but still
insighfull. Suppose we play the composite game {{2 | 1/2} | ∗, ∗2, {↓| −1/2}}+
9/32+1/16−53/64. By “weak number avoidance”, without computing, Left
knows that, if she has a winning move, it is the single option in the first
game component (because the other components sum up to a number). So,
she knows what to do, even while igonoring the final result of the game!

Theorem 25 (Weak Number Avoidance). If Left can win G + x playing
first, where x is a number and G does not equal a number, then she has a
winning move of the form GL + x.

Proof. It suffices to prove that, if G+xL ⩾ 0, for some xL, then this implies
GL + x ⩾ 0, for some GL.

By assumption, G does not equal a number, but by Theorem 20, xL equals
a number. Therefore G+xL ̸= 0. Hence, the hypothesis becomes G+xL > 0.
Thus Left wins playing first in G+xL. Again, since xL equals a number, by
induction, she has a winning move of the form GL + xL ⩾ 0.

But numbers are zugwangs, and so, by Theorem 16, x > xL, which implies
GL + x ⩾ 0. □

It turns out that this result is a consequence of “number translation”
(which is also called “strong number avoidance”), but wait, we actually will
need Theorem 25 to prove Lemma 27, which is used in the proof of number
translation. We must be careful not to run into cycles. Let us state the
result that we are aiming for.

Theorem (Number Translation - Strong Number Avoidance). Suppose
that x is a number game, and G is a game that is not a number. Then,
G+ x =

{
GL + x | GR + x

}
.

For example, {1 | 1} = 1 + ∗ = 1∗, and {1 | 0} = ±1/2 + 1/2, and
{{1 | 1} | 1} = 1 + ↓.

Note that, by the definition of a disjunctive sum, for G any game and x a
number,

G+ x =
{
GL + x,G+ xL | GR + x,G+ xR

}
.

Hence, it suffices to prove that the options where the players move in the
number component are all dominated. However, it turns out that it is not
possible to prove this result by using only what we learnt so far. Let us
develop some more theory to prove this result, and we will restate it as
Theorem 31.

Combinatorial game theory has recursively built min/max type functions
that are also common in classic game theory. Here they are called the Left-
and Right stops respectively, by the idea: “stop when you reach a number”.
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Definition 26 (Stops). The Left- and Right stops are,

Ls(G) =

{
x, if G = x equals a number,
maxRs(GL), otherwise;

Rs(G) =

{
x, if G = x equals a number,
minLs(GR), otherwise.

Here max and min ranges over all the Left and Right options, respectively.

Two simple but instructive examples are the literal form games G =
{1 | −1} and H = {−1 | 1}, with the stops Ls(G) = 1, Rs(G) = −1, but
Ls(H) = Rs(H) = 0, because H equals the number zero.

These functions are useful in many ways to analyze our games. In partic-
ular, we get a very slick proof of the Number Translation Theorem, Theo-
rem 31. It will depend on some more lemmas though. Note that stops follow
a total order (since they are numbers).

Lemma 27. For any game G, Ls(G) ⩾ Rs(G).

Proof. If G is a number, then Ls(G) = Rs(G), so we are done. Hence,
suppose G is not a number. The proof is by way of contradiction.

Suppose Ls(G) < Rs(G). Then there is a number x such that Ls(G) <
x < Rs(G).10 Here we use weak number avoidance. If Left starts in the game
G− x, then, if she has a winning move, there is one of the form GL − x. If
GL is a number, we stop, and observe that GL − x = Ls(G)− x < 0. Hence
Right wins. If GL is not a number, then, by weak number avoidance, if Right
can win he has a winning move in GL to say GLR. If GLR is a number, we
stop, and observe that GLR − x = Ls(G) − x < 0. The argument does
not depend on when we stop: we conclude, if Left starts then Right wins.
The analogous argument (using weak avoidance) gives that Left wins G− x
when Right starts. Altogether we get that G equals x, which contradicts the
assumption that G is not a number.

□

Lemma 28. For any games G and H, Rs(G+H) ⩾ Rs(G) + Rs(H).

Proof. In the game G+H, if Right starts by playing to GR+H, then, unless
GR is a number, Left can respond to GRL+H, and if Right starts by playing
to G+HR, then Left can respond to G+HRL. Then use induction. Let us
fill in some details to this argument. Suppose without loss of generality that
Right’s minimizing move in G+H is in the G component, to say GR +H.
Then, by definition of the stops, Rs(G+H) = Ls(GR +H). Now, Left who
is the maximizer may have many options, but (if GR is not a number) she
has in particular a move to GRL + H, where GRL maximizes her response
in GR played alone. Therefore Rs(GRL +H) ⩽ Ls(GR +H) = Rs(G+H).

10The dyadics are dense on the real number line.
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Now use induction to conclude that Rs(GRL) + Rs(H) ⩽ Rs(GRL + H) ⩽
Ls(GR +H) = Rs(G+H). Finally, the option GR might not have been the
minimizing option for Right, playing in G alone, so to summarize, we get

Rs(G) + Rs(H) ⩽ Rs(GRL) + Rs(H)(5)

⩽ Rs(GRL +H)(6)

⩽ Ls(GR +H)(7)
= Rs(G+H).(8)

If GR = x is a number, then Rs(G+H) = x+ Ls(H) ⩾ Rs(G) + Rs(H),
by applying Lemma 27 on the game H. □

The following two lemmas are pivotal in the proof of number translation.
As we will see, together with the definition of a disjunctive sum of games
and domination, they comprise the full proof.

Lemma 29. For any game G that is not a number, there is a Left option
GL such that Rs(GL −G) ⩾ 0.

Proof. We get

Rs(GL −G) ⩾ Rs(GL) + Rs(−G)(9)

= Rs(GL)− Ls(G)(10)
= Ls(G)− Ls(G) = 0,(11)

where (9) is by Lemma 28, (10) is by symmetry, and (11) is by assuming
that GL is such that Ls(G) = Rs(GL). □

Note that, if GL = ∅, then G equals a number. This follows because as
we have seen, all numbers are zugzwangs.

Lemma 30. Suppose that G is such that Rs(G) ⩾ 0. Then G+ x > 0, if x
is a positive number.

Proof. Clearly this holds if G is a number.
Otherwise, suppose Right starts by playing in the G component, to say

GR + x. Then, unless GR is a number, Left has a response GRL such that
Rs(GRL) ⩾ 0. And we may use induction. If GR is a number, then this
number is no smaller than 0, by the definition of Right stop, and so Left
wins G+ x, by the assumption on x.

If Right starts by playing in the x component, to say G+xR, then we can
use induction, since xR > x.

If Left starts, observe that Lemma 27 implies that Ls(G) ⩾ Rs(G) ⩾ 0.
That is, she has a move such that Rs(GL) ⩾ 0. Then, GL + x > 0, by
induction. Altogether, we get G+ x > 0 □

Let us restate the main result of this section.
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Theorem 31 (Number Translation - Strong Number Avoidance). Suppose
that x is a number game, and G does not equal a number. Then, G + x ={
GL + x | GR + x

}
.

Proof. By definition of disjunctive sum,

G+ x =
{
GL + x,G+ xL | GR + x,G+ xR

}
.

Thus, by domination, it suffices to prove that there exists a GL such that
GL + x ⩾ G + xL, for any xL. We combine Lemma 29 with Lemma 30;
together they establish that there exists GL such that GL−G+x−xL > 0. □

9. In a very small world

There is a multitude of games that are smaller than any positive number.
As an example, let us start with the first we came to think of. If x is a
positive number, then x > ∗.
Lemma 32. For any number game x > 0, then x > ∗.
Proof. Consider the game x+ ∗, where x is a positive number. Left playing
first to x wins. If Right starts by playing to x, then Left wins. If Right plays
to xR + ∗, then Left wins by induction, since xR > x equals a number. □

Definition 33. The game g is an infinitesimal, with respect to numbers, if
for all positive numbers x, −x < g < x.

Mostly we omit the part “with respect to numbers”, but as we will see later
there is an infinite hierarchy of games that are infinitesimals with respect to
each other. We have already observed that the the game ∗ is an infinitesimal.
However ∗ is confused with 0. The following two results are perhaps more
remarkable. There are also positive games so small that, however many
copies you add, you will not reach one move for Left, the game 1. One such
game is ↑ = {0 | ∗} > 0. A related game is ↑∗ = ↑+ ∗ = {0, ∗ | 0}. However
this game is fuzzy that is, incomparable with 0. But if we add another “up”,
then again we reach a positive game, namely ⇑∗ > 0, and so on. One can
find many games that satisfies the following result, that is sometimes known
as “non-Archimedean”.11

Theorem 34. There are positive infinitesimals, with respect to numbers.

Proof. The game ↑ is positive. We will demonstrate that, for all n ∈ N,
n · ↑ < 1. Suppose that Left starts in the game 1 + n · ↓. She plays to
1 + ∗ + (n − 1) · ↓. If Right responds to 1 + (n − 1) · ↓, then she wins
by induction, and if he plays to 1 + ∗ + (n − 2) · ↓, then Left can play to
1 + (n− 2) · ↓, and win by induction. Suppose next that Right starts in the
game 1 + n · ↓. Then he plays to in the game 1 + (n− 1) · ↓, and Left wins
by induction. □

11The Archimedean property states that, for all positive x, and all positive y, there is a
natural number n such that nx > y. Note that our real number system has this property,
so combinatorial games are much richer, in this sense.
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In one lecture we mentioned briefly another choice, the class of so-called
uptimals, a sequence of the form ↑ > ↑2 > ↑3 > . . . > 0. They build
infinite hierarchies of yet smaller positive games. By definition, the game
↑n =

{
0 | ∗ − ↑ − ↑2 − · · · − ↑n−1

}
. For example ↑2 = {0 | ↓∗}. Moreover,

the uptimals are infinitely small with respect to each other.

Theorem 35. Fix a positive integer n. Then, for all positive integers m
↑n > m · ↑n+1.

Proof. Exercise! □

This result motivates a special notation for uptimals. We use a standard
positional numeration system, but where the digit denotes the number of the
given uptimal, respectively. For example 0.1023 = ↑+2 · ↓3 +3 · ↑3 (here we
use x to denote the negative of a positive uptimal x).

The next result concerns even smaller games, called Tiny(1),

�1 = {0 | {0 | −1}}
and Miny(1),

	1 = {{1 | 0} | 0} .

Theorem 36. There are positive infinitesimals, with respect to any upti-
mal ↑n.

Proof. Exercise! (Try with Tiny.) □

This is the content of the next lecture. There is some overlap.

9.1. More on Infinitesimals - a toppling dominoes approach, by
Anjali.

Definition 37. A short game G is infinitesimal if x > G > −x for every
positive number x.

Consider the combinatorial game of toppling dominoes. There are
three types of dominoes in the game; red which can be toppled by Left, blue
which can be toppled by Right and green which can be toppled by both.
Take the following game with two red dominoes as in Figure 6. This game
has the value of 2.

Now, let’s add a blue domino in between the two red domino in figure 7.
Let this game be G1. This has the value

G1 = {0, ∗ | 1}

Figure 6. G = 2
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Figure 7. G1 =
1
2

Figure 8. G2 = ↑

The second left option is reversible, and hence

G1 = {0 | 1}

=
1

2

Adding one more blue domino in the middle gives us the game in Figure 8.
Let this game be G2. This game has the form

G2 = {0, {0| − 1} | 1, ∗}

The Left option {0| − 1} is reversible and 1 < ∗. Thus,

G2 = {0 | ∗}
= ↑

We can compare this game with any number, say 1. We find that 1 > ↑. We
want to find out how many ↑s it might take for the value to be more than
1, if possible at all. Actually, by induction, we can prove that, ∀n ⩾ 1,

1 > n · ↑.
The game ↑ is an infinitesimal. It has a very small game value, infinites-
imally small with respect to the dyadic rationals. Consider the sequence
1, 1/2, 1/4, 1/8, . . .. It rapidly tends to 0, right? Well, in the amazing world
of combinatorial games, there is some space between this infinite sequence
that ‘converges to 0’, and the game 0. And now we will demonstrate what
this means.

Now, let’s add one more blue domino in the middle so that, now there are
three blue dominoes in between two red domino. See figure 9. Let this game
be G3.

G3 = {0, {0| − 2} | {0| − 1}, ∗}
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Figure 9. G3 = �1

The second Left option is reversible and the second Right option is dominated
by {0| − 1}.

G3 = {0 | {0| − 1}}
= �1

This type of games are called Tiny and it is a type of infinitesimal. This
particular game is Tiny(1) written as �1.

Definition 38. For all G > 0, the games �G and 	G are defined by

�G = {0 | {0 | −G}} and − (�G) = 	G = {{G | 0} | 0}.

We can prove that ↑ > �1. Moreover, we have the following theorem.

Theorem 39. The game �1 is infinitesimally small with respect to ↑. That
is, ∀n ⩾ 1,

↑ > n ·�1.

Proof. We want to find the outcome of ↑+n ·	1 where 	1 = {{1 | 0} | 0}.

Case 1: Left starts. If Left moves in ↑ to go to 0 + 	1 then Right would
win the game since, 	1 < 0. Hence, Left moves in one of the 	1 to go to
↑+ {1 | 0}+ (n− 1) ·	1. Then, Right moves to ∗+ {1 | 0}+ (n− 1) ·	1.
By induction we prove that ↑+ n ·	1 is won Left when Left starts.

Case 2: Right starts. Right has advantage in 	1 as 	1 < 0 so Right moves
in ↑ to go to ∗+n ·	1. This is a N − position since Right can undo all Left
moves in 	1. Left will not move in ∗ unless necessary and win the game. If
at certain point Right moves in ∗ then Left will gain an advantage by going
to 1 +m ·	1,where m ⩽ n and Left would win similarly.

Therefore, the game ↑ + n · 	1 is an L − position which implies ↑ >
n · �1,∀n ⩾ 1. □

We can now easily make the game �2 by adding one more blue domino in
the middle, making it 4 instead of 3 blue dominoes in Figure 9, and so on.
We have the following result.

Lemma 40. The game �2 is infinitesimally small with respect to �1. That
is, ∀n ⩾ 1,

�1 > n ·�2.
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Proof. To prove this, we first show that �1+ 	2 > 0 which implies �1 > �2.

�1 = {0 || 0 | − 1}
�2 = {0 || 0 | − 2}
	2 = {2 | 0 || 0}

Case 1: Left moves first
Left makes a move to go to the game �1+{2 | 0} since �1 is positive game

and it is advantage for the Left. Next, the Right’s best move to replicate
Left’s move in �1 and the game becomes {0 | − 1}+ {2 | 0}. Now, the Left
can move to the game {0 | − 1} + 1 which gives advantage of free move to
the Left. This game has only one move for the Right so the game becomes
1 and thus, Left wins.

Case 2: Right moves first
Right best move is disrupt the positive part of the game by moving to the

game {0 | − 1} + 	2. Next, Left replicates the last move by Right and the
game becomes {0 | − 1} + {2 | 0}. Now, Right’s best move to have a free
move by going to −1+ {2 | 0}. Left now moves to, remove the all the Right
domino that Left is able to, in order to force Right to let go of the free move.
Thus, the Left moves to −1+ 1. Now, Right has only one move left and the
game becomes 1. Thus, Left wins.

Therefore, we see that Left can force a win regardless of who moves first.
Hence, we have

�1 +	2 > 0

=⇒ �1 > �2

Let �1 + k · 	2 > 0 be true for some k. Now, we need to show that this is
true for k + 1.

Case 1: Left moves first
Left’s best move is to get rid of all the negative parts of the game, i.e.,

all the 	2(s). This is done by turning these into {2 | 0}. Thus, the game
becomes �1 + {2 | 0} + k	2. Now, the Right best move to get rid of the
positive part of the game, i.e., �1, or make a move in {2 | 0}.

Suppose Right decides to make in �1 then the game becomes {0 | − 1}+
{2 | 0} + k · 	2. Left’s best move is to keep getting rid of negative parts.
This way the game eventually becomes {0 | − 1} + {2 | 0} on Right’s turn.
Left can go to {0 | − 1}+ 2 and Left wins.

Now, suppose Right decides to make a move in {2 | 0} then the game
becomes {0 | − 1}+ k ·	2. Again, Left’s best move is to get rid of negative
parts, this can happen k times, and the games end up becoming {0 | − 1}+
{2 | 0} or −1 + {2 | 0} with Right’s turn to make a move. Again, this is
clearly won by Left.

Case 2: Right moves first
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Right’s best move is to get rid of the positive part of the game and keep
the negative parts of the game intact. Now, the game becomes {0 | − 1} +
(k+1)	2. Now, this will follow like the above case, leading to Left winning.

Therefore, by induction �1+k ·	2 > 0 is true for natural number k. This
implies that

�1 > k ·	2,∀k > 0

Thus, proving the lemma. □

This lemma gives the following theorem.

Theorem 41. Let G and H be two game such that G > H ⩾ 0. Then �H

is infinitesimally small with respect to �G i.e.

�G > n ·�H , ∀n ⩾ 1.

Proof. The proof follows through induction using the previous lemma. □

10. An overview of atomic weight theory

In this section you will learn “the raison d’être” for atomic weight theory,
a tremendous tool for all-small games, developed first in Winning Ways
[BCG1982]. We will review some of the interesting proofs from the lierature,
but not all; the main references are [S2013, ANW2007].

In an all-small combinatorial game, for all subgames, either both players
can move or neither can. Let us begin with some ruleset example, a disjunc-
tive sum of a flower garden with a single strip of bipass. The ruleset
flower garden [BCG1982] is a subset of green-blue-red hackenbush;
it has a green stalk of integer length, and on top a flower, with blue and red
petal leaves. See Figure 12 to the right.

bipass is a much more recent ruleset [LN2023]. A bi-collective of one-
directional micro organisms, consisting of a red tribe and a blue tribe, live
in close proximity, and they take turns moving. The red tribe moves by
letting one of its members crawl rightwards across a number of blue amoebae,
while settling in the spot of a blue amoeba, and thus pushing each bypassed
amoeba one step to the left, whereas the blue tribe moves by letting one of
its members crawl leftwards across a bunch of red amoebae, while shifting
the position of each bypassed amoeba one step to the right. Amoebae cannot
bypass their own kind. When an amoeba reaches end of line, it cannot be
played, and thus dies (of boredom). See Figure 10. The exception is if no
more moves are possible in the full collective; in this case the last moving
tribe wins, and is rewarded eternal life, as in Figure 11. This ruleset is called
bipass.

Who wins the game in Figure 12, and why? To understand this, let us
dwell a bit on the theory of atomic weights (from the books).
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−→

Figure 10. The middle amoeba crawled to the left end.
When an amoeba does not face any opponent, even at a far
distance, it gets removed, because it cannot be used in the
game by either player.

−→

Figure 11. By moving, the single red amoeba bypassed all
remaining amoebae, and will be celebrated as a hero by its
resurrected tribe.

+

Figure 12. A Bipass strip in disjunctive sum with a
Flower Garden.

Definition 42 (Far Star). The far star, denoted �, is an arbitrarily large
Nim heap; that is both players can move to any Nim heap from �.12

By this definition, it follows that� is absorbing, with respect to other nim
heaps. That is, for all n, � + ∗n = �. Equivalence modulo � is obtained
as follows.

Definition 43 (Equivalence Modulo �). Let G,H be normal play games.
Then G ⩾� H, if, for all games X, and for all sufficiently large m,n, o(G+
X + ∗m) ⩾ o(H +X + ∗n), and G =� H if G ⩾� H and H ⩾� G.

By Definition 42, the ‘game’ � should be treated as a standard combina-
torial game, since, for each game G, for any sufficiently large n (depending

12In the books it is usually stated that it has the additional property that �+� = �,
but we are not going to use that here. Instead, any technical manipulation that involves
far star will be justified by applying sufficiantly large nim heaps.
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only on the followers of G), o(G+∗n) is constant. For any G, we may take n
greater than the birthday of G. Sometimes we abuse notation, and instead
of for all sufficiently large m,n write o(G + X +�) ⩾ o(H + X +�) in
Definition 43.

Theorem 44 (Constructive �-equivalence, [S2013]). Let G,H be normal
play games. Then G ⩾� H if and only if G −H > ↓+�, and G =� H if
and only if ↓+� < G−H < ↑+�.

Proof. It suffices to study the inequality. Let us begin by proving that G ⩾�
H implies G−H > ↓+�. Take X = ↑ −H in Definition 43. Thus, we are
assuming o(G−H + ↑+�) ⩾ o(↑+�). But it is easy to prove that

↑+� > 0.(12)

And so, G − H + ↑ +� > 0, which, by regarding � as a large nim heap,
implies G−H > ↓+�. To prove the claim (12), playing first, Left can play
to ↑+ ∗2, and win. Playing second, if Right starts by playing to ∗+�, then
Left can respond to ∗+∗ = 0. Similarly, if Right plays in the � component,
then Left wins (if he moves to ↑+ 0, Left responds to 0, and otherwise Left
moves to ↑).

For the other direction, we must prove that, if G −H > ↓ +�, then for
any X,

o(G+X +�) ⩾ o(H +X +�).(13)

Our intuition does not help us here, since, at a first glance it looks as if the
“↓” might break the proposed inequality of the outcomes. But the far star
will come in handy, just when we thought all hope is lost. We will review two
completely different proofs from the literature [ANW2007, S2013], perhaps
neither will give us a tangible explanation but even so may be appreciated
as one of those ‘pure math proof’ that we must rely on, when all intuition
goes wrong.

Let us start with the proof idea from “Lessons in Play” [ANW2007]. The
proof is by way of contradiction, and we (as Right) will play three games
at once against an oracle (as Left), who claims that they can win all three
games. They play first in one of them. And we play first in the other two
games. We keep track of standard alternating play in each game. The three
games are as follows, where Left plays first in (iii):

(i) −(G+X) +�;
(ii) (G+X)− (H +X) + ↑+�;
(iii) (H +X) +�.
Note that we added and subtracted X in the second game. The X-

component is the same in all three games and it originates from the outcome
identity that we set out to try and contradict, (13). We will use that the far-
star in each component can be chosen as arbitrary sufficiantly large nimbers,
to altogether reach a desired contradiction. A contradiction can be stated as
“Left wins all three games” (check this!). We can let the oracle as Left start
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in (3), and Right (as us) start in the other two games. If the oracle starts in
the (H +X) component in (3), then we ‘mimic’ this move in the −(H +X)
component in (2). Next, the oracle might play in the (G+X) component in
(2), and we can mimic in the −(G +X) component in (1), and so on. For
any ‘non-far-star-move’ and ‘non-up-move’, this typ of mimic procedure can
continue, until we get the last move in all such components.

Observe that at each stage of such play, after the oracle moved, we will
be the starting player in all three games; hence we are free to play in either.
And, if we get the last move in any game (1), (2) or (3) then we have reached
the desired contradiction.

Next let us study oracle moves in a far-star-component, to say ∗k. We
will respond in game (2) in the up-component, and then we will ‘finitize’
the remaining far stars into very large nim heaps ∗m and ∗n such that
∗k ⊕ ∗m⊕ ∗n⊕ ∗ = 0. If the oracle plays in the up-component in game (2),
then we instead ‘finitize’ the far-star-components such that ∗k⊕∗m⊕∗n = 0.
In this way, we can assure that we get the last move in one of the three games,
and hence Right cannot win them all, as stipulated.

By this contradiction, the statement holds.
Next we study the idea from “Combinatorial Game Theory” [S2013]. To

come...
□

For example, we have G =� 0 if and only if Left wins G + ↑ + ∗n and
Right wins G + ↓ + ∗n for some sufficiently large n, and n is sufficiently
large if ∗n does not equal any follower of G + ↑ or G + ↓. This motivates
the naming as a constructive �-equivalence. This method is useful also in
proofs, for example whenever we have a good guess of one of the games G or
H, then we use this result to verify whether our candidate games are equal.
See Theorem 49 for how it applies to atomic weight theory.

Let X be a set. Then X + y = {x+ y : x ∈ X}. If X is a set of all small
games, let aw(X) = {aw(x) : x ∈ X}.

The product of a game G and ↑ is: 0 · ↑ = 0; n · ↑ = ↑+(n− 1) · ↑, in case
G = n is an integer. Otherwise G · ↑ = {GL + ⇑∗ | GR + ⇓∗}.

Lemma 45 ([S2013]). Consider any normal play game G.
(i) If G · ↑ ⩾� 0 then G ⩾ 0.
(ii) If g is all-small then there is a unique G such that g =� G · ↑.

In a proof of this lemma, the first item implies the second, and we use the
uniqueness to define atomic weight.

Definition 46 (Atomic Weight). The atomic weight of an all-small game g
is the unique game G = aw(g) such that G · ↑ =� g.

Example 47. Let g = ∗n. By Theorem 44, aw(∗n) = 0. Namely, we claim
that Left wins ∗n + ↑ +� (and symmetrically Right wins ∗n + ↓ +�). If
Left starts, she can play to ↑ > 0. If Right starts by playing to ∗m+ ↑+�,
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then Left wins (by induction). If he plays to ∗(n + 1) +�, then Left can
respond to ∗(n + 1) + ∗(n + 1) = 0. If he plays to ∗n + ↑ + ∗m, then Left
wins playing first (Right can win playing first if and only if ∗n+ ∗m = ∗).

Example 48. Let g = ↑ and let h = ↑∗. By Theorem 44, aw(g) = aw(h) =
1. Namely � < ↑ and � < ↑∗. By using also symmetry, the verification is
similar to the one in Example 47.

In this example we had to guess the atomic weight 1 and then verify.
There is a constructive/recursive method for computing atomic weights.

Theorem 49 (Constructive Atomic Weight). Let g be an all-small game,
and let

G =
{
aw(gL)− 2 | aw(gR) + 2

}
.

Then aw(g) = G, unless G is an integer. In this case, compare g with the
far star. If

(i) g � �, then aw(g) = 0;
(ii) g <�, then aw(g) = min{n ∈ Z : n
 GL};
(iii) g >�, then aw(g) = max{n ∈ Z : n� GR}.

Theorem 50 (Atomic Weight Properties). Let g and h be all-small games.
Then

(i) aw(g + h) = aw(g) + aw(h);
(ii) aw(−g) = −aw(g);
(iii) if aw(g) ⩾ 1, then g 
 0 (Left wins playing first);
(iv) if aw(g) ⩾ 2, then g > 0 (Left wins).

As usual ‘
’ denotes greater than or confused with. In particular (iv) is
the raison d’être for atomic weight, and it is popularly called “the two-ahead-
rule”. We will have plenty use for it.

For example, we argue that the game in Figure 12 is an R-position.
Namely, the chosen rulesets satisfy very elegant properties with respect to
the atomic weight theory. If a flowers in the garden has more bLue (Left
plays bLue) than Red petal leaves, then this flower has atomic weight one.
And since atomic weights are additive, we can simply compute the number
of red flowers minus the number of blue flowers to get the atomic weights of a
Flower Garden (see for example [BCG1982] or [S2013]). Bipass has the
inverse property in a sense: the more pieces of the opponent the better. Let
∆(g) be the number of bLue amoebae minus the number of Red amoebae in
a Bipass strip. Then aw(g) = ∆(g). See [LN2023] for a proof of this result.
By these two results, we can compute the atomic weight of the disjunctive
sum game in Figure 12, and indeed, it is two, so the two ahead rule applies,
Right is two atomic units ahead of Left, and so he will win independently of
who starts. (How?)
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11. An overview of reduced canonical form, and a bit about
temperatures and hotstrat

Recall the definitions of Left- and Right stops, Ls and Rs respectively,
from Definition 26. A game G is hot if Ls(G) > Rs(G), it is tepid if Ls(G) =
Rs(G), and it is an infinitesimal if Ls(G) = Rs(G) = 0.13

Example 51. For example G = {{2 | 1} | −1} is hot, because 1 = Ls(G) >
Rs(G) = −1. But H = {{2 | 1} | 1} = 1 + {{1 | 0} | 0} = 1 + 	1 is tepid,
with Ls(H) = Rs(H) = 1. Moreover, g = {{1 | ↑} | ↓} is infinitesimal,
because Ls(g) = Rs({1 | ↑}) = Ls(↑) = 0 and Ls(g) = Rs(↓) = 0.

In a sense, the “one move for Left”, which is hidden to the left of the
Left option gL (in the last game in Example 51), will mostly be irrelevant
in play. Similar to Miny and Tiny though, the option does not reverse out.
The hinge here of course is the word “mostly”. In an environment with
similar infinitesimals, there are situations where the hidden “one move for
Left” can become alive. But those situations are rare, and the concept of a
Reduced Canonical Form (rcf) removes the appearance of infinitesimals for
all subgames. It becomes an important tool to analyze games that otherwise
seem intractable.

In fact, there are two approximation techniques related to these concepts,
namely Temperature Theory (see Section 12), which outputs a temperature
and a mean value, and Reduced Canonical Form (rcf), which outputs a
coarsening of the usual canonical form (value) of a game. By taking the
reduced canonical form approximation of a hot game, the temperature and
mean value remain the same. Hence, one may view Temperature Theory as
a last resort, if both the game value and the rcf are intangible for a human
eye. As usual, we are looking for information of how to play well games in a
disjunctive sum. There is a classical strategy called hotstrat, which says: play
in the hottest component. This is often the best strategy, but not always.
Take, for example, the disjunctive sum game

G = {1/2 | −100}+ {100 | 1/2}+ {0 | {−1 | −101}}
Hotstrat fails here. The game is an N -position, but if Left starts in the
hottest component, she loses.14 She needs to first eliminate Right’s threat
in the coolest component.

A brief introduction to Temperature Theory is the topic of the next sec-
tion. In fact G is problematic also from a point of view of reduced canonical
form: in that case G remains the same, and its canonical form appears more
complicated for a human eye than the displayed disjunctive sum. We will
see other examples when rcf is more helpful.

13A special case of infinitesimal games are the all small games. But there are many
infinitesimals that are not all small. For example, we have already seen �1 and 	1.

14Other instructive examples of when it fails uses the concept of over heating (a type
of ‘inverse’ of cooling), but we do not have the time to cover that topic in this course; see
[S2013].
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The reduced canonical forms for the games in Example 51 are rcf(G) =
{{2 | 1} | −1}, rcf(H) = 1, and rcf(g) = 0. We will study the meaning of
these statements in what comes, and we will define all concepts accordingly.

First we define the equivalence classes modulo inf, and state a main the-
orem with tools of efficient computation of inf-equivalence. Then, we define
the reductions modulo inf, and at last we state a result of uniqueness of the
end result of these reductions.

There are many hot games for which rcf(G) ̸= G. For example G′ =
{{2 | 1∗} | −1} is hot and in canonical form, but rcf(G′) = {{2 | 1} | −1}.

The equivalence relation modulo infinitesimals is defined as follows.

Definition 52 (Equivalence Mod Inf). Consider game G and H. Then
G ⩾inf H, if, for all positive numbers x, G − H > −x. And G =inf H if
G ⩾inf H and H ⩾inf G.

That is, G =inf H if −x < G − H < x for all positive numbers x. The
games G and H are infinitesimally close if G =inf H, and this is also called
“equivalent modulo infinitesimals” or simply “inf-equivalent”. The relation
⩾inf is a partial order, the partial order modulo infinitesimals. We may use
terms such as “numberish” if a game is infinitesimally close to a number, and
if G =inf H, then we say that H is G-ish and vice versa.

The first result of this section simplifies game comparison modulo infinites-
imals, since showing G ⩾inf H is equivalent to showing G−H ⩾inf 0.

Theorem 53 (Constructive Inf-inequality). Consider two games G and H.
The following are equivalent.

(i) G ⩾inf H;
(ii) Rs(G−H) ⩾ 0;
(iii) G−H ⩾ ϵ for some infinitesimal ϵ.

Proof. Since Rs(G−H) is a number, item (ii) follows from item (i) by letting
x > 0 be arbitraty small. It requires and argument that (ii) implies that it
suffices to take ϵ = n · ↓, for some large n; this is Theorem 4.9 in [S2013].
Then (iii) follows. And (iii) implies (i), by the definition of an infinitesimal
(with respect to numbers). □

The second and third items in Theorem 53 are efficient tools, and they
often appear in proofs and examples.

For example,

1 ⩾inf {1 | 0} ,(14)

by (3), since 1∗ ⩾ {1 | 0}. Indeed, Left wins {1 | 1}+{0 | −1} playing second.
Recall, however that 1 � {1 | 0}, since Next player wins 1 + {0 | −1}. The
small shift in parity shifted the comparison in Left’s favor.

And the inequality (14) holds by (2), since Rs(1 + {0 | −1}) = 0 ⩾ 0.
Of course, similar arguments show that, for any numbers a, b with a > b,

then a ⩾inf {a | b}, while a � {a | b}.
It is worthwhile to rewrite Theorem 53 in terms of inf-equivalence.
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Corollary 54 (Constructive Inf-equivalence). The following are equivalent.
(i) G =inf H;
(ii) Rs(G−H) = Ls(G−H) = 0;
(iii) ϵ ⩽ G−H ⩽ ϵ′ for some infinitesimals ϵ, ϵ′.

Proof. Use Theorem 53. □

For example, ↑ =inf ↓, by (2), since Rs(⇑) = Ls(⇑) = 0.
For example, {1 | 1} =inf 1, by (3), since {1 | 1} = 1∗ and ∗ ⩽ 1∗ − 1 ⩽ ∗.

Definition 55 (Inf-reduction). Let G be a game.
(i) Suppose A ∈ GL. Then A is inf-replaceable by B, if A =inf B.
(ii) Suppose A,B ∈ GL. Then A inf-dominates B, if A ⩾inf B.
(iii) The Left option GL is inf-reversible (through GLR), if G ⩾inf G

LR

for some Right option GLR.

Observe that (ii) and (iii) resemble the standard reduction techniques,
that together produce a canonical form game value. But (i) is new in this
setting. As we will see, altogether they produce a unique simplest form game,
a ‘canonical form’ modulo infinitesimals.

If a game already equals a number, then inf-reduction is not interesting.
The theory requires that we omit such cases in our inf-reduction techniques.

Theorem 56 (Inf-Replaceable). Consider a game G ̸∈ D, and suppose A ∈
GL. If A is inf-replaceable by B, then G =inf

{
GL \ {A}, B | GR}.

Proof. Let H =
{
GL \ {A}, B | GR}. It suffices to prove that,

(i) if A ⩾inf B, then G ⩾inf H;
(ii) if B ⩾inf A, then H ⩾inf G.

We prove (i), and (ii) is similar. Suppose A ⩾inf B. By definition, it suffices
to prove that Left wins G−H+x playing second, for any positive number x.
Since x ∈ D and G ̸∈ D, Number Avoidance implies that Right will not play
in the x-component.15 But all options expect Right playing to G − B + x,
have mimic responses, implying that Left wins playing second since x > 0.
However, Left can play to A − B + x, which is positive, by the assumption
A ⩾inf B. □

Theorem 57 (Domination Mod Inf, [S2013]). Consider a game G ̸∈ D. If
G′ is obtained by removing some inf-dominated option (either Left or Right).
Then G =inf G

′.

Example: the game {1, 1∗ | 0} =inf {1 | 0}, since 1 inf-dominates 1∗, and
G does not equal a number.

Theorem 58 (Reversibility Mod Inf, [S2013]). Consider a game G. Suppose
that GL is inf-reversible through GLR, and let

G′ = {GL \ {GL}, GLRL | GR}.
15Siegel [S2013]proves a slightly stronger version of Number Avoidance that implies

this.
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(i) If G′ ̸∈ D, then G =inf G
′;

(ii) If G is hot, then G =inf G
′.

It is important that G′ in Theorem 58 is not a number. For example,
with H = {{2 | 1} | 1}, as in Example 51, we get that HLR ⩽inf H, since, by
Theorem 31, HLR = 1 ⩽inf 1 + 	1 = H. And so, if the result would apply
to numbers, since HLRL = 0, then H ′ = {0 | 1} = 1/2 ̸=inf 1.

Luckily, we have other tools, and the Number Translation Theorem (The-
orem 31) tells us that H = 1 +	 =inf 1, by using also Theorem 53 (3). Or,
we can use directly Theorem 53 (2), by noting that Ls(H) = Rs(H) = 1.

Let us make an observation about the illusiveness of some combinatorial
games. Of course, {0 | 1} = 1/2, a number (!). And one might expect
that adding an infinitesimal to the Right option, might not change the game
significantly. However, {0 | 1 + ∗} = {0 | {1 | 1}} = 1; standard reversibilty
applies here to give the game 1 = {0 | ∅}.

Let us give an example, where we can use inf-reversibilty. Let G =
{1, {100 | ↑} | ↑}. It can be verified that this is a canonical form game. For
example, 1 � {100 | ↑}. Consider the Left option with GLR = ↑. If we can
prove that

↑ ⩽inf G,(15)

then GLRL = ∗, which will be dominated by the Left option 1, and it would
follow that G =inf {1 | 0}.

To prove inequality (15), note that Rs(G+↓) = Rs({1, {100 | ↑} | ↑}+↓) =
min{Ls(↑+ ↓),Ls(G)} = 0, and then use Theorem 53 (ii).

Definition 59. A game G is in reduced canonical form, if, for every subgame
H of G, either H is in canonical form and is a number, or H is hot and G
does not contain any inf-dominated or inf-reversible options.

In particular, if a game is tepid, then its reduced canonical form is a
number.

Theorem 60 ([S2013]). For every game G, there exists a unique game H
in reduced canonical form such that G =inf H.

Definition 61. The reduced canonical form of a game G, denoted rcf(G),
is the unique reduced canonical form H, such that rcf(G) = H.

Here is an example of a not too complicated canonical game, but where a
human eye might not capture the essential information immediately,

G = {1∗, 1↓ | {1↓ | ↓}} .
Is this game infinitesimally close to some game with a much simpler form?
Yes, perhaps not very surprisingly rcf(G) = 1.

Example 62. Let us give an example of a full ruleset to see how to apply rcf.
Consider an instance of Partizan Subtraction, where Left can subtract
any odd number and Right can subtract any even number. Let ⟨h⟩ denote
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the canonical form of a heap of size h under this ruleset. Then obviously
⟨0⟩ = 0 and ⟨1⟩ = 1. Note the large number of options from large heap sizes.
However it turns out that most of them will be irrelevant, and in particular
when we apply rcf. Note that this ruleset is not all-small, and hence we
might expect cold and/or hot games. And in fact, we will get a bit of both.

One can prove that the canonical form of a game is the dyadic ⟨h⟩ =

1/2(h−1)/2, if the heap size h is odd, and otherwise the canonical form satisfies
the recurrence ⟨h⟩ = {1 | 0, ⟨h− 2⟩}. (This part is left as an exercise.)

The reduced canonical form is the same as the canonical form if h is odd,
but if h is even, then rcf(⟨h⟩) = {1 | 0}. To verify this, let us compute the
stops of ⟨h⟩+ {0 | −1}.

We have Rs({1 | 0, ⟨h− 2⟩} + {0 | −1}) ⩽ 0, since (for example) Right
can start by playing to {0 | −1}. On the other hand, Ls({1 | 0, ⟨h− 2⟩} +
{0 | −1}) ⩾ 0, since Left can play to 1+ {0 | −1}. We may use induction to
conclude the statement.

Usually, but not always, the reduced canonical form is a lot simpler than
the canonical form. In case the rcf still seems intractable for a human eye,
then temperature theory might be a last resort to estimate a reasonable
‘play-value’ of a game.

12. Intuitive temperature theory

We have already seen examples of hot games: games with some urgency to
play first. Typically one would think of the switches, games of the form ±x =
{x | −x}, for some positive number x. For example G = ±10 = {10 | −10}
is hot, and it has temperature T (G) = 10 (see Figure 15 for its so-called
thermograph).

We find the temperature of a hot game, by cooling it, and observing when
the cooled game becomes a tepid game. In our example, the smallest number
t ⩾ −1, for which Gt := {10− t | −10 + t} is tepid, is indeed t = 10. And
this defines T (G). Indeed, G10 = ∗, an infinitesimal, and they are all tepid.
We are thinking of ‘cooling’ as if each player is paying a penalty of t. As
long as they can keep paying the penalty and benefiting in ‘score = number
of moves’ playing first, the game can still be cooled further. Thus, the hot
game G = {3 | 1} can be cooled by at most 1 until it freezes and becomes the
tepid game 2∗ = 2 + ∗, where no player benefits by paying further penalty
in exchange for playing first.

The idea of temperature theory can easily be invisioned by playing a
disjunctive sum of switches. For example, if the game is ±10 + ±5 + ±1,
then the first player will win if and only if they play in the hottest game
component “±10”; If Left starts and plays to 10 + ±5 + ±1, Right has no
defence.

To begin with, by using this naïve understanding of heat, how should one
play optimally in the disjunctive sum

{10 | −10}+ {3 | 1}+ {1 | {0 | −100}}?
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The hottest game component is {10 | −10}, and the first player has a winning
move there. It does not need to be the unique winning move though. There
is another winning move for one of the players.

Let us give another simpler example, where Right, playing first, benefits
by giving a threat, rather than playing in the hottest component. The game
is: {10 | −10}+ {10 | {9 | −11}}. In fact, he wins if and only he plays in the
coldest component.

The general definition of temperature is recursive in t, starting at the two
stops. It includes the possibility of cold games with negative temperature;
the coldest game has defined temperature −1, and that holds for any game
that is an integer (see Figure 13 for its thermograph). The integers cannot
be further cooled.

Suppose that we wish to ‘cool’ the game 1/2 = {0 | 1} to find its tem-
perature. We have to ‘pay’ a negative penalty (because the game is already
cold). We get (1/2)−1/2 = {0 + 1/2 | 1− 1/2} = 1/2 + ∗, but if t < −1/2,
then (1/2)t is not tepid, but in fact hot. The same idea works for any non-
integer number game, and by using that m

2k
=

{
m−1
2k

| m+1
2k

}
, we get that the

temperature of m
2k

is − 1
2k

.
The standard definition of temperature found in books is non-constructive,

but is seems a bit difficult to avoid this, since we must cool a game G
everywhere all at once; we start the cooling at the Left and Right stops of
G0 = G, and continue until Ls(Gt) = Rs(Gt) = 0. We omit this somewhat
technical definition (see [S2013] for a rigorous treatment of temperature). An
intuitive description suffices for practical purposes, to find the temperatures
and the mean values of some hot games from your rulesets.

Let us explain this concept with an example. Consider the game {3 | −2}.
Is this game ‘better’ for Left or Right? Well, anyone can see that it depends
on who starts, and it seems also that Left has a definite advantage in that
she can earn one more move than Right could, if she gets to start. The mean
value of a game measures this type of ‘advantage’.

The mean value of a game G is defined as the number m(G) such that the
difference n · G − n ·m(G) is bounded by a constant, independently of the
size of the positive integer n. The mean value theorem states that such a
number m exists, and that is suffices to take either of the stops to ‘compute’
it.

Theorem 63 ([S2013]). For any given game G, the mean value m(G) exist
and equals lim Ls(n·G)

n = lim Rs(n·G)
n .

A standard tool to find both the temperature and mean of a game is via
its thermograph. The thermograph of a (hot) game G is drawn, by starting
at the Left and Right stops and gradually cooling (by increasing the penalty
t), and watching carefully that at every line drawn follows the Left and Right
stops of the current Gt. This procedure is most easily understood by drawing
some example games. Let us explain via Figures 13 to Figures 17. The first
picture represents a cold game, the second a tepid game, and all other are
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hot games. Take a look at Figures 13 and 14. They look superficially similar,
but there is an important difference. The games have different temperatures,
so their thermographs should look different, right? And they do, the first
game has temperature −1, and the mast continues down below the picture,
whereas the second picture has temperature 0, because it is a tepid game,
and that is illustrated by the fact that the bottom of the mast rests at the
horizontal line, at the top of a trivial thermograph. It is easy to see that the
location of the mast is the mean value of these two games.

Figure 13. The thermograph of the number game 1.

Figure 14. The thermograph of the tepid game {1 | 1} =
1∗.

The next three thermographs are more interesting. Of course, Figure 15
is the thermograph of the game in the first paragraph of this section. And
it illustrates nicely the idea of cooling that game until we reach mast value
0 and temperature 10. Again, the mast value is the same as the mean
value of the game. Check this by playing a large sum of games, where each
component is of the form {10 | −10}. The first player’s advantage is quickly
diminished by the fact that the second player can, at each response cancel
the first player’s advantage. For switches, it is easy to see that Theorem 63
holds and it is also easy to see that the mast value and the mean value is
the same. That this holds in general is another theorem proved in [S2013].
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Theorem 64 ([S2013]). For any game, the mast value and the mean value
is the same.

Figure 15. The thermograph of the switch {10 | −10}.

In the next picture, we study games of the form G = {a | ±b}, where
a > b are positive numbers. There is a geometric approach to arrive at the
vertical border to the right in Figure 16. Namely use the thermograph of
the switch ±b, and turn it 45 degrees to the left, by fixing it at the point of
the Right stop. The leftmost wall of the thermograph of the Right option
becomes the rightmost wall of the game G. The slope of the leftmost wall
remains the same as in the previous picture (but both the mean value and
the temperature change).

Also in this type of games, we can justify Theorems 63 and 64 directly,
by inspection. Try this!

Figure 16. The thermograph of the game {10 | {5 | −5}}.

We will leave the justification of the thermograph in Figure 17 as an
exercise. The idea is to raise the horizontal bottom level as one cools the
game, and carefully check which option leads to the Right stop at each phase
of the cooling. As in the previous picture, the Right options have to be tilted
45 degrees to the left, by fixing the Right stop of the cooled game.

Note that a cold game might have hot options, and the described proce-
dures do not apply, as one should conveniently reduce a game to its canonical
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Figure 17. The thermograph of the game
{12 | {5 | −5} , {3 | 2}}.

form, before studying its temperature and mean value. For example the lit-
eral form game {{1 | −1} | 0} has a hot Left option, but the game equals a
number since Ls(−1) < Rs(0). Indeed if Left moves, then Right can reerse
out the move to obtain −1; Altogether, the game must equal −1, with tem-
perature −1.

13. Impartial theory

Suppose that we are given a candidate set of P-positions of an impartial
ruleset. To verify this set, we prove that there is no move from one candi-
date P-position to another candidate P-position. And we abbreviate this
property as “P ̸→ P ”. Moreover, we must prove that each candidate N -
position has an option in the set of candidate P-positions. This we write as
“N → P ”. This way of thinking of course bases on the idea of induction,
as is often the case in CGT.

13.1. Rigorous Nim. Using this property of the impartial outcomes, we
will next prove two results. First we prove Bouton’s theorem on the game of
Nim, and in the next subsection we discuss the so-called Wythoff Properties.
Recall the nim-sum definition “⊕” from Lecture 1.

Theorem 65 ([B1902]). The impartial theory is more or less independent
of the partizan ditto. Of course the properties of Pand N positions transfer
without change, but obviously there is no relevance in the notion of game
comparison: all games are incomparable, since players have the same options
for all positions.

Let hi denote the heap sizes of a game of Nim on n heaps, written in
binary power of two expansion, and where i ∈ {1, . . . , n}. The outcome is a
P-position if and only if

⊕
hi = 0.

Proof. For the property “P ̸→ P ”, suppose first that⊕
hi = 0.(16)
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We must prove that every option has non-zero nim sum. Observe that (16)
means that there is an even number of 1s in each column of the disjunctive
sum, where the rows are the heap sizes hi written in binary (as in Lecture 1).
If there is no option, we are done. Otherwise, a Nim option reduces exactly
one heap, corresponding to a row in our binary representation of the heap
sizes. Thus there must be a change of parity of the number of ones in at
least one column of (16). Thus the new nim-sum is non-zero.

For the property “N → P ”, suppose next that⊕
hi ̸= 0,(17)

and let x =
⊕

hi be the result of the nim addition in (17). We must prove
that there is a heap hk that can be reduced such that the new nim-sum is
zero.

Write the nim sum x in its binary representation, as x =
∑

2ixi, where,
for all i, xi ∈ {0, 1}. By (17), there is a largest index j such that xj = 1.
Thus, there must be an odd number of heaps that contain the jth power of
2, 2j . We claim that either one of these heaps, say heap hk, suffices.

Similar to the base 2 expansion of x, write hk =
∑

2ihk,i. Then, by
definition of j and hk, hk,j = 1. For all i < j such that xi = 1, let h′k,i = xi,
where · is the binary complement (that is 0 = 1 and 1 = 0), and otherwise,
let h′k,i = hi. For all i ⩾ j, let h′k,i = 0. A winning move is to reduce hk to
h′k =

∑
2ih′k,i. That this is a reduction of the heap size hj follows from the

fact that in base two expansion, for all j, 2j >
∑

i<j 2
i.16 □

Probably the greatest challenge in this proof is to understand the technical
part of the last paragraph. Of course, this part can be expanded by using
more sentences in English, similar to the earlier parts of the proof. However,
it is also important sometimes to practice reading more ‘pure logic’ parts of
proofs. Why is the “binary complement” introduced in this last paragraph?
Is it the best way to do it, or can you find a way to say the same thing
without that definition? (There is no ultimate answer to such a question;
this question is more meant as a challenge to think of how we write proofs,
and why we do what we do in a proof.)

13.2. The Wythoff Properties. Next, we will prove that the following
properties define the P-positions of Wythoff Nim. Consider two se-
quences of integers (an), (bn), n ∈ N0. They satisfy the Wythoff Properties
if:

(i) (a0, b0) = (0, 0);
(ii) for all n, an+1 > an;
(iii) for all n, bn − an = n;
(iv) for all n,m > 0, an ̸= bm;
(v) for all x ∈ N, there exists an n such that an = x or bn = x.

16This property is of course true in any base n expansion if n ⩾ 2 is an integer.
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Property (ii) is called “increasing”. Property (iii) we may call a “shift”.
Together with (ii), the properties (iv) and (v) are usually called “comple-
mentarity”.17 The following result establishes that, in fact, these properties
define a unique pair of sequences.

Theorem 66. The set W = {(an, bn), (bn, an) | n ∈ N0} given by the
Wythoff Properties is unique, and it is the set of P-positions of Wythoff
Nim.

Proof. Observe that it suffices to prove that the set W is the set of P - posi-
tions of Wythoff Nim. It then follows that the properties define a unique
pair of sequences. Observe that by (ii) and (iii), both a = (an) and b = (bn)
are strictly increasing sequences. Clearly (a0, b0) = (0, 0) is the terminal
P-position. We must prove that every candidate P-position has no P-
position as an option, and we must prove that every candidate N -position
has a P-position as an option.

“P ̸→ P ”: We prove that, for any n > 0, (an, bn) does not have an op-
tion of the same form. We use (iii), (iv) and (v) to exhaust all possibilities.
Suppose that a player removes from a single heap to say (ai, bn), with i < n.
Then, since b is increasing, bi ̸= bn. If they remove from a single heap to
(bi, bn), then (iv) contradicts that this be of the desired form. If they re-
move from a single heap to say (an, bi), then again, since b is increasing,
bi ̸= bn. If they remove from a single heap to (an, ai), then by (iv) this
option is not of the same form. If they remove the same number m from
both heaps, then by (iii) the position cannot be of the form (ai, bi). Namely
bn −m− an +m = n > i = bi − ai.

“N → P ”: We prove that, if a position is not of the form (an, bn), then it
has an option of this form. Consider first (x, bn), with x > an. Then remove
x− an > 0 from the first heap. If x < an, then, by (v), there are two cases.

(a) x = ai, for some i < n;
(b) x = bi for some i < n.

In case (a), since b is increasing, there is a move to (ai, bi). In case (b), there
is a move to (bi, ai), since, by (iii) and b increasing, ai < bi < bn.

Consider next a position of the form (an, x), x ̸= bn. If x > bn, then
(an, bn) is an option. Hence assume x < bn. Then, by (v) x = bi or x = ai,
for some i. In the first case i < n and so (ai, bi) is an option, by (ii). In the
second case, the position is (an, ai). We have three cases:

(a) an < ai < bn;
(b) ai < an < bi;
(c) ai < bi < an.

17Since we are assuming (ii) and (iii), then (iv) and (v) suffice to define complementary
sequences; without (ii), in addition, we should require, for all n ̸= m, an ̸= am.
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For case (a), observe that 0 < ai − an < bn − an = n. Therefore there exists
j < n such that ai − an = bj − aj = j. Hence, by (iii), (aj , bj) is an option.
For case (b), observe that 0 < an − ai < bi − ai = i. Therefore there exists
j < i such that an − ai = bj − aj = j. Hence (aj , bj) is an option. For case
(c), (ai, bi) is an option. □

We will use this result in a later lecture to prove Theorem 1, together
with some other representations of Wythoff Nim’s P-positions. One more
component, called Beatty/Lord Rayleigh’s Theorem, will be required.

Before we move on, to study more impartial rulesets and their properties,
let us illustrate and prove the famous Sprague and Grundy theorem.

13.3. Sprague and Grundy’s contribution. We review the famous Sprague-
Grundy Theory [S1935, G1939]. It says that, for any impartial normal play
game G, there is a nim-heap h such that played together G+h ∈ P. More-
over, the proof provides a constructive way to find that nim heap. The
minimal exclusive function, abbreviated ‘mex’ finds the nim-value of a given
game. The mex-function is defined as follows. Let X ⊂ N0 be a strict
subset of the non-negative integers. Then mex(X) = N0 \X. For example
mex{0, 1, 3, 5, 17} = 2 and mex{1} = 0. As a motivation, before the proof,
let us draw a game tree and compute its equivalent nim-value via the mex-
algorithm. Recursively, it computes the nim-values on every sub-position,
via the mex-rule, until it finds the root, and assigns its nimber. This is an
impartial game so the directions of the slopes do not matter.

G

00 0

G

0

0 0

0

0

0
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Definition 67 (Subgame). Consider a game G. Then H is a subgame of G
if there is a sequence of moves from G to H, not necessarily alternating and
perhaps empty.

In the literature, subgame is often called “subposition" or “follower” with
exactly the same meaning.

Theorem 68. Every impartial normal play game is equivalent to a nimber.

Proof. Consider any impartial normal play game G. The statement holds if
G does not have any options, so assume that G has options. Assign each sub
position of G without any option nim-value 0. Suppose that the statement
is true for all games of birthday less than G. That means in particular that
each option of G, say Gi, equals a nim-heap, say ∗hi. We will demonstrate
that G equals the nim-heap ∗mex{hi}, where i ranges over the options of
G. To this purpose we play the game G+ ∗mex{hi}, and demonstrate that
it is a P-position. Suppose that the first player plays to ∗hj +G, for some
hj < mex{hi} (this is possible by the definition of a nim-heap). Then the
second player can respond to ∗hj +Gj = ∗hj + ∗hj ∈ P. Suppose next that
the first player plays in the G component to Gj + ∗mex{hi}. There are two
possibilities:

(i) hj > mex{hi};
(ii) hj < mex{hi}.

In case (i), the second player can respond to ∗mex{hi}+∗mex{hi}, and win.
In case (ii), the second player can respond to ∗hj + ∗hj and win. □

13.4. A chocolate bar game. Chomp is an impartial game played with
an m by n chocolate bar (see Figure 18). The lower left piece is poisoned,
and the player who chomps it loses (it is a normal play game: think that
the poisoned piece is not present). The game is played as follows: point at
a remaining piece and chomp off everything above and to the right of that
piece. A classical strategy stealing argument shows that the first player has a
winning strategy for Chomp played on a rectangular grid. However, nobody
fully understands optimal play, unless the grid is a square.

Theorem 69. Chomp on a rectangular grid is a first player win.

Proof. If the grid is a square, then point at position (1, 1), and mimic the rest
of play. Otherwise, suppose that the second player has a winning strategy.
Take the upper right piece. If that is a winning move we are done. Otherwise,
wait and see what the second player does. If the first move is not winning,
then he has a winning strategy. But the first player could have played that
move in the first move. Hence she has a winning strategy. □

13.5. Subtraction games. Subtraction is a generalization of Nim de-
fined by a subtraction set S ⊂ N. The move options from a heap of size x is
the set {x − s | s ∈ S, x − s ⩾ 0}. For example, if S = {1, 3, 4, 7}, then the
first few outcomes and nimbers are as follows:
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Figure 18. Two Chomp positions. The red piece in the
lower left is poisoned and cannot be eaten. The first player
pointed at (3, 2) and chomped off four pieces.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o(x) P N P N N N N N P N P N N N N N

nim(x) 0 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3

We conclude that both the outcomes and the nimbers are periodic, with
period length 8, and starting at the heap of size 0. How do we know this? It
follows by observing a repetition of the content of 7 consecutive squares in
either row. Why this ‘window’ size of 7? This is because this is the maximum
size of a subtraction. This idea assists us in the proof that any subtraction
game on a finite subtraction set has eventually periodic outcomes.18

Theorem 70. Every subtraction game S has eventually periodic outcomes.

Proof. There are 2maxS possible combinations of outcomes P or N in a
‘window’ of size maxS. Since this is a finite number, there must exist a
smallest heap size x′ for which the outcome window (o(x′), . . . , o(x′+maxS−
1)) is the same as (o(y′), . . . , o(y′+maxS−1)), for some y′ > x′. This defines
the period. □

The preperiod of the game S, in Theorem 70, is the finite outcome se-
quence o(0), . . . , o(x′ − 1). Similarly we can prove that the nim-sequence is
eventually periodic. The argument is the same, just replace the 2 in the
number of outcomes for |S|+ 1 as the number of possible nimbers.

Corollary 71. Every subtraction game S has eventually periodic nimbers.

Proof. By the mex rule, since a ruleset S has (at most) |S| options, the largest
nimber that can occur is ∗(|S| + 1). The rest of the proof is analogous to
that of Theorem 70. □

Many ‘small’ rulesets have period length equal to the sum of two of the
possible subtractions. In our example: 7 + 1 = 8. But there are excep-
tions. For example, the ruleset S = {2, 5, 7} has period length 22. Moreover
many games in Subtraction have a preperiod before the eventual behavior
settles. An early example is S = {2, 4, 7}. What is its preperiod and period?

18Consider a sequence s = (si) indexed by the non-negative integers. Then s is ‘even-
tually periodic’ if one can decompose the sequence in a finite part (si)i⩽k, the preperiod,
and an infinite part (si)i>k, the periodic part, for which there is a p such that for all
i > k, si = si+p. If k = 0 we say that the sequence is purely periodic, or just periodic.
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13.6. Fibonacci Nim. Fibonacci Nim is played on one heap of pebbles.
The first player can remove any positive number of pebbles, except the whole
heap. Any other move is restricted by taking at most twice the number of
pebbles that the previous player removed.

Recall the Pingala (Fibonacci) numbers, defined by F0 = 0, F1 = 1, and
if n ⩾ 2, Fn+2 = Fn+1 +Fn. Thus, the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, . . ..

Theorem 72. The first player loses Fibonacci Nim if and only if the
starting heap size is a Pingala (Fibonacci) number.

The proof uses a classical result on Pingala numbers, namely: every posi-
tive integer decomposes uniquely as a sum of non-consecutive Pingala num-
bers (see Section 13.10 for a proof). For example 11 = 8 + 3, 23 = 21 + 2,
30 = 21+8+1. We write this unique Pingala representation as a binary word
ζ(x) = ζn · · · ζ1 where x =

∑
i⩾1 ζiFi, ζi ∈ {0, 1}, and we call this representa-

tion ZOL, because it was independently discovered by Ostrowski (in 1922),
Lekkerkerker (in 1952), and Zeckendorf (in 1972). Note that F1 is not used
in this representation. In our examples, using a binary word notation, thus
ζ(11) = 10100, ζ(21) = 1000010 and ζ(30) = 1010001. The representation
is obtained by greedily at each step including the largest Pingala number.
Thus, the definition of the Pingala numbers gives that there cannot be two
consecutive 1s in ζ. We leave it as an exercise to prove the uniqueness.

One more basic property of ZOL-numeration is that, by adding 1 to a
word of alternating 1s and 0s of length k results in the word of length k + 1
of the form 10 . . . 0. For example 101 + 1 = 1000 and 1010 + 1 = 10000.
That is, in this numeration, we have (10)(k−1)/2 + 1 = 10k, if k is odd, and
(10)k/2 + 1 = 10k, if k is even. Let us call this property ZOL-carry. Note
that in the first case, we go from a word ending in an even number of 0s to a
word ending in an odd number of 0s, and vice versa in the second case. Note
also that, since ZOL-numeration never uses consequtive 1s, for any word, it
ends in an alternating sequence of 0s and 1s (perhaps trivial), and before
that perhaps there is a double entry of 0s etc.

Theorem 73. The first player wins if and only if they can remove the small-
est number in the ZOL-decomposition of the heap size.

Notice that this statement includes the previous one (Theorem 72), since
the starting player is not allowed to remove the whole heap. In the example
11 = 8 + 3, the first player removes 3, and then the second player has to
move from the Fibonacci number 8. They can remove 1 ⩽ r ⩽ 6. If they
remove 3 or more they lose in the next move. Otherwise the next player can
play to 5, again, a Fibonacci number. In their next move they can either
win directly, or, if the other player removed 1, they can take 1 from 4 and
reach 3. Now, because the other player can only reach 1 or 2, they win in
their next move.

We write (x, 2r) for a heap of size x, where the previous player removed r
pebbles, and so the current player is allowed to remove at most 2r pebbles.
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(The exception is the starting position, which is of the form (x, x−1), where
x− 1 may be odd.)

Proof. Consider a previous position (x, 2r). Denote by Z(x) the set of Pin-
gala numbers in the ZOL-representation of x. We must justify the following
statements.

(i) If m = minZ(x) ⩽ 2r, then minZ(x−m) > 2m, or x−m = 0.
(ii) If minZ(x−m) > 2m, then minZ(x) ⩽ 2r.

Observe that (i) states that if the previous player can remove the smallest
ZOL-component of x, then the current player cannot. And (ii) is the opposite
statement, if the current player cannot remove the smallest ZOL-component,
then the previous player could.

Item (i) is almost automatic by the definition of ZOL-decomposition.
Namely, when the smallest ZOL-component of a number has been removed,
then, the second smallest becomes the smallest, but it is distanced by at
least one Fibonacci number. Formally, by the definition of the Fibonacci
numbers, for all n ⩾ 2, with the removal of Fn = minZ(x), then

2Fn < Fn + Fn+1

= Fn+2

⩽ minZ(x− Fn),

by definition of ZOL-numeration, unless x−m = 0.
For (ii), by the assumption minZ(x−m) > 2m, we can express the ZOL-

decomposition of x as Z(x) = Z(x − m) ∪ Z(m). But, then minZ(x) =
minZ(m) ⩽ m ⩽ 2r, where the second inequality is by the rules of play. □

13.7. The amazing world of Wythoff. Let us return to Wythoff Nim.
We start with a recap that includes a to do list. There are several represen-
tations of the P-positions of Wythoff Nim. Let us list a few.

(i) Geometric Approach: A recursive painting of N -positions illumi-
nates smallest missing P-positions (see the introduction).

(ii) Wythoff Properties: We listed five properties that uniquely define
the Wythoff sequences, and a proof was included in Section 13.2.

(iii) A Mex-Algorithm: The A-sequence can be recursively computed us-
ing the mex-algorithm that we introduced while studying the Sprague-
Grundy theory.

(iv) Golden Section: We have stated the result in Theorem 1, but not yet
proved it.

(v) ZOL-numeration: The P-positions have a nice interpretation in the
ZOL-numeration mentioned in the discussion of Fibonacci Nim.

(vi) A Morphism on Words: Section 13.8.
Let us do (5). First we construct a small table of the first positive integers
in ZOL-numeration. We use the binary notation with F2 = 1 as the small-
est ‘digit’, so for example 7 = 5+2 = F5+F3 = 1010 and 13 = F7 = 100000.
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n ZOL(n)
1 1
2 10
3 100
4 101
5 1000
6 1001
7 1010
8 10000
9 10001
10 10010

The bold numbers are those that end in an even number of 0s. That is,
1, 3, 4, 6, 8, 9, . . .. We note that those coincide with those in the A-sequence
of Wythoff Nim’s P-positions. The B-sequence is obtained by adjoining
a ‘0’ to the right of the numbers in the A-sequence. And indeed, this is our
next theorem.

Theorem 74. In ZOL-numeration An (Bn) is the nth number that ends
with an even (odd) number of 0s, and, in this numeration, for all n, ζ(Bn) =
ζ(An)0.

Proof. Recall the Wythoff properties:

(i) (a0, b0) = (0, 0);
(ii) for all n, an+1 > an;
(iii) for all n, bn − an = n;
(iv) for all n,m > 0, an ̸= bm;
(v) for all x ∈ N, there exists an n such that an = x or bn = x.

By Theorem 66, it suffices to justify each item. But all items except (iii)
are immediate by definition. It remains to prove that for all n, in ZOL-
numeration, An0 = An + n. By using ZOL-enumeration, as defined on
page 52, let us describe An as a function of n.

Claim: if the ZOL-numeration ζ(n) ends in an odd number of 0s, then
ζ(An) = ζ(n)0, and otherwise, ζ(An) = ζ(n− 1)1.

The corresponding table begins like this:

n ζ(n) An ζ(An)
1 1 1 1
2 10 3 100
3 100 4 101
4 101 6 1001
5 1000 8 10000
6 1001 9 10001
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Before we prove this claim, let us see that it suffices to prove the result.
Let us view two examples of this claim:

5 = “1000”, A5 = 8 = “10000”, B5 = “100000”;
3 = “100”, A4 = 6 = “1001”, B4 = 10 = “10010”.

In the first “odd” case we get, by using the definition of Pingala recurrence
in the third equality:

ζ(Bn) = ζ(An) + ζ(n)

= ζ(n)0 + ζ(n)

= ζ(n)00

= ζ(An)0.

And notice that ζ(Bn) ends in an odd number of 0s, because ζ(n) does so.
The second “even” case is similar, but it requires a small trick, namely

ζ(Bn) = ζ(An) + ζ(n)

= ζ(n− 1)1 + ζ(n)

= ζ(n− 1)1 + ζ(n− 1) + 1

= ζ(n− 1)0 + ζ(n− 1) + 2

= ζ(n− 1)00 + 2

= ζ(n− 1)10

= ζ(An)0.

Here it is important to observe that each line is a valid ZOL-representation.
In particular, ζ(n− 1)10 is valid, by the following implication: if ζ(n) ends
in an even number of 0s, then ζ(n − 1) does not end in a “1”. Namely, if
ζ(n) ends in a “1” then remove it to obtain ζ(n − 1). Otherwise argue by
ZOL-carry as explained in Section 13.6.

Proof of Claim: Let us restate the claim here: “If ζ(n) ends in an odd number
of 0s, then ζ(An) = ζ(n)0, and otherwise, ζ(An) = ζ(n− 1)1.”

Observe that in this statement, all positive integers that end in an even
number of 0s in the ZOL-representation are represented; namely the first
part gives all those that end in two or more zeros while the second part gives
those that end in zero 0s. Therefore it suffices to establish that going from
n− 1 to n implies that the claimed ZOL-representation of An is increasing.
If ζ(n− 1) and ζ(n) end in the same parity of 0s, there is nothing to prove.
Thus there are two cases to check:

(a) ζ(n− 1) ‘odd’ and ζ(n) ‘even’;
(b) ζ(n− 1) ‘even’ and ζ(n) ‘odd’.

For item (a) it is immediate by the statement that An − An−1 = 1; namely
the second part concatenates a “1” to a binary word that ends in an odd
number of zeroes. For item (b), going from ‘even’ to ‘odd’ when n− 1 → n,
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it must be the case that ζ(n − 1) ends in a “1”, that is the rules of ZOL-
carry apply. Similar to the second case above one can see that in this case
An −An−1 = 2. □

13.8. More solutions of Wythoff Nim. Let us continue the Wythoff
story, by using the mex-algorithm approach.

Theorem 75. Let the A and B be the increasing sequences that define
Wythoff Nim’s P-positons. For all n ∈ N0, let{

an = mex{ai, bi | 0 ⩽ i < n};
bn = an + n.

Then, for all n, an = An and bn = Bn.

Proof. Let us verify that the Wythoff Properties are all satisfied. Item (i)
is immediate. That the a-sequence is increasing as in (ii) follows by the
definition of mex. Item (iii) is obvious. Item (iv) can be verified by an
inductive argument. Namely, suppose that bn−1 is the largest element in
{ai, bi | 0 ⩽ i < n}. Then bn = an + n > bn−1, by using also (ii). Hence
there can be no collision. Item (v) follows by the definition of mex. □

The Fibonacci Morphism φ : {0, 1}∗ → {0, 1}∗ is defined by,19{
φ(0) = 01;

φ(1) = 0.

If the initial seed is 0, then φ generates the infinite Fibonacci word, ω.
This word is generated recursively as follows:

φ(0) = 01;

φ(01) = 010;

φ(010) = 01001;

φ(01001) = 01001010,

and so on. Note that φ(010) = φ(0)φ(01), and so on. Define

ω = lim
n→∞

φn(0),

where, for all n > 0, for all x ∈ {0, 1}∗, φn(x) = φn−1(φ(x)), where φ0(x) =
x. We index the letters in ω by N. We get ω1 = 0, ω2 = 1, ω3 = 0, ω4 =
0, ω5 = 1, and so on. The morphism φ has many interesting properties. For
example, for all n ∈ N0, the lengths of the words φn(0) correspond to the
Fibonacci numbers Fn+2.

The following result relates the occurrences of the 0s and 1s in this word
with the P-positions of Wythoff Nim.

19The set of possible finite words on a finite set of letters X is denoted by X∗. A
function f : X∗ → X∗ is a morphism, under concatenation, if for all v, w ∈ X∗, f(vw) =
f(v)f(w).
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Similar to Theorems 74, the interesting Wythoff Property is the “shift
property” (iii). Here, (i) in the Wythoff Properties A0 = B0 = 0 does not
apply.

Theorem 76 ([S1976]). For all n ∈ N, An equals the index of the nth “0”
in ω, and for all n,Bn equals the index of the nth “1” in ω.

Proof. Clearly A is increasing, so (ii) holds. Similarly complementarity, that
is (iv) and (v) hold by definition. It remains to justify (iii), the shift property.
But this follows by definition of φ; namely, the nth “1” is written when we
read the nth “0”, and it is shifted n steps, since, at each translation, we write
“01” (instead of just “1”). □

Let us prove that the sequences from Wythoff Nim, (⌊nϕ⌋) and (⌊nϕ2⌋),
are complementary. That is, every positive integer appears in exactly one of
these sequences. This can be done in full generality, by instead proving that
the sequences (⌊nα⌋) and (⌊nβ⌋) are complementary whenever α and β are
irrationals with 1/α+ 1/β = 1.

Theorem 77 (Beatty’s/lord Rayleigh’s Theorem). Let α and β be irrational
numbers with

1/α+ 1/β = 1.(18)

Then the sequences (⌊nα⌋)n∈N and (⌊nβ⌋)n∈N are complementary.

Proof. Let us call by “collision” the property that the sequences coincide at
some integer x. Let us call by “anticollision” the property that both se-
quences skip some integer x. We will disprove both.

Collision: Since α and β are irrationals, if ⌊nα⌋ = ⌊mβ⌋ = x then x < nα <
x+1 and x < mβ < x+1. Thus x/α+x/β < n+m < (x+1)/α+(x+1)/β.
But then, by (18), x < n + m < x + 1, where all expressions are integers,
which is impossible.

Anticollision: Suppose that, for some integer x, both ⌊nα⌋ < x < ⌊(n+1)α⌋
and ⌊mβ⌋ < x < ⌊(m + 1)β⌋. But since α and β are irrationals, and x is
an integer, we get nα < x < (n + 1)α − 1 and mβ < x < (m + 1)β − 1.
Thus, by dividing with α and β respectively, and adding ‘columnwise’, we
get n + m < x/α + x/β < n + m + 2 − 1/α − 1/β. That is, by (18),
n+m < x < n+m+1, where all entries are integers, which is impossible. □

We are now prepared to prove Theorem 1 by using the Wythoff Properties
from page 47. Let us recall them here:

(i) (a0, b0) = (0, 0);
(ii) for all n, an+1 > an;
(iii) for all n, bn − an = n;
(iv) for all n,m > 0, an ̸= bm;
(v) for all x ∈ N, there exists an n such that an = x or bn = x.
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Proof of Theorem 1. By Theorem 66, it suffices to justify that, for all non-
negative integers n, (an, bn) = (⌊nϕ⌋, ⌊nϕ2⌋). Item (i) is immediate, and so
is item (ii), because 1 < ϕ. And (iii) follows from ϕ2 = ϕ+1. Items (iv) and
(v) follow from Theorem 77. □

13.9. Euclid’s Game. The ruleset Euclid is played on two non-empty
heaps of pebbles. A player must remove a multiple of the size of the smaller
heap from the larger heap. We represent a position by a pair of positive
integers (x, y), where say 0 < x ⩽ y. Note that if 0 < x = y, then the
position is terminal. Example play: (2, 7) → (2, 3) → (1, 2) → (1, 1). Since
we put the requirement that (both) heaps remain non-empty, then no more
move is possible. Note that the losing move, in this sample play, is forced. As
we will see, this is a general property of Euclid. And more is true; optimal
play reduces to minimizing the relative distance of the heaps. Recall the
golden section, ϕ = 1+

√
5

2 .

Theorem 78 ([CD1969]). A player wins Euclid if and only if they can
remove a multiple of the smaller heap such that the ratio of the heap sizes
(x, y), satisfies 1 ⩽ y/x < ϕ.

Proof. N → P: Suppose that the current player is in a position of the form
(a, b) with b/a > ϕ. We must prove that they can find a move to a position
(c, d) of the form

1 ⩽ d/c < ϕ.(19)

We claim that there is a positive integer k such that either

• (c, d) = (b− ka, a), or
• (c, d) = (a, b− (k − 1)a)

satisfies the desired inequality (19). If 1 ⩽ a
b−ka < ϕ, with (c, d) as in the

first item, we are done, so suppose that

a

b− ka
> ϕ.(20)

Then b−ka
a < ϕ−1. And so

b− (k − 1)a

a
=

b− ka

a
+ 1

< ϕ−1 + 1

= ϕ.

P ̸→ P: Suppose next that the current player is in a position of the form
(a, b), with 1 ⩽ b/a < ϕ. Then there is only one move option, namely



LECTURE NOTES IN COMBINATORIAL GAME THEORY, IE619 2025 59

(b− a, a), and it follows that

b− a

a
=

b

a
− 1

< ϕ− 1

= ϕ−1.

And hence, a
b−a > ϕ. □

13.10. Proof of the ZOL-Theorem. Given a positive integer N , in Sec-
tion 13.6, we introduced a greedy algorithm to find a claimed unique rep-
resentation in terms of non-consecutive Pingala numbers. Some question
marks remain. Let us here provide a step by step analysis of these claims.
We use interchangeably the binary word representation of Pingala number
memberships. For example 33 = 21+ 8+ 3+ 1 is the word 10101 or equiva-
lently the set {F8, F6, F4, F2}.

Claim 1. The greedy algorithm is correct.

Proof of Claim 1. The algorithm picks the largest Pingala number, say Fn,
smaller than or equal to N , and includes it. Then it includes the largest Pin-
gala number smaller than or equal to N −Fn, and so on. It is clear that the
chosen Pingala numbers will be non-consecutive, because if it would chose
both Fi and Fi−1, then it would instead already have chosen Fi+1. We have
to verify that the resulting sum equals N . Suppose that it is true for all
smaller positive integers, and in particular for N−1. Recall ZOL-carry from
Section 13.6. By adding one, we shift the rightmost alternating word of zeros
and ones in the binary word representation ζ(N − 1) to a word of the form
10 · · · 0. This verifies that greedy produces the correct word ζ(N).

Claim 2. Every ZOL-representation is unique, and obtained by the greedy
algorithm.

Proof of Claim 2. Suppose we have two distinct ZOL-representations of a
given number N . Then there is a largest Pingala number, say Fn, that is
not in both representations. The representation that does not contain Fn

has to compensate for the loss by adding up smaller non-consecutive Pingala
numbers to the same amount. We will prove that this is impossible. The
largest possible number one can obtain within these constraints is of the form
1010 · · · 01(0), where the most significant “1” represents the number Fn−1,
and where the least significant “1” represents either F3 or F2, depending on
whether n is even or odd, respectively. Now recursively replace Fn with
smaller Pingala representatives, that is Fn = Fn−1 + Fn− 2, and instead of
Fn−2 we take Fn−2 = Fn−3 + Fn−4, and so on. This process terminates by
using two of the smallest consecutive Pingala numbers, F3 + F2 or F2 + F1,
depending on whether n is even or odd, respectively. But the representation
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cannot use consecutive Pingala numbers, and hence in the first case F2 = 1
must be excludeed, and in the second case, we do not use F1 anyway. Thus,
the largest number we can obtain is Fn − 1, which together with Claim 1
proves Claim 2.

14. Bidding Combinatorial games, by Prem

Consider Left and Right playing a normal play game G. Instead of the
conventional alternating play, here the move order is determined through a
Discrete Richman bidding. The total budget TB, available for them is fixed.
Left’s budget is p and Right’s is q such that p + q = TB. A player who
wins the bid, moves in G and shifts the winning bid to the other player.
Additionally, there is a tiebreaking marker, that is initially held by one of
the players and can be included in the bid. The tiebreaking marker has no
value, but in case of a tie, the player who is currently holding the tiebreaking
marker will be the winner of the bid and the winning bid together with the
tiebreaking marker will get shifted to other player. There is a final auction
at the empty game. The player who moves last, wins the game. Moreover,
similar to alternating play, in this bidding set up: “last move wins” is the
same as “cannot move loses”

Formally, given a total budget TB, let us define B = {0, . . . ,TB, 0̂, . . . , T̂B},
the set of all feasible player budgets. Here a “feasible budget” includes the
information of the marker holder. A game is a triple (TB, G, p̃), where Left’s
part of the budget is p̃ ∈ B. If TB is understood, we write (G, p̃).

For example, (2, ∗, 1
∧
) means the game is ∗ = {0 | 0} with total budget 2 in

which player Left has budget 1 and the tiebreaker marker. In (2, ∗, 1
∧
), Left

can bid 0, 0
∧
, 1 or 1

∧
, however Right can only bid 0 or 1. Let’s consider Left is

bidding the amount 1
∧
. Then for both choices of Right, Left will win the bid

and make a move in the game ∗. The current bidding game is (2, 0, 0). Now
Left will bid 0 and for all choices of Right, Right will win the bid and have
to make a move in the game 0. Since, Right cannot move, Left wins the game.

(2, ∗, 1
∧
) (1

∧
, 0) (2, 0, 0)

(1
∧
, 1) (0, 0 or 1) LEFT

Bid Left

Bid Left
Bid

Right

The following result ensures that by the introduction of bidding, there will
not be any mixed strategy equilibrium.
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Theorem 79 (First Fundamental Theorem). [KLRU2022] Consider the bid-
ding convention where the tie-breaking marker may be included in a bid. For
any game (TB,G, p̃) there is a pure strategy subgame perfect equilibrium,
computed by standard backward induction.

Observe that in case of a tie, the marker is transferred. Therefore, by this
automatic rule, the special case TB = 0 corresponds to alternating normal
play rules.

Theorem 80. Consider TB = 0. Then bidding play is identical to alternat-
ing play. The current player is the player who holds the marker.

Next, we define the outcome of a bidding game.

Definition 81 (Outcome). The outcome of the game (TB, G) is o(G), de-
fined via the 2(TB + 1) tuple of partial outcomes as

o(G) = (o(G, T̂B), . . . , o(G, 0̂), o(G,TB), . . . , o(G, 0)).

Here the first half of the outcome corresponds to when Left holds the marker
and the rest corresponds to when Right holds the marker. The length of the
outcome is 2(TB + 1).

Since this notation can be quite lengthy, we instead adopt word notation.
For example instead of (R, R, L, L) we simply write RRLL.

Definition 82 (Outcome Relation). Consider a fixed TB and the set of all
budgets B. Then for any games G and H, o(G) ⩾ o(H) if, ∀ p̃ ∈ B, o(G, p̃) ⩾
o(H, p̃).20

Feasibility of outcome. A careful observation shows that for TB = 1,
an outcome such as RLRL would be rare, since Right wins without either
money or marker, but loses if he is given a dollar. Next, we state (the proof is
straightforward) that such outcomes are impossible; outcomes are monotone.

Theorem 83 (Outcome Monotonicity). Consider p̃ ∈ B, with p < TB.
Then o(G, p̃) ⩽ o(G, p̃+ 1) (same marker holder in both games).

Another careful observation shows that for TB = 1, an outcome such as
LLRR is monotone but for this outcome, Left loses with a dollar budget, but
wins with the marker alone. This is also not possible. The next result shows
that the marker cannot be worth more than a dollar.

Theorem 84 (Marker Worth). Consider TB ∈ N. Then, for any game G,
o(G, p̂) ⩽ o(G, p+ 1).

We can view an outcome as a string of L’s and R’s. From Outcome
Monotonicity and Marker Worth, Theorems 83 and 84, we see that not all
such strings can appear as an outcome of a game. Thus, let us define the
notion of a feasible outcome.

20It is easy to check that the outcome relation is reflexive, antisymmetric and transitive.
Hence the set of all outcomes together with this relation is a poset.
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Definition 85 (Feasible Outcome). An outcome is feasible if it satisfies
Outcome Monotonicity (Theorem 83) and Marker Worth (Theorem 84). For
a given TB, the set of all feasible outcomes is O = OTB.

The next result shows that corresponding to every feasible outcome, there
is a bidding game.

Theorem 86 (Main Theorem). Consider any total budget TB ∈ N0. An
outcome, say ω, is feasible if and only if there is a game G such that o(G) =
ω.

For more details see [KLRU2022] and [KLRU2023].
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